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Abstract

An energy conserving discretization of the elastic wave equation in second order formulation

is developed for a composite grid, consisting of a set of structured rectangular component

grids with hanging nodes on the grid refinement interface. Previously developed summation-

by-parts properties are generalized to devise a stable second order accurate coupling of the

solution across mesh refinement interfaces. The discretization of singular source terms of point

force and point moment tensor type are also studied. Based on enforcing discrete moment

conditions that mimic properties of the Dirac distribution and its gradient, previous single grid

formulas are generalized to work in the vicinity of grid refinement interfaces. These source

discretization formulas are shown to give second order accuracy in the solution, with the

error being essentially independent of the distance between the source and the grid refinement

boundary. Several numerical examples are given to illustrate the properties of the proposed

method.
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1 Introduction

The finite difference method on a uniform Cartesian grid is a highly efficient and easy to implement
technique for solving the elastic wave equation in seismic applications [32, 20, 11]. However, the
spacing in a uniform Cartesian grid is fixed throughout the computational domain, whereas the
resolution requirements in realistic seismic simulations usually are higher near the surface than at
depth. This can be seen from the well-known formula

h ≤ L

P

which relates the grid spacing h to the wave length L, and the required number of grid points per
wavelength P for obtaining an accurate solution [15]. The compressional and shear wave lengths
in the earth generally increase with depth and are often a factor of ten larger below the Moho
discontinuity (at about 30 km depth), than in sedimentary basins near the surface. A uniform
grid must have a grid spacing based on the small wave lengths near the surface, which results
in over-resolving the solution at depth. As a result, the number of points in a uniform grid is
unnecessarily large.

In this paper, we address the over-resolution-at-depth issue by generalizing the single grid finite
difference scheme described in [23] to work on a composite grid consisting of a set of structured
rectangular grids of different spacings, as outlined in Figure 1a. The computational domain in a
regional seismic simulation often extends to depth 40-50 km. Hence, using a refinement ratio of
two, we need about three grid refinements from the bottom of the computational domain to the
surface, to keep the local grid size in approximate parity with the local wave lengths. Generating
the composite grid is trivial once the locations of the component grids have been determined, and
the resulting composite grid has ideal wave propagation properties due to its perfect regularity.

The composite grid discretization developed here, together with the generalization of the
method to curvilinear grids [2], which enables accurate modeling of free surfaces on realistic (non-
planar) topography, makes the finite difference method a very attractive alternative to the recently
developed finite element [7], spectral element [16], discontinuous Galerkin [13, 14], and finite vol-
ume [10] discretizations on unstructured grids. An unstructured grid can be made to follow realistic
topography and can in principle also be made to follow arbitrarily complex shapes in the underly-
ing 3-D geological structure, with a grid size that gets larger as the material wave speed increases.
However, generating a high quality unstructured 3-D grid can be a difficult task in itself. Com-
pared to a finite difference method on a structured grid, the unstrutured nature of the grid also
requires extra book keeping and additional memory to keep track of the connectivity in the grid,
making an efficient implementation of these methods more challenging, in particular on massively
parallel machines.

The challenge of the composite grid approach is to find a stable and accurate method for
coupling the solution across the grid refinement interface. Of particular importance is the treatment
of the solution at the hanging nodes, i.e., the fine grid points which are located in between coarse
grid points. A natural way of advancing the solution in time on a composite grid is to first use the
difference scheme to update the solution at all interior points, followed by assigning solution values
to the ghost points through interpolation from the neighboring grid (see Figure 1b). For example,
this approach works well for many other problems in conjunction with finite difference methods
on overlapping grids [6]. We call this the non-conservative interpolation technique. Because it is
based on interpolation, non-conservative interpolation is only accurate if the solution is smooth
across the refinement interface. Furthermore, when applied to wave propagation problems, the
non-conservative interpolation sometimes induces numerical instabilties, originating from the grid
interface. To stabilize the non-conservative method, one can try adding artificial dissipation to the
finite difference scheme. However, in our experience, it is very difficult to automatically choose a
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Figure 1: a) Outline of a 2-D cross-section of the 3-D computational domain with grid refinements
(left). b) Close up of a grid refinement interface (right), where interior points are drawn with filled
circles and ghost points with open circles. The grids have been plotted with a small offset to clarify
the grid layout.
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Figure 2: (Top): The velocity magnitude as function of time at xr = (3.1 · 104, 3.3 · 104, 0)T in
the solution of a layer over half-space problem due to a moment tensor source located at x∗ =
(2.5 · 104, 2.5 · 104, 2.55 · 103)T (black). The errors in the numerical approximations correspond
to conservative interpolation (blue), non-conservative interpolation (red), and a uniform fine grid
(green). (Bottom): Errors at later times. See Section 6.4 for details.

strength of the dissipation term and a time step which guarentees a stable numerical solution for
realistic heterogeneous materials.

To overcome the problems with non-conservative interpolation, this article presents a new,
energy conserving, coupling procedure for the elastic wave equation at grid refinement interfaces.
When used together with the difference scheme of [23], it results in a method which is provably
stable, without artificial dissipation, for arbitrary heterogeneous isotropic elastic materials. We call
this the conservative interpolation technique. The new coupling procedure is based on satisfying
the summation-by-parts principle across refinement interfaces. From a practical standpoint, an
important advantage of the proposed method is the absence of tunable numerical parameters, which
seldomly are appreciated by application experts. The non-dissipative character of the method also
makes it well suited for wave propagation over large distances, where dissipation otherwise can
lead to significant amplitude errors.

The performance of the different interpolation techniques can be illustrated by solving a layer
over half-space problem where the grid refinement interface is aligned with the material disconti-
nuity. The details of this experiment are described in Section 6.4. Here we outline some of the
results as a motivating example. Figure 2 displays the error at a point on the surface as function
of time. The upper half of the figure illustrates that the error with non-conservative interpolation
(shown in red) is larger than the error when the energy conservative interface treatment is used
(shown in blue). This is due to the solution having a discontinuous gradient across the material
discontinuity. The lower half of Figure 2 shows that for later times, the method based on non-
conservative interpolation (shown in red) becomes unstable, while the energy conserving approach
remains stable (shown in blue).

