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High-Level Outline

Nonlinear Equations Problems

Newton’s Method Tensor Methods
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Small problems

Large problems

Inexact Newton Methods:
· Newton-Krylov

Inexact Tensor Methods:
· Tensor-Krylov

? ?



Nonlinear Equations Problem

Problem: Findx∗ such thatF (x∗) = 0, whereF : Rn → Rn.

Notation:

xk = current point

Fk = F (xk)

Jk = J(xk) = F ′(xk)

Areas of Research:
• Problems whereJ(x∗) is ill-conditioned or singular
• Large-scale problems (e.g., PDE problems)
• Global strategies



Local Tensor Model

Taylor series expansion:

F (xk + d) = F (xk) + F ′(xk)d + 1
2F
′′(xk)dd︸ ︷︷ ︸

Second Order Approximation

+O(d3)

Local model: MT (xk + d) = Fk + Jkd︸ ︷︷ ︸
Newton

+ 1
2Tkdd︸ ︷︷ ︸
Tensor

Remarks:
1. Tk ∈ Rn×n×n supplies second-order information aboutF (x) atxk.
2. If usingTk ≡ F ′′(xk):
• Would require1

2n
3 second partial derivatives

• System ofn quadratic equations inn unknowns
⇒ Not practical!

3. More practical:Tk =
∑p

i=1 u⊗ v ⊗ w



Practical Rank-one Tensor Method

(Schnabel and Frank, 1984)

Store a secant approximation toTk only in the direction of the previous step.

⇒ Tk = a⊗ s⊗ s

where s = xk−1 − xk

a =
2(Fk−1 − Fk − Jks)

(sTs)2

MT (xk + d) = Fk + Jkd + 1
2a(sTd)2

Remarks on direct method:
• 2 vectors of extra storage (s anda).
• Marginally more arithmetic than solving linear system (Newton’s method).
• Reduces to 1 quadratic equation and an(n− 1)× (n− 1) linear system.



Tensor Method for Solving Nonlinear Equations

(Schnabel and Frank, 1984)

Now insert the local solver into a nonlinear solver framework...

Tensor Method:

Choose an initialx0,
Fork = 0, 1, 2, . . . , until termination, Do

1. Form local tensor model.
2. Findd that minimizes‖MT (xk + d)‖2.
3. Updatexk+1 ← xk + d.
4. If xk+1 is not acceptable, then perform linesearch.

• 3-step superlinear convergence on singular problems.
• Modest to significant improvement over Newton’s method on nonsingular and

singular problems.(Schnabel and Frank, 1984; Bouaricha, 1992)



Simple Example

Modified Rosenbrock’s function

F (x) =

{
f1(x) = 5(x2 − x2

1)
f2(x) = 1− x1

Plots will show:
• Contours of‖F (x)‖ and‖M(xk + d)‖
• Full Newton and/or tensor step
• Accepted step



Simple Example
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Simple Example
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Simple Example
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Simple Example
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Research Objective

Large-scale tensor methods:

• Develop a Krylov-based iterative method that can solve the local tensor
model in≤ n steps.
• Expand to a fully featured “tensor-Krylov” method.
• Employ a “curvilinear linesearch” as the global strategy.
• Implement in production code and try solving Navier–Stokes problems.



Newton-Krylov Methods

(Brown and Saad, 1990; Brown and Hindmarsh, 1989; Chan and Jackson, 1986)

• Outer loop = Newton’s method
• Inner loop = Linear Krylov subspace method

– Residualr0 ≡ −F − Jd0

– Km(J, r0) ≡ span{r0, Jr0, J
2r0, . . . , J

m−1r0}
– Find an approximate Newton stepd ∈ Km at each iterate.

Newton-GMRES:

Choose an initialx0,
Fork = 0, 1, 2, . . . , until termination, Do

1. Find stepd ∈ Km that minimizes‖Fk + Jkd‖2.
2. Updatexk+1 ← xk + d.
3. If xk+1 is not acceptable, then perform linesearch.

=⇒ Now extend to atensor-Krylovmethod.



The Tensor-Krylov Method

Tensor-Krylov Method:

Choose an initialx0,
Fork = 0, 1, 2, . . . , until termination, Do

1. Form local tensor model.
2. Findd ∈ Km that minimizes‖MT (xk + d)‖2.
3. Updatexk+1 ← xk + d.
4. If xk+1 is not acceptable, then perform(curvilinear)linesearch.

⇒ Three methods for solving step 2...
⇒ Introduce curvilinear linesearch...



Krylov-based Method for
Solving Local Tensor Model

Find the stepd that minimizes the tensor model

min
d∈Km

∥∥∥Fk + Jkd + 1
2a(sTd)2

∥∥∥
2

whereKm is a specially chosen Krylov subspace.

