XBraid: Parallel Time Integration with Multigrid
Publications
  1. J. B. Schroder, Parallelizing Over Artificial Neural Network Training Runs with Multigrid, arXiv preprint arXiv:1708.02276, (2017). LLNL-JRNL-736173.
  2. J. B. Schroder, M. Lecouvez, R. D. Falgout, C. S. Woodward, P. Top, Parallel-in-Time Solution of Power Systems with Scheduled Events, 2018 Power and Energy Society General Meeting (PESGM), IEEE, (submitted), (2018). LLNL- CONF-740658.
  3. R. D. Falgout, M. Lecouvez, and C. S. Woodward, A Parallel-in-Time Algorithm for Variable Step Multistep MethodsSIAM J. Sci. Comput, (submitted), (2017). LLNL-JRNL-739759
  4. H. De Sterck, R. D. Falgout, A. J. M Howse, S. P. MacLachlan, and J. B. Schroder, Parallel-in-Time Multigrid with Adaptive Spatial Coarsening for the Linear Advection and Inviscid Burgers EquationsSIAM J. Sci. Comput, (submitted), (2017).  Supplementary Materials. LLNL-JRNL-737050.
  5. A. Hessenthaler, D. Nordsletten, O. Roehrle, J. B. Schroder, R. D. Falgout, Convergence of the Multigrid-Reduction-in-Time Algorithm for the Linear Elasticity Equations, Numer. Linear Algebra Appl., (submitted), (2017). LLNL-JRNL-731168.
  6. S. Gunther, N. R. Gauger, and J. B. Schroder, A Non-Intrusive Parallel-in-Time Adjoint Solver with the XBraid Library, Computing and Visualization in Science, Springer, (submitted), (2017). LLNL-JRNL-730159.
  7. A. J. M. Howse (in collaboration with H. De Sterck, R. D. Falgout, S. P. Machlachlan, and J. B. Schroder), Multigrid Reduction in Time with Adaptive Spatial Coarsening for the Linear Advection Equation, Student Paper, 18th Copper Mountain Conference on Multigrid Methods, Copper Mountain, Colorado.  March, 2017.  LLNL-PROC-716758 
  8. H. Gahvari, V. A. Dobrev, R. D. Falgout, Tz. V. Kolev, J. B. Schroder, M. Schulz and U. M. Yang, A Performance Model for Allocating the Parallelism in a Multigrid-in-Time Solver, The 7th International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS16), Supercomputing 16.  LLNL-CONF-701995.
  9. M. Lecouvez, R. D. Falgout, C. S. Woodward, and P. Top, A parallel multigrid reduction in time method for power systems, in Power and Energy Society General Meeting (PESGM), 2016, IEEE, 2016,
    pp. 1–5. LNL-CONF-679148
  10. R. D. Falgout, T. A. Manteuffel, B. O’Neill, and J. B. Schroder, Multigrid reduction in time for nonlinear parabolic problems: A Case Study,  SIAM J. Sci. Comput., 39 (2017), pp 298-322. LLNL-JRNL-692258.
  11. V. Dobrev, Tz. Kolev, N. A. Petersson, and J. B. Schroder, Two-level convergence theory for Multigrid Reduction in Time (MGRIT),  SIAM J. Sci. Comput., 39 (2017), pp. 501-527.  LLNL-JRNL-692418.
  12. R.D. Falgout, T.A. Manteuffel, J.B. Schroder, B. Southworth, Parallel-in-time for moving meshes. Technical Report, LLNL-TR-681918.
  13. R.D. Falgout, S. Friedhoff, Tz.V. Kolev, S.P. MacLachlan, J.B. Schroder and S. Vandewalle, Multigrid Methods with Space-Time Concurrency, Computing and Visualization in Science, Springer, (2017). LLNL-JRNL-678572.
  14. R. D. Falgout, A. Katz, Tz. V. Kolev, J. B. Schroder, A. Wissink, U. M. Yang, Parallel Time Integration with Multigrid Reduction for a Compressible Fluid Dynamics Application, Technical Report, LLNL-JRNL-663416.
  15. R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, and J. B. Schroder, Parallel Time Integration with MultigridSIAM J. Sci. Comput., 36 (2014), pp.C635-C661LLNL-JRNL-645325.
  16. S. Friedhoff, R. Falgout, T. Kolev, S. MacLachlan, and J. Schroder, A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel, Student paper winner, Sixteenth Copper Mountain Conference on Multigrid Methods, Copper Mountain, Colorado. March, 2013. LLNL-CONF-606952.

Tutorials

  1. J. Schroder and R. Falgout, XBraid Tutorial,  18th Copper Mountain Conference on Multigrid Methods, March, 2017, Copper Mountain, Colorado.
  2. J. Schroder and R. Falgout, XBraid Tutorial,  6th Conference on Parallel-in-Time Integration, October, 2017, Ascona, Switzerland.