Conservative grid interface conditions for finite volume approximations of first order hyperbolic
systems, in particular the Euler equations of gas dynamics, have been extensively studied for a
long time [4, 5, 27, 26]. In these articles the objective is to conserve integrals of the dependent
variables, such as the mass, across boundaries between grids of different refinement, or between
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grids from different curvilinear mappings. The conserved integrals are not norms of the solution,
and consequently the conservation property in this context does not automatically lead to stability
estimates. Instead conservation is needed for obtaining correct shock propagation speeds. Stability
at mesh interfaces is usually studied separately for linearized versions of these equations by the so
called GKS analysis, see for example [30, 25].

For linear hyperbolic equations, which for example govern acoustic or elastic wave propagation,
the energy is a norm of the discrete solution (usually under a CFL-condition), and therefore, energy
conservation leads to stability. Energy estimation with grid interfaces for finite difference methods
can be done by summation by parts difference operators. The summation by parts technique has
been used extensively for analyzing interfaces for first order hyperbolic problems, both for sudden
changes in grid spacing and for discontinuous coefficients in the equation, see for example [24, 17]
and the references therein. However these articles are limited to constant coefficient problems in one
space dimension, thereby not addressing either the difficulties associated with variable coefficients,
or the difficulties associated with hanging nodes in several space dimensions. An exception is the
recent two-dimensional summation by parts discretization for grid refinement interfaces developed
in [18]. That paper considers mesh refinement interfaces with hanging nodes, including effects of
corners where two refinement interfaces meet. Results from solving a scalar constant coefficient
advection problem in two space dimensions shows some degeneracy of the grid convergence rate,
due to reduced order of accuracy of the discretization at the corners of the refinement patches.

Material jumps for the acoustic wave equation in second order formulation was handled by the
summation by parts technique in [21], but also here as a purely one dimensional procedure, which
however was applied to an unstructured grid discretization in three space dimensions.

An interface condition for the acoustic wave equation in two space dimensions was presented
in [3], where stability was proven for a finite element discretization. In this work, discontinuous
material properties was treated together with a grid refinement interface with hanging nodes.
Although the finite element formulation makes the analysis very different, the method in [3] is
close in spirit to our proposed approach.

Seismology researchers have also constructed algorithms for coupling finite difference schemes
for the elastic wave equation across grid refinement interfaces. These approaches are given without
a proof of their stability, but have been demonstrated to work reasonably well in realistic seismic
applications, see for example [35].

In the second part of this paper, we study the discretization of singular source terms in the
vicinity of grid refinement interfaces. These source terms are essential in seismic applications where
they are used to model time-dependent slip on an earthquake fault. In larger earthquakes the slip
occurs over an extended area of the fault surface, and source terms can be distributed over this
area to model variable amounts of slip and variations in the source time function, according to
the earthquake source model. Because of a significant variation in material wave speed over a
fault surface, it is desirable to allow fault surfaces to extend through grid refinement interfaces.
This means that some point sources may be located near a refinement interface, in which case
our previous single grid source discretization technique based on Waldén’s formulas [33] does not
apply. In the present paper, we generalize the source discretization formula by enforcing certain
moment conditions, which mimic properties of the Dirac distribution and its gradient, leading to
a second order accurate discretizations of point forces and point moment tensor sources which are
located anywhere on the computational grid, in particular near grid refinement interfaces. The
discretization is first derived in one space dimension, both on a uniform and a composite grid near
a grid refinement interface. In three dimensions we use a Cartesian product of one-dimensional
singular source discretizations, which guarentees that the corresponding 3-D moment conditions
are satisfied. We find by numerical experiments that the solution with a singular source term
becomes second order accurate independently of its location relative to the grid, both away from
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a grid refinement interface and in its vicinity.
The remainder of the paper is organized as follows. In Section 2, we derive stability properties

of a finite difference approximation of the 1-D scalar wave equation with discontinuous wave speed
on a composite grid. Relevant stability properties of our previous single-grid discretization of the
elastic wave equation are presented in Section 3, followed by a derivation of the energy conserving
grid refinement coupling for the elastic wave equation in Section 4. An accurate way of discretizing
point force and moment tensor sources located anywhere on the grid, in particular close to a grid
refinement interface, is presented in Section 5. Numerical experiments are given in Section 6,
followed by concluding remarks in Section 7.

2 The scalar wave equation in 1-D

We start by illustrating the energy conserving interpolation technique for the scalar wave equation
with variable wave speed c(x) =

√
µ(x) in one space dimension,

utt = (µ(x)ux)x, µ(x) > 0, −∞ < x < ∞, t ≥ 0. (1)

The solution u(x, t) is subject to initial conditions

u(x, 0) = φ1(x), ut(x, 0) = φ2(x),

and is assumed to tend to zero as x → ±∞ such that the integrals in the following estimates
become bounded.

By multiplying (1) by ut and integrating over the spatial interval a1 < x < a2, we get the
identity

1

2

d

dt

∫ a2

a1

u2
t (x, t) + µ(x)u2

x(x, t) dx = ut(a2, t)µ(a2)ux(a2, t) − ut(a1, t)µ(a1)ux(a1, t). (2)

Assume that (1) is solved over the subdomains −∞ < x < 0 and 0 < x < ∞, and denote the
corresponding solutions by u and U , respectively. Relation (2) shows that

1

2

d

dt

(∫ 0

−∞

u2
t (x, t) + µ(x)u2

x(x, t) dx +

∫ ∞

0

U2
t (x, t) + µ(x)U2

x(x, t) dx

)

= ut(0, t)µ(0)ux(0, t) − Ut(0, t)µ(0)Ux(0, t). (3)

where Ut(0, t) and µ(0)Ux(0, t) should be interpreted as limits of Ut(x, t) and µ(x)Ux(x, t) when
x → 0 from the right (x > 0). Similarly, ut(0, t) and µ(0)ux(0, t) are the corresponding limits as
x → 0 from the left (x < 0). It follows from (3) that the energy

∫ 0

−∞

u2
t (x, t) + µ(x)u2

x(x, t) dx +

∫ ∞

0

U2
t (x, t) + µ(x)U2

x(x, t) dx (4)

is conserved in time if we impose the interface conditions

u(0, t) = U(0, t), lim
ǫ→0+

µ(−ǫ)ux(−ǫ, t) = lim
ǫ→0+

µ(ǫ)Ux(ǫ, t). (5)

Note that if µ(x) is discontinuous at x = 0, the solution is continuous but its gradient is discon-
tinuous.