• Start with the block Krylov subspaceK0 = span{s, a, Fk}.
• Use Arnoldi process to build anm dimensional orthogonal subspace and banded

Hessenberg.
• Perform series ofplane rotationsto reduce Hessenberg system to:

– Triangular system ofm− 1 linear equations inm unknowns.
– Four quadratic equations in1 unknown.

• Solve for single unknown and then solve resultant linear system.

Call this method: TK3



Two More Krylov-based Methods

Local model: MT (xk + d) = Fk + Jkd + 1
2a(sTd)2

• Looks like a linear system involving a linear combination of 2 right-hand sides:

Jkd = −Fk − 1
2aβ2 whereβ ≡ sTd

• Vectors not in right-hand side sospan{s, Js, J2s, . . . } does little to help
convergence.
• Start with the block Krylov subspaceK0 = span{a, Fk}.
• Build Km = span{a, Fk, Ja, JFk, J

2a, J2Fk, . . . }.
• Solve the tensor model

min
d∈Km

∥∥∥Fk + Jd + 1
2a(sTd)2

∥∥∥
2

TK2

min
d∈{s}∪Km

∥∥∥Fk + Jd + 1
2a(sTd)2

∥∥∥
2

TK2+



Similarities Among the Methods

• May control quality of inexact tensor step to within a specified tolerance, in
contrast to other large-scale tensor methods.
• Formulations can handle:

– Restarting
– Left/right preconditioning
– Most technology developed for GMRES



Differences Among the Methods

TK3
• Simpler to program
• Larger block for better

memory performance?

TK2 & TK2+
• Typically fewer

Jacobian-vector products
needed to converge

• Each may be formulated as a block or scalar method.

JV versusJv

• Block implementation more efficient in terms of memory performance.
(Fewer accesses to Jacobian)
• Scalar implementation more straightforward.



Tensor-GMRES Method of Feng and Pulliam

(Feng and Pulliam, 1997)

1. Find Newton-GMRES step
2. SaveKN

m (i.e.,Vm andH̄m)
3. Solve theprojectedtensor model

min
d∈{d0}∪KN

m

∥∥∥Fk + Jd + 1
2Pa(sTd)2

∥∥∥
2

whereP is the projection matrix

P ≡ Y (Y TY )−1Y T , Y ≡ Jk[Vm, d0]

Notes:
• Retains 3-step superlinear convergence properties (for ideal tensor method)
• How much willP andKN

m affect the quality of the step?
(e.g., preconditioning and restarting)



Method Comparison

Cost per Local Solve

Newton-GMRES O(nm2)
Tensor-Krylov (TK3) GMRES+ 10n + 4nm + 6m2

Tensor-Krylov (TK2) GMRES+ 4n + 3nm + 6m2 + 1(Jv)
Tensor-Krylov (TK2+) GMRES+ 7n + 4nm + 17

2 m2 + 1(Jv)
Tensor-GMRES (Feng-Pulliam) GMRES+ 5n + 4nm + 2m2 + 1(Jv)

Strength Weakness
Newton-GMRES General use Singular/ill-cond. problems
Tensor-Krylov (all) SolvesMT (xk + d) Block-Krylov style
Tensor-GMRES (Feng-Pulliam) GMRES front end ProjectedMT (xk + d) onKN

m



Graphical Comparison of Methods

Block size of local method

Information in 
local model 

Newton−GMRES

Tensor−GMRES
TK2/2+ TK3

(aff ects number of Arnoldi iterations)

(aff ects number of 
nonlinear iterations)

1 2 3 

Tensor-Krylov methods: Trade more inner iterations for fewer outer iterations.



New Idea: Curvilinear Linesearch as Global Strategy

MλT (xk + d) = λFk + Jkd + 1
2a(sTd)2

⇓
Curvilinear stepdT (λ)

Contours of‖MT (xk + d)‖2
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General properties:
• ‖MT (xk + dT (λ))‖2 increases

monotonically fromλ = 1→ 0

• Asymptotically approachesdN

• Resembles trust region method



Large-scale Problems

• Need a large-scale implementation of Tensor-Krylov→ NOX
• Need several benchmark PDE problems for testing→ MPSalsa
• Test 3 fluid flow problems



NOX: A C++ Objected-Oriented
Nonlinear Equation Solver Package

Solver layer

. . . . . . . . . . . . . . . . . . .

Abstract layer

. . . . . . . . . . . . . . . . . . .

Linear algebra

. . . . . . . . . . . . . . . . . . .

Application
interface

• Object-oriented C++ code using abstract and concrete
classes for the construction and solution of nonlinear
problems.
• Abstraction isolates the solver layer from...

