Serpentine Wave Propagation
Publications

[PS-17] N. A. Petersson and B. Sjogreen, “High order accurate finite difference modeling of seismo-acoustic wave propagation in a moving atmosphere and a heterogeneous earth model coupled across a realistic topography,” Journal of Scientific Computing [submitted]. LLNL-JRNL-704612

[POSB-16] N. A. Petersson, O. O’Reilly, B. Sjogreen, and S. Bydlon, “Discretizing singular point sources in hyperbolic wave propagation problems”, Journal of Computational Physics, 321, pp. 532-555 (2016). LLNL-JRNL-679293

[PS-15] N. A. Petersson and B. Sjogreen, “Wave propagation in anisotropic elastic materials and curvilinear coordinates using a summation-by-parts finite difference method,” Journal of Computational Physics, 299, pp. 820-841 (2015). LLNL-JRNL-663238

[PS-14] N.A. Petersson, and B. Sjogreen, “Super-grid Modeling of the Elastic Wave Equation in Semibounded Domains”, Communications in Computational Physics, 16, pp. 913-955 (2014). LLNL-JRNL-610212

[SP-14] B. Sjogreen, and N.A. Petersson, “Source Estimation by Full Wave Form Inversion”, Journal of Scientific Computing, 59(1), pp. 247-276, DOI: 10.1007/s10915-013-9760-6, (2014). LLNL-JRNL-573912

[AP-12] Appelo, D. and N.A. Petersson, “A fourth-order accurate embedded boundary method for the wave equation”, SIAM J. Sci. Comput. 50, pp. A2982-A3008, DOI:10.1137/09077223X (2012). LLNL-JRNL-417163

[SP-12a] B. Sjogreen, and N.A. Petersson, “A fourth order accurate finite difference scheme for the Elastic Wave Equation in second order formulation,” Journal of Scientific Computing. 52(1), pp. 17-48, DOI: 10.1007/s10915-011-9531-1, (2012). LLNL-JRNL-483427

[KP-12] H.-O. Kreiss, and N.A. Petersson, “Boundary estimates for the Elastic Wave Equation in almost incompressible materials,” SIAM Journal of Numerical Analysis. 50, pp. 1556-1580, DOI: 10.1137/110832847 (2012). LLNL-JRNL-482152

[PS-12] N.A. Petersson and B. Sjogreen, “ Stable and efficient modeling of anelastic attenuation in seismic wave propogation ,” Communications in Computational Physics. 12(1), pp. 193-225, DOI: 10.4208 (2012). LLNL-JRNL-460239

[KOP-12] H.O. Kreiss, O.E. Ortiz, N.A. Petersson, “Initial-boundary value problems for second order systems of partial differential equations,” Mathematical Modelling and Numer. Anal. 46(3), pp. 559-593, DOI: 10.1051 (2012). LLNL-JRNL-416303

[PS-10] N.A. Petersson and B. Sjogreen, “Stable grid refinement and singular source discretiztion for seismic wave simulations,” Communications in Computational Physics, v. 8, no. 5, pp. 1074-1110 (2010). LLNL-JRNL-419382

[PS-09] N.A. Petersson, B. Sjogreen, “An EnergyAbsorbing Far-Field Boundary Condition for the Elastic Wave Equation,” Comm. Comput. Phys. v. 6, no. 3, pp. 483-508 (2009). LLNL-JRNL-405423

[AP-08] D. Appelo and N.A. Petersson, “A stable finite difference method for the elastic wave equation on complex geometries with free surfaces,” Comm. Comput. Phys. v. 5, pp. 84-107 (2008).

[NPSK-07] S. Nilsson, N.A. Petersson, B. Sjogreen, H.-O. Kreiss, “Stable difference approximations for the elastic wave equation in second order formulation,” SIAM J. Numer. Anal. v. 45, pp 1902-1936, (2007).

[KP-06b] H.O. Kreiss, N.A. Petersson, “An embedded boundary method for the wave equation with discontinuous coefficients,” SIAM J. Sci. Comput. v. 28, pp. 2054-2074, (2006).

[KP-06] H.O. Kreiss, N.A. Petersson, “A second order accurate embedded boundary method for the wave equation with Dirichlet data,” SIAM J. Sci. Comput. v. 27, pp. 1141-1167, (2006).

[SP-05] B. Sjogreen, N.A. Petersson, “Perfectly matched layers for Maxwell’s equations in second order formulation,” J. Comput Phys. v. 209, pp 19-46, (2005).

[KPY-04] H.O. Kreiss, N.A. Petersson, and J. Ystrom, “Difference approximations of the Neumann problem for the second order wave equation,” SIAM J. Numer. Anal. v. 42, pp. 1292-1323, (2004).

[KPY-02] H.O. Kreiss, N.A. Petersson, and J. Ystrom, “Difference approximations for the second order wave equation,” SIAM J. Numer. Anal. v. 40 pp. 1940-1967, (2002).