We proceed by deriving corresponding interface condition for a finite difference discretization
of the wave equation. We discretize (1) on the grid configuration shown in Fig. 3, where the grid
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Figure 3: The composite grid in one space dimension.

refinement interface is located at x = 0. The fine grid has grid spacing h > 0, the coarse grid has
grid spacing 2h, and the grid points are located at

xj = (j − N)h, j ≤ N + 1, Xj = (j − 1)2h, j ≥ 0.

Note that the points X0 and xN+1 are ghost points, which are used to simplify the enforcement of
the interface conditions. Time is discretized on a uniform grid tn = nδt with time step δt > 0.

We denote the variables on the coarse grid by upper case letters, and the variables on the fine
grid by lower case letters, i.e., Un

j = U(Xj , tn) and un
j = u(xj , tn). The composite grid function

over the entire domain is denoted

ū = (u, U)T , u = (. . . , uN−1, uN)T , U = (U1, U2, . . .)T . (6)

The discrete 1-D scalar product and norm for grid functions u, v on a grid with size h are defined
by

(u, v)1,h,p,q =
h

2
upvp + h

q−1∑

i=p+1

uivi +
h

2
uqvq, ‖u‖2

1,h,p,q = (u, u)1,h,p,q.

At interior grid points, the discretization of the wave equation (1) is

un+1
j − 2un

j + un−1
j

δ2
t

= D−(h)
(
E1/2µ(xj)D+(h)un

j

)
, j ≤ N, (7)

Un+1
j − 2Un

j + Un−1
j

δ2
t

= D−(2h)
(
E1/2µ(Xj)D+(2h)Un

j

)
, j ≥ 1, (8)

where the usual divided difference and averaging operators are defined by

D+(h)uj =
uj+1 − uj

h
, D−(h)uj =

uj − uj−1

h
, E1/2µ(xj) =

µ(xj+1) + µ(xj)

2
.

The dependence on the grid and its size will be suppressed when the meaning is obvious. On a
uniform grid, all grid functions uj, vj , and µj satisfy (see the appendix of [28])

(
u, D−

(
(E1/2µ)D+v

))
1,h,p,q

= −h

q−1∑

j=p

(
E1/2µj

)
(D+uj) (D+vj)

− up

2

[(
E1/2µp−1

)
D+vp−1 +

(
E1/2µp

)
D+vp

]

+
uq

2

[(
E1/2µq−1

)
D+vq−1 +

(
E1/2µq

)
D+vq

]
. (9)
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This identity can be applied separately on each grid in the composite grid to show

(u, D−(mD+v))1,h,−∞,N + (U, D−(MD+V ))1,2h,1,∞ =

− h

N−1∑

j=−∞

mj+1/2 (D+uj) (D+vj) − 2h

∞∑

j=1

Mj+1/2 (D+Uj) (D+Vj)

+
uN

2

(
mN+1/2

vN+1 − vN

h
+ mN−1/2

vN − vN−1

h

)
− U1

2

(
M3/2

V2 − V1

2h
+ M1/2

V1 − V0

2h

)
,

(10)

where mj+1/2 = E1/2µ(xj) and Mj+1/2 = E1/2µ(Xj). Hence, the symmetry property

(u, D−(mD+v))1,h,−∞,N + (U, D−(MD+V ))1,2h,1,∞ =

(v, D−(mD+u))1,h,−∞,N + (V, D−(MD+U))1,2h,1,∞ , (11)

is satisfied if both composite grid functions ū = (u, U)T and v̄ = (v, V )T satisfy the interface
conditions

U1 = uN (12)

M3/2
U2 − U1

2h
+ M1/2

U1 − U0

2h
= mN−1/2

uN − uN−1

h
+ mN+1/2

uN+1 − uN

h
. (13)

Note that (12) and (13) are second order accurate approximations of the continuous jump conditions
(5), also when µ(x) is discontinuous at x = 0.

If we define the energy on the composite grid (cg) by

en+1
1,cg =

∥∥∥∥
un+1 − un

δt

∥∥∥∥
2

1,h,−∞,N

−
(
un+1, D−(mD+un)

)
1,h,−∞,N

+

∥∥∥∥
Un+1 − Un

δt

∥∥∥∥
2

1,2h,1,∞

−
(
Un+1, D−(MD+Un)

)
1,2h,1,∞

, (14)

we can use (7) to show

∥∥∥∥
un+1 − un

δt

∥∥∥∥
2

1,h,−∞,N

=

∥∥∥∥
un − un−1

δt

∥∥∥∥
2

1,h,−∞,N

+
(
un+1 − un−1, D−(mD+un)

)
1,h,−∞,N

.

The corresponding relation for (Un+1 − Un)/δt follows from (8), and we have

en+1
1,cg =

∥∥∥∥
un − un−1

δt

∥∥∥∥
2

1,h,−∞,N

−
(
un−1, D−(mD+un)

)
1,h,−∞,N

+

∥∥∥∥
Un − Un−1

δt

∥∥∥∥
2

1,2h,1,∞

−
(
Un−1, D−(MD+Un)

)
1,2h,1,∞

.

