Survey

Please consider helping us improve by answering our 3 question survey.

Serpentine Wave Propagation

Publications

[WP-18] S. Wang and N. A. Petersson, “Fourth order finite difference methods for the wave equation with mesh refinement interfaces,” SIAM J. Sci. Comput., (2018) [submitted]. LLNL-JRNL-757334

[PS-18] N. A. Petersson and B. Sjogreen, “High order accurate finite difference modeling of seismo-acoustic wave propagation in a moving atmosphere and a heterogeneous earth model coupled across a realistic topography,” J. Sci. Comput., (2018) 74, pp. 290–323, DOI:10.1007/s10915-017-0434-7. LLNL-JRNL-704612

[PODP-17] B. Prochnow, O. O’Reilly, E. M. Dunham, and N. A. Petersson, “Treatment of the polar coordinate singularity in axisymmetric wave propagation using high-order summation-by-parts operators on a staggered grid,” Comput. Fluids, (2017) 149, pp. 138–149, DOI:10.1016/j.compfluid.2017.03.015. LLNL-JRNL-698320

[POSB-16] N. A. Petersson, O. O’Reilly, B. Sjogreen, and S. Bydlon, “Discretizing singular point sources in hyperbolic wave propagation problems,” J. Comput Phys., (2016) 321, pp. 532–555. LLNL-JRNL-679293

[PS-15] N. A. Petersson and B. Sjogreen, “Wave propagation in anisotropic elastic materials and curvilinear coordinates using a summation-by-parts finite difference method,” J. Comput Phys., (2015) 299, pp. 820–841.  LLNL-JRNL-663238

[PS-14] N. A. Petersson and B. Sjogreen, “Super-grid modeling of the elastic wave equation in semibounded domains,” Comm. Comput. Phys., (2014) 16, pp. 913–955. LLNL-JRNL-610212

[SP-14] B. Sjogreen and N. A. Petersson, “Source estimation by full wave form inversion,” J. Sci. Comput., (2014) 59(1), pp. 247–276, DOI: 10.1007/s10915-013-9760-6.  LLNL-JRNL-573912

[AP-12] D. Appelo and N. A. Petersson, “A fourth-order accurate embedded boundary method for the wave equation,” SIAM J. Sci. Comput., (2012) 50, pp. A2982–A3008, DOI:10.1137/09077223X. LLNL-JRNL-417163

[SP-12a] B. Sjogreen, and N. A. Petersson, “A fourth order accurate finite difference scheme for the elastic wave equation in second order formulation,” J. Sci. Comput., 52(1), pp. 17–48, DOI: 10.1007/s10915-011-9531-1, (2012).  LLNL-JRNL-483427

[KP-12] H.-O. Kreiss, and N. A. Petersson, “Boundary estimates for the elastic wave equation in almost incompressible materials,” SIAM J. Numer. Anal., (2012) 50, pp. 1556–1580, DOI:10.1137/110832847.  LLNL-JRNL-482152

[PS-12] N. A. Petersson and B. Sjogreen, “ Stable and efficient modeling of anelastic attenuation in seismic wave propogation,” Comm. Comput. Phys., (2012) 12(1), pp. 193–225, DOI:10.4208.  LLNL-JRNL-460239

[KOP-12] H. O. Kreiss, O. E. Ortiz, N. A. Petersson, “Initial-boundary value problems for second order systems of partial differential equations,” Mathematical Modelling and Numer. Anal., (2012) 46(3), pp. 559–593, DOI:10.1051. LLNL-JRNL-416303

[PS-10] N. A. Petersson and B. Sjogreen, “Stable grid refinement and singular source discretiztion for seismic wave simulations,” Comm. Comput. Phys., (2010) 8(5), pp. 1074–1110.  LLNL-JRNL-419382

[PS-09] N. A. Petersson, B. Sjogreen, “An energy absorbing far-field boundary condition for the elastic wave equation,” Comm. Comput. Phys., (2009) 6(3), pp. 483–508.  LLNL-JRNL-405423

[AP-08] D. Appelo and N. A. Petersson, “A stable finite difference method for the elastic wave equation on complex geometries with free surfaces,” Comm. Comput. Phys., (2008) 5, pp. 84–107.

[NPSK-07] S. Nilsson, N. A. Petersson, B. Sjogreen, H.-O. Kreiss, “Stable difference approximations for the elastic wave equation in second order formulation,” SIAM J. Numer. Anal., (2007) 45, pp 1902–1936.

[KP-06b] H. O. Kreiss, N. A. Petersson, “An embedded boundary method for the wave equation with discontinuous coefficients,” SIAM J. Sci. Comput., (2006) 28, pp. 2054–2074.

[KP-06] H. O. Kreiss, N. A. Petersson, “A second order accurate embedded boundary method for the wave equation with Dirichlet data,” SIAM J. Sci. Comput., (2006) 27, pp. 1141–1167.

[SP-05] B. Sjogreen, N. A. Petersson, “Perfectly matched layers for Maxwell’s equations in second order formulation,” J. Comput Phys., (2005) 209, pp. 19–46.

[KPY-04] H. O. Kreiss, N. A. Petersson, and J. Ystrom, “Difference approximations of the Neumann problem for the second order wave equation,” SIAM J. Numer. Anal., (2004) 42, pp. 1292–1323.

[KPY-02] H. O. Kreiss, N. A. Petersson, and J. Ystrom, “Difference approximations for the second order wave equation,” SIAM J. Numer. Anal., (2002) 40, pp. 1940–1967.