– Vector and matrix representation
– Linear solver and/or preconditioners
– Application interface (F (x), J(x))

• Nonlinear solvers and global strategies are written in a
modular fashion to accommodate the user’s linear
solver package and parallel configuration.
• Includes several state-of-the-art solvers and is easily

extensible for new solvers.



MPSalsa: 2D and 3D
Parallel Reacting Flow Code

• Galerkin/Least-Squares Finite Element formulation on unstructured grids
• Creates fully coupled system of equations (fluid flow, heat transfer, and

multi-component mass transfer with finite rate chemical reactions)
• Solves laminar and turbulent, low Mach number, reacting flows
• Slate of robust algorithms (not used in this comparison)
• Used to create test problems:

– Backward-facing step
– Lid driven cavity
– Thermal convection

• Reference for test cases: J. N. Shadid, R. S. Tuminaro, H. F. Walker, “An Inexact
Newton Method for Fully Coupled Solution of the Navier-Stokes Equations with
Heat and Mass Transport,”J. Computational Physics, 137, 155–185 (1997).



Numerical Tests

• Stopping conditions:
– Function reduction: ‖F (xk)‖ ≤ 10−2 ‖F (x0)‖
– Weighted step length: 1√

n
‖Wdk‖ < 1

where: dk = full Newton or tensor step
W = diagonal scaling matrix with entries

W ii =
1

10−3
∣∣xki

∣∣ + 10−8

• Initial starting vectorx0 = 0

• Constant forcing termηk = 10−4 in local solves
• Right Preconditioning using an ILUT preconditioner*
• Max 250 Arnoldi iterations and no restarts*
• Enabled maximum accuracy in Jacobian*
• No function or variable scaling*
• * Note: Conditions different from (Shadid et al., 1997) so results here will differ.



Backward-facing Step Problem

Inlet 
(velocity 
profile)

No Slip Boundary

Outlet
(Neumann BC)

No Slip Boundary

∇ · u = 0

Reu · ∇u +∇P −∇2u = 0

• Incompressible, steady-state flow:
continuity and momentum (2D)
equations
• Difficulty/nonlinearity controlled via

the Reynolds number (Re)
• 20× 400 mesh→ 24,000 unknowns



Backward-facing Step Results

100 200 300 400 500 600 700 800
5

10

15

20

25

30

N
on

lin
ea

r 
Itn

s 

Backward−facing step problem

NG  
TG  
TK2 
TK2+
TK3 

100 200 300 400 500 600 700 800
0

1000

2000

3000

4000

 A
rn

ol
di

 It
ns

  

Reynolds Number



Thermal Convection Problem

∇ · u = 0

Reu · ∇u +∇P −∇2u + RaT = 0

Reu · ∇u +∇T +
1

Pr
∇2T = 0

• Incompressible, steady-state flow:
continuity, momentum (2D), and
energy equations
• Difficulty/nonlinearity controlled via

the Rayleigh number (Ra)
• 100× 100 mesh→ 40,000 unknowns



Thermal Convection Problem Results
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← Failures: NG, TG, TK3

← Curvilinear linesearch:
TK2, TK3



Lid Driven Cavity Problem

No Slip Boundaries

Moving Lid

∇ · u = 0

Reu · ∇u +∇P −∇2u = 0

• Incompressible, steady-state flow:
continuity and momentum (2D)
equations
• Difficulty/nonlinearity controlled via

the Reynolds number (Re)
• 100× 100 mesh→ 30,000 unknowns



Lid Driven Cavity Results
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← Failures: TG, TK2

NG: linesearch failure
at Re=1500 but could
solve Re=2000



Summary

• Derived three Krylov-based methods for iteratively solvingMT (xk + d).
• Developed a “curvilinear linesearch,” which resembles a trust region method and

adds greater flexibility in search direction.
• Implemented the tensor-Krylov methods in NOX for solving large-scale problems.
• Results so far have shown the following:

– Tensor methods are beneficial on ill-conditioned and singular problems.
– Tensor-Krylov methods tend to bemore robustthan Newton-GMRES (when

using constant forcing term).
– Tensor-Krylov methods can bemore efficientthan Newton-GMRES,

particularly on harder problems.
– Tensor-GMRES is a competitive algorithm.

Thus, tensor-Krylov methods are useful on
difficult problems that Newton-GMRES
might have trouble with.



Future Research

Several unique directions to pursue:
• Use block implementation in tensor-Krylov methods for better memory efficiency

(i.e., fewer accesses to Jacobian).
• Adapt method so it can use stand-alone linear algebra packages.
• Add an adjustable forcing term for greater robustness.



Contact Information

• Questions?
• Comments?
• More info?

Brett.Bader@Colorado.edu
http://www.cs.colorado.edu/users/bader