When both (un, Un) and (un−1, Un−1) satisfy the jump conditions (12)-(13), symmetry property
(11) implies that the energy is conserved by the time-stepping, i.e.,

en+1
1,cg = en

1,cg.
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Furthermore, using Lemmas 2 and 3 in [28] shows that en
1,cg ≥ 0 under a CFL-condition on the

time step. Hence the discretization is stable.
By using (10), the discrete energy (14) can be written

en+1
1,cg =

∥∥∥∥
un+1 − un

δt

∥∥∥∥
2

1,h,−∞,N

+ h

N−1∑

j=−∞

mj+1/2

(
D+(h)un

j

) (
D+(h)un+1

j

)

+

∥∥∥∥
Un+1 − Un

δt

∥∥∥∥
2

1,2h,1,∞

+ 2h
∞∑

j=1

Mj+1/2

(
D+(2h)Un

j

) (
D+(2h)Un+1

j

)
,

which shows that en+1
1,cg is a second order accurate approximation of the continuous energy (4),

evaluated at time tn + δt/2.
While (13) is a linear relation involving the solution at the ghost points un

N+1 and Un
0 , the

condition (12) does not explicitly depend on those values. However, un+1
N and Un+1

1 depend on
the ghost point values un

N+1 and Un
0 through the difference scheme (7)–(8) applied on the grid

interface. By enforcing (12) at time level n + 1, we therefore get

2Un
1 − Un−1

1 +
δ2
t

(2h)2
(M3/2(U

n
2 − Un

1 ) − M1/2(U
n
1 − Un

0 )

= 2un
N − un−1

N +
δ2
t

h2
(mN+1/2(u

n
N+1 − un

N) − mN−1/2(u
n
N − un

N−1) (15)

Conditions (13) and (15) lead to a linear system of equations for the two unknowns un
N+1 and Un

0 ,
with matrix

A =




δ2
t

(2h)2
M1/2 − δ2

t

h2
mN+1/2

1

2
M1/2 mN+1/2


 , detA = mN+1/2M1/2

3δ2
t

4h2
.

By assumption, µ(x) > 0, so the determinant of A is non-zero. Hence, (13) and (15) are two
linearly independent relations which can be solved for the two ghost point values.

3 Symmetric discretization of the elastic wave equation

The 3-D elastic wave equation for the displacement vector u(x, t) where x is the spatial location
and t is time, is given by

ρutt = div T (u) + f(x, t), x ∈ Ω, t ≥ 0. (16)

Here ρ = ρ(x) > 0 is the density, f(x, t) is the external forcing, and T (u) is the stress tensor,

T (u) = λdiv(u)I + 2µD(u).

The Lamé parameters µ(x) > 0 and λ(x) > 0 characterize the elastic properties of the material.
The identity matrix is denoted by I, and D is the symmetric part of the displacement gradient. In
terms of the Cartesian components u = (u(x, t), v(x, t), w(x, t))T and x = (x, y, z)T ,

D(u) =
1

2




2ux uy + vx uz + wx

uy + vx 2vy vz + wy

uz + wx vz + wy 2wz


 .
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We consider the finite difference approximation of (16),

ρi,j,k

u
n+1
i,j,k − 2un

i,j,k + u
n−1
i,j,k

δ2
t

= Lh(un)i,j,k + fi,j,k(tn), (17)

on a domain (x, y, z) ∈ [0, a] × [0, b] × [0, c]. Here, L(u)i,j,k represents the discretization of the
spatial operator in (16) which is described below. The external forcing is discretized according to

fi,j,k(t) = f(xi,j,k, t) =
(
f

(u)
i,j,k(t), f

(v)
i,j,k(t), f

(w)
i,j,k(t)

)T
.

Let the grid function un
i,j,k denote the approximation of the x-component of the displacement at

grid point
xi = (i − 1)h, yj = (j − 1)h, (18)

and zk = (k − 1)h, at time level tn = nδt. In the same way, vn
i,j,k and wn

i,j,k denote the approxi-
mations of the y- and z-components of the displacement, respectively. The domain sizes and the
grid spacing are defined such that xNx

= a, yNy
= b, and zNz

= c.
We apply the discrete equation (17) at all interior grid points 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, and

1 ≤ k ≤ Nz. The ghost points with i = 0, i = Nx + 1, j = 0, j = Ny + 1, k = 0, or k = Nz + 1 are
used to impose the boundary conditions.

In [28], we generalized the summation-by-parts discretization introduced in [23] to include
boundary modified mixed derivatives on all six sides of the domain. In component form, the
spatial discretization is given by

Lh(u) =
(
L

(u)
h (u, v, w), L

(v)
h (u, v, w), L

(w)
h (u, v, w)

)T
,

where

L
(u)
h (u, v, w) =Dx

−

(
Ex

1/2(2µ + λ)Dx
+u
)

+ Dy
−

(
Ey

1/2(µ)Dy
+u
)

+ Dz
−

(
Ez

1/2(µ)Dz
+u
)

+ D̃x
0

(
λD̃y

0v + λD̃z
0w
)

+ D̃y
0

(
µD̃x

0v
)

+ D̃z
0

(
µD̃x

0w
)

, (19)

L
(v)
h (u, v, w) =Dx

−

(
Ex

1/2(µ)Dx
+v
)

+ Dy
−

(
Ey

1/2(2µ + λ)Dy
+v
)

+ Dz
−

(
Ez

1/2(µ)Dz
+v
)

+ D̃x
0

(
µD̃y

0u
)

+ D̃y
0

(
λD̃x

0u + λD̃z
0w
)

+ D̃z
0

(
µD̃y

0w
)

, (20)

L
(w)
h (u, v, w) =Dx

−

(
Ex

1/2(µ)Dx
+w
)

+ Dy
−

(
Ey

1/2(µ)Dy
+w
)

+ Dz
−

(
Ez

1/2(2µ + λ)Dz
+w
)

+ D̃x
0

(
µD̃z

0u
)

+ D̃y
0

(
µD̃z

0v
)

+ D̃z
0

(
λD̃x

0u + λD̃y
0v
)

. (21)

Here we use a multi-dimensional notation of the standard divided difference operators, i.e.,

Dx
+ui,j,k = (ui+1,j,k − ui,j,k)/h, Dx

−ui,j,k = Dx
+ui−1,j,k, Dx

0 =
1

2
(Dx

+ + Dx
−).

The boundary modified operator for differences in the x-direction is defined by

D̃x
0ui,j,k =





Dx
+ui,j,k, i = 1,

Dx
0ui,j,k, 2 ≤ i ≤ Nx − 1,

Dx
−ui,j,k, i = Nx,

and the multi-dimensional averaging operator is defined by Ex
1/2(µ)i,j,k = (µi+1,j,k + µi,j,k) /2. The

superscripts on the difference and averaging operators denote the direction in which the operator is
applied and we use corresponding definitions for the difference operators in the y- and z-directions.
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To analyze the stability of the discrete equations, we define the 3-D weighted scalar product
and norm,

(u, v)3,h,Nx,Ny,Nz
= h3

Nx∑

i=1

Ny∑

j=1

Nz∑

k=1

a
(x)
i a

(y)
j a

(z)
k ui,j,kvi,j,k, ‖u‖2

3,h,Nx,Ny,Nz
= (u, u)3,h,Nx,Ny,Nz

.

(22)
We will use the more compact syntax (u, v)3,h when the meaning is obvious. The weights in the
scalar product satisfy

a
(x)
i =

{
1/2, i = 1 or i = Nx,

1, 1 < i < Nx,

with corresponding definitions of a(y) and a(z). We define the vector scalar product and norm by

(u0,u1)3,h = (u0, u1)3,h + (v0, v1)3,h + (w0, w1)3,h, ‖u‖2
3,h = (u,u)3,h.

In [28], we proved that the energy, defined by

en+1
3,h =

∥∥∥∥ρ
1/2 u

n+1 − u
n

δt

∥∥∥∥
2

3,h

− (un+1,Lh(un))3,h + Th(un+1,un),

is positive under a CFL-condition. Furthermore, it satisfies

en+1
3,h = en

3,h + Th(un+1 − u
n−1,un),

where the boundary term is

Th(u,v) = h2

Ny∑

j=1

Nz∑

k=1

a
(y)
j a

(z)
k

(
− u1,j,k ·B(v)

(x)
1,j,k + uNx,j,k · B(v)

(x)
Nx,j,k

)

+ h2
Nx∑

i=1

Nz∑

k=1

a
(x)
i a

(z)
k

(
− ui,1,k ·B(v)

(y)
i,1,k + ui,Ny,k ·B(v)

(y)
i,Ny ,k

)

+ h2
Nx∑

i=1

Ny∑

j=1

a
(x)
i a

(y)
j

(
− ui,j,1 ·B(v)

(z)
i,j,1 + ui,j,Nz

· B(v)
(z)
i,j,Nz

)
. (23)

Here, B
(x), B

(y), and B
(z) denote the discretized boundary stresses normal to the x, y, and z-

directions, respectively. The normal stresses are discretized as described in [23] and [28]. For
example, the discretized boundary stress normal to the z-direction is

B(u)
(z)
i,j,k =




1
2µi,j,k−1/2D

z
−ui,j,k + 1

2µi,j,k+1/2D
z
+ui,j,k + µi,j,kD̃x

0wi,j,k

1
2µi,j,k−1/2D

z
−vi,j,k + 1

2µi,j,k+1/2D
z
+vi,j,k + µi,j,kD̃y

0wi,j,k

1
2 (2µ + λ)i,j,k−1/2D

z
−wi,j,k + 1

2 (2µ + λ)i,j,k+1/2D
z
+wi,j,k

+ λi,j,k(D̃x
0ui,j,k + D̃y

0vi,j,k).




(24)

Note that homogeneous Dirichlet (u = 0) or free surface boundary conditions (B = 0), make the
boundary term Th(u,v) vanish, which results in a stable, energy conserving, numerical scheme.

11



2i−3
2i−2

2i−1
2i

2i+1

i−1 i+1i
Figure 4: The alignment of grid points along a horizontal grid refinement boundary.

4 Energy conserving interpolation

Consider a computational domain 0 ≤ x ≤ a, 0 ≤ y ≤ b, and 0 ≤ z ≤ c, which is divided into two
sub-domains in the z-direction, such that the upper subdomain 0 ≤ z ≤ c0 is covered by a grid of
spacing h, and the lower subdomain c0 ≤ z ≤ c is covered by a grid of spacing 2h, see Figure 1b.
As was discussed in the introduction, this grid configuration is desirable in seismology where the
material properties vary along the vertical (z-) direction in such a way that a fine grid is needed
to resolve waves near the surface (z = 0), while a coarse grid gives adequate resolution deeper into
the ground, where the waves are longer.

We align the grid points in a node centered fashion on the grid refinement interface and add
one ghost point on each side of the grid refinement boundary z = c0. In the z-direction, grid points
are denoted by zk and Zk on the fine and coarse grids, respectively. They are located at

zk1
= c0 + (k1 − nz)h, 0 ≤ k1 ≤ nz + 1, Zk2

= c0 + (k2 − 1)2h, 0 ≤ k2 ≤ Nz + 1.

Here, Nz, nz, and h are chosen such that z1 = 0 and ZNz
= c. By construction, znz

= Z1, so the
grid arrangement in the z-direction is similar to the one-dimensional case, see Figure 3.

In the x- and y-directions, the grid points are given by (18) with grid spacings h and 2h on the
fine and coarse grids, respectively, see Figure 4. Excluding the ghost points, the fine grid has nx

and ny grid points in the x- and y-directions, respectively. The coarse grid has Nx and Ny grid
points in the corresponding directions. Since the refinement ratio is two, we have

nx = 2Nx − 1, ny = 2Ny − 1.

Furthermore, grid point (i, j, 1) on the coarse grid is co-located with grid point (2i− 1, 2j − 1, nz)
on the fine grid. The grid points on the fine grid with indices (2i, 2j − 1, nz), (2i − 1, 2j, nz), and
(2i, 2j, nz) are located in between coarse grid points and are called hanging nodes.

We denote the solution on the coarse grid by Ui,j,k and the solution on the fine grid by ui,j,k.
Similar to the 1-D wave equation in section 2, the discrete energy is defined as the sum of the
energies from the two subdomains,

en+1
3,cg =

∥∥∥∥
√

ρ
u

n+1 − u
n

δt

∥∥∥∥
2

3,h

− (un+1,Lh(un))3,h + Th(un+1,un)+

∥∥∥∥
√

ρ
U

n+1 − U
n

δt

∥∥∥∥
2

3,2h

− (Un+1,L2h(Un))3,2h + T2h(Un+1,Un), (25)

where subscripts 2h and h denote quantities evaluated on the coarse and fine grids, respectively.
We enforce a free surface boundary condition at z = 0 and homogeneous Dirichlet conditions

on all other sides, which for example are natural to use in conjunction with a damping sponge
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layer near far-field boundaries. Because of the outer boundary conditions, the only non-zero
contributions to the boundary terms T2h and Th arise from the interface between the two grids,
i.e., the terms involving B(v)(z) in (23). To simplify the notation, we set

Bi,j = B(U(n))
(z)
i,j,1, bi,j = B(u(n))

(z)
i,j,nz

,

in the remainder of this section. To avoid confusion between the scaling factors in the scalar
products, we denote the weights in the fine grid scalar product (22) by

α
(x)
i , α

(y)
j , α

(z)
k .

By re-organizing the terms (23) we arrive at the following result.

Lemma 1 Assume that homogeneous Dirichlet or free surface boundary conditions are imposed on
the outer boundaries of the computational domain. The discrete energy is conserved (en+1

3,cg = en
3,cg)

if the following grid interface condition is satisfied:

Nx∑

i=1

Ny∑

j=1

a
(x)
i a

(y)
j U

n+1
i,j,1 ·Bi,j =

1

4

Nx∑

i=1

Ny∑

j=1

α
(x)
2i−1α

(y)
2j−1u

n+1
2i−1,2j−1,nz

· b2i−1,2j−1

+
1

4

Nx−1∑

i=1

Ny∑

j=1

α
(x)
2i α

(y)
2j−1u

n+1
2i,2j−1,nz

· b2i,2j−1 +
1

4

Nx∑

i=1

Ny−1∑

j=1

α
(x)
2i−1α

(y)
2j u

n+1
2i−1,2j,nz

· b2i−1,2j

+
1

4

Nx−1∑

i=1

Ny−1∑

j=1

α
(x)
2i α

(y)
2j u

n+1
2i,2j,nz

· b2i,2j . (26)

When homogeneous Dirichlet boundary conditions are enforced on the outer boundaries, all
edge and corner terms in (26) vanish, i.e.,

U
n+1
1,j,1 = 0, U

n+1
i,1,1 = 0, U

n+1
Nx,j,1 = 0, U

n+1
i,Ny ,1 = 0,

u
n+1
1,j,nz

= 0, u
n+1
i,1,nz

= 0, u
n+1
nx,j,nz

= 0, u
n+1
i,ny,nz

= 0.

Therefore, all remaining terms in (26) have unit weights in the scalar products.
In order to satisfy (26), it is natural to enforce

U
n
i,j,1 = u

n
2i−1,2j−1,nz

, 2 ≤ i ≤ Nx − 1, 2 ≤ j ≤ Ny − 1, (27)

together with second order accurate averaging conditions for the solution at the hanging nodes,

u
n
2i−1,2j,nz

=
1

2
(un

2i−1,2j−1,nz
+ u

n
2i−1,2j+1,nz

), 2 ≤ i ≤ Nx − 1, 1 ≤ j ≤ Ny − 1, (28)

u
n
2i,2j−1,nz

=
1

2
(un

2i−1,2j−1,nz
+ u

n
2i+1,2j−1,nz

), 1 ≤ i ≤ Nx − 1, 2 ≤ j ≤ Ny − 1, (29)

u
n
2i,2j,nz

=
1

4
(un

2i−1,2j−1,nz
+ u

n
2i+1,2j−1,nz

+ u
n
2i−1,2j+1,nz

+ u
n
2i+1,2j+1,nz

), (30)

where (30) is enforced for 1 ≤ i ≤ Nx − 1, 1 ≤ j ≤ Ny − 1. Finally, expression (26) determines the
interpolation formula that B must satisfy:

Bi,j =
1

4
b2i−1,2j−1 +

1

8
(b2i−1,2j−1 + b2i+1,2j−1 + b2i−1,2j+1 + b2i+1,2j+1)

+
1

16
(b2i−2,2j−2 + b2i−2,2j + b2i,2j−2 + b2i,2j) , (31)
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for 2 ≤ i ≤ Nx − 1, 2 ≤ j ≤ Ny − 1.
Note that (26) is symmetric in (u,U) and (b,B), which implies that an alternative, dual,

energy conserving interface condition is obtained by swapping (u,U) and (b,B) in formulas (27)–
(31). The conditions (27)–(31) are natural to use when Dirichlet conditions are imposed at x = 0,
x = a, y = 0, and y = b, because (31) do not depend on any i- or j-boundary points, while some of
(27)–(30) do. If free surface conditions were used on these boundaries, the dual of (27)–(31) would
be a more natural interface condition.

There are (Nx − 2)(Ny − 2) unknown ghost points in the coarse grid, and (2Nx − 3)(2Ny − 3)
unknown points in the fine grid. The total number of unknown points is therefore

5NxNy − 8(Nx + Ny) + 13.

The number of equations is (note the index bounds in (27)–(31))

2(Nx − 2)(Ny − 2) + (Nx − 2)(Ny − 1) + (Nx − 1)(Ny − 2) + (Nx − 1)(Ny − 1)

= 5NxNy − 8(Nx + Ny) + 13. (32)

Thus the number of equations equal the number of unknowns.
Similar to (12) in the 1-D example problem, (27)–(30) do not depend explicitly on the solution

values at the ghost points. To obtain an equation for the ghost point values at time level n, we
impose (27)–(30) on time level n + 1 and substitute the finite difference scheme (17) in the same
way as done for the 1-D example problem in (15).

One difficulty with the above approach is that the hanging node treatment leads to a coupling of
the conditions along the interface. Hence, the solution values at the ghost points must be obtained
by solving a linear system of equations involving all ghost points on the grid interface. The linear
system has of the order NxNy unknowns and has a band structure with band width of the order
min(Nx, Ny). Since the coefficients in the linear system are constant in time, we could in principle
LU -decompose the system once and then back-substitute to obtain ghost point values at each time
step. However, LU -decomposition is not straight forward to perform over many processors on a
parallel machine, and it is therefore desirable to solve the interface conditions iteratively.

After some experimentation, we found an iterative block Jacobi relaxation method that works
very well in practice. Each equation in (27)-(31) is a vector equation for the ghost point values of
u on the coarse and fine grids. The equations decouple into three separate linear systems for the
three components (u v w), which can be solved independently of each other. We now outline the
block Jacobi method for the u-component. Away from the boundaries, each blocks consist of the
five unknowns

wi,j = (Un
i,j,0, un

2i−1,2j−1,nz+1, un
2i,2j−1,nz+1, un

2i−1,2j,nz+1, un
2i,2j,nz+1)

T . (33)

In each block we solve the u-component of the linear equations (27)-(31) evaluated at the same
index (i, j). We write each block system as

Ai,jwi,j = di,j ,

where Ai,j is a 5× 5 matrix. The right hand side di,j holds contributions from interior grid points
and forcing functions (which are constant during the Jacobi iteration) as well as contributions from
the solution values in the neighboring ghost points:

un
2i−1,2j+1,nz+1, un

2i+1,2j−1,nz+1, un
2i+1,2j+1,nz+1, un

2i−2,2j−2,nz+1, un
2i−2,2j,nz+1, un

2i,2j−2,nz+1,

which are outside the block. The contribution from these ghost points follows from the approximate
values from the previous Jacobi iteration. The number of equations and unknowns in the blocks
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are reduced near boundaries and corners since some equations are not defined on the boundary
and some unknowns are already determined by the outer boundary conditions.

The block-Jacobi approach has turned out to be very efficient in practical computations where
the method converges to acceptable precision in less than five iterations. As with all Jacobi
iterations, the convergence properties do not depend on the decomposition over a parallel machine.
However, our choice of unknowns in each block is slightly asymmetric with respect to the center
point (2i− 1, 2j − 1) in the fine grid, leading to an asymmetric communication requirement in our
parallel implementation.

In the case of more than two refinements, for example with spacing h in 0 ≤ z ≤ c0, spacing
2h in c0 ≤ z ≤ c1, and spacing 4h in c1 ≤ z ≤ c, the interpolation technique applies separately at
each of the interfaces.

5 Source term discretization near grid interfaces

In seismic applications of the 3-D elastic wave equation, we need to discretize point moment tensor
sources,

g(t)M∇δ(x − x∗), (34)

where M is a symmetric 3 × 3 matrix, and point forces,

g(t)Fδ(x − x∗), (35)

where F is a vector with 3 components. In these expressions, δ(x − x∗) is the Dirac distribution,
∇δ is its gradient, and the time function g(t) is assumed to be sufficiently smooth in time.

The n-dimensional Dirac distribution has the property

∫
φ(x)δ(x − x∗) dx = φ(x∗)

for any smooth function φ(x). Similarly, if x is a Cartesian component of x, the s’th derivative
with respect to the x-direction satisfies

∫
φ(x)

∂sδ

∂xs
(x − x∗) dx = (−1)s ∂sφ

∂xs
(x∗).

Our discretization principle for the Dirac distribution and its derivatives is to satisfy the integral
condition for polynomials up to a given degree, where the integrals are replaced by a discrete scalar
product.

5.1 One-dimensional discretization of source terms

On a uniform grid with grid size h, we approximate δ(x − x∗) by a grid function dh, by requiring
that all polynomial functions Pq(x) =

∑q
ν=0 πνxν satisfy

(Pq , dh)1,h = Pq(x∗), q = 0, . . . , Q. (36)

Similarly, a grid function d′h that approximates δ′(x − x∗) should satisfy

(Pq, d
′
h)1,h = −P ′

q(x∗), q = 0, . . . , Q. (37)

Because (36) or (37) give Q + 1 conditions, dh or d′h need to be non-zero at Q + 1 grid points, i.e.,
their stencils are Q + 1 points wide.
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For the Helmholtz equation discretized on a uniform grid, Waldén [33] showed that if the
difference approximation of the partial differential equation is p’th order accurate, ∂sδ/∂xs(x−x∗)
must be discretized with

Q ≥ p − 1 + s

to obtain overall p’th order convergence of the solution (away from the solution singularity at x∗).
Our experience is that this requirement is sharp also for the elastic wave equation discretized on a
uniform grid, at least for s = 0 and s = 1.

We begin by deriving a third order discretization of δ′(x − x∗) on a uniform grid using the
scalar product (u, v)1,h,−∞,∞. Let j be the grid point index such that xj ≤ x∗ < xj+1. Because
p = 3 and s = 1 we take Q = 3, i.e., there are four conditions in (37). Hence, we use a four point
stencil

d′h =
(
· · · , 0, δ′j−1, δ

′
j , δ

′
j+1, δ

′
j+2, 0, · · ·

)T
.

To make the coefficients in the linear system O(1), we enforce (37) for the polynomial functions
Pq(x) = (x − xj)

q, 0 ≤ q ≤ 3, leading to the conditions

(xj−1 − xj)
qδ′j−1 + (xj − xj)

qδ′j + (xj+1 − xj)
qδ′j+1 + (xj+2 − xj)

2δ′j+2

= − q

h
(x∗ − xj)

q−1, q = 0, 1, 2, 3. (38)

Note that, by definition, (xj − xj)
q = 1 for q = 0 and (xj − xj)

q = 0 for q ≥ 1. Introducing the
relative source location, α = (x∗ − xj)/h, gives the system




1 1 1 1

−1 0 1 2

1 0 1 4

−1 0 1 8







δ′j−1

δ′j

δ′j+1

δ′j+2




=




0

−1/h2

−2α/h2

−3α2/h2




,

which has the solution

δ′j−1 =
1

h2
(1/3 − α + α2/2), δ′j =

1

h2
(1/2 + 2α − 3α2/2), (39)

δ′j+1 =
1

h2
(−1 − α + 3α2/2), δ′j+2 =

1

h2
(1/6 − α2/2). (40)

We remark that the source discretization formulas are valid regardless of the center point xj .
Thus it is easy to bias the discretization stencil away from the outer boundary of the domain. For
example, if xj+2 is outside the domain, the stencil can be centered around xj−1. The resulting
formulas (39) and (40) will be the same, but with j replaced by j − 1 and with α = (x∗ − xj−1)/h.

We proceed by generalizing Waldén’s source discretization formulas to the situation (which
surprisingly often occurs in practice) where the grid spacing is larger than the distance between
the source and the grid refinement interface. Obviously, one can avoid the problem altogether by
moving the source by O(h) away from the grid interface, but that approach inevitably results in
an O(h) solution error. Here we aim for a procedure which gives overall second order convergence.
From a theoretical standpoint, as long as the source is not located exactly on the grid interface,
the grid size can always be made fine enough to put a fixed number of grid points between the
source and the interface. Waldén’s formulas would therefore give second order convergence rate
in the limit when the grid spacing goes to zero, but the required grid size might be much smaller
than what is practically possible.
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When the source is near a grid refinement interface, we enforce the moment conditions (36) or
(37) in terms of the 1-D composite scalar product

(ū, v̄)1,cg,p1,q1,p2,q2
= (u, v)1,h,p1,q1

+ (U, V )1,2h,p2,q2
. (41)

As before, we will abbreviate the notation to (ū, v̄)1,cg when the meaning is obvious. Consider the
situation displayed in Figure 3 and let us derive a third order discretization of δ(x − x∗), when
the grid point closest to x∗ is the interface point xN = X1. Q = 2 implies a three point stencil.
However, the interface point is represented on both grids, so we use the points with indices N − 1,
N on the fine grid and indices 1, 2 on the coarse grid. (Note that the source term is only defined on
interior points so the ghost points xN+1 and X0 are not needed to discretize the source.) Similar
to the composite grid notation (6) for the solution, we denote the weights on the composite grid
by

d̄ = (dh, d2h), dh = (· · · , 0, δN−1, δN )
T

, d2h = (∆1, ∆2, 0, · · · )T
.

The order conditions (36) together with the scalar product (41), applied to the polynomial functions
Pq(x) = (x − xN )q, q = 0, 1, 2, give

(xN−1 − xN )qδN−1 + (xN − xN )q(δN/2+ ∆1) + 2(X2 −X1)
q∆2 =

(x∗ − xN )q

h
, q = 0, 1, 2. (42)

It is natural to introduce the combined interface source weight I = δN/2 + ∆1. In terms of
α = (x∗ − xN )/h, the solution of (42) is

δN−1 =
1

3h
(−2α + α2), I =

1

h
(1 + α/2 − α2/2), ∆2 =

1

12h
(α + α2). (43)

Note that the moment conditions only prescribe I, and not the individual weights δN and ∆1.
From numerical experiments, we have found that is very important how the combined interface
weight is distributed between the grids, and that the best choice is given by

δN = I, ∆1 = I/2. (44)

We are currently unaware of a theoretical justification for this formula.

5.2 Numerical experiments in one space dimension

As a model for the elastic wave equation, we begin by studying the one-dimensional wave equation
where the source term is the s’th derivative of a Dirac distribution,

utt = (µ(x)ux)x + g(t)
∂sδ

∂xs
(x − x∗), −∞ < x < ∞, t ≥ 0, (45)

subject to homogeneous intial conditions,

u(x, 0) = 0, ut(x, 0) = 0, −∞ < x < ∞.

We start by constructing an analytical solution. Let û(ξ, t) denote the spatial Fourier transform
of u(x, t). When µ = c2 = const, the Fourier transform of (45) is an ordinary differential equation
in time, whose solution is

û(ξ, t) =
1

2iξc

(
F1(ξ, t)e

iξct − F2(ξ, t)e
−iξct

)
, −∞ < ξ < ∞, t ≥ 0. (46)

17



The dependence on s is reflected in the functions F1 and F2, according to

F1(ξ, t) = (iξ)se−iξx∗

∫ t

0

e−iξcτg(τ) dτ, (47)

and F2(ξ, t) follows by replacing c by −c in (47).
Let the time function be a general polynomial of order p,

g(t) =

p∑

ν=0

γνtν .

Repeated integration by parts gives

∫ t

0

e−iξcτg(τ) dτ =

p∑

ν=0

γν

(
bν

(ξc)ν+1
+ e−iξct

ν+1∑

m=0

am,ν

(ξc)m

)
, (48)

for some constants am,ν and bν . Insertion of (48) into (47) and (46) gives

û =
(iξ)s

2iξc

p∑

ν=0

γν

(
eiξ(ct−x∗) bν

(ξc)ν+1
− e−iξ(ct+x∗) bν

(−ξc)ν+1
+ e−iξx∗

ν+1∑

m=0

(
am,ν

(ξc)m
− am,ν

(−ξc)m

))
.

(49)
The solution of (45) follows from the inverse Fourier transform formula

ue(x, t) =
1

2π

∫ ∞

−∞

eiξxû(ξ, t) dξ. (50)

Each term in the sum (49) leads to an integral over a function of the form

eiξ(x−x∗)

ξm
,

eiξ(x−x∗+ct)

ξm
, or

eiξ(x−x∗−ct)

ξm
.

where m is an integer. The formula

∫ ∞

−∞

eiξα

ξn
dξ = sgn(α)πin

αn−1

(n − 1)!
, (51)

can be used to write down an explicit expression for the analytical solution, which we omit in the
interest of space.

Numerical experiments are made on a composite grid configuration, covering the domain 0 ≤
x ≤ 1, with grid size h on 0 ≤ x ≤ 1/2 and grid size 2h on 1/2 ≤ x ≤ 1. The grid points are laid
out such that the grid interface x = 1/2 always coincides with a grid point in both grids, similar to
Figure 3. The wave equation (45) with µ = 1 is discretized by the second order approximations (7)
and (8). We compute the solution errors by comparison with the analytical solution (50) for the
case s = 1, i.e., when the source is a first derivative of a Dirac distribution. Homogeneous Dirichlet
boundary conditions are imposed on the numerical solution at x = 0 and x = 1. Hence, the solution
error can only be evaluated in the time interval 0 ≤ t ≤ t∗, during which the analytical solution
(defined on −∞ < x < ∞) satisfies the homogeneous Dirichlet conditions ue(0, t) = ue(1, t) = 0.

We consider the polynomial time function

g(t) =

{
−20t7 + 70t6 − 84t5 + 35t4, 0 ≤ t < 1,

1, t > 1,
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Figure 5: Source time function, g(t).

which represents a smooth transition from 0 to 1 with three vanishing derivatives at t = 0 and
t = 1, see Figure 5. Due to the unit wave speed and the hyperbolic nature of (45), we only need
to evaluate the analytical solution on 0 ≤ x ≤ 1 for t < 1. Hence, the case g(t) = 1 for t > 1 does
not need to be considered when evaluating the inverse Fourier transform formula.

In the following numerical experiments, we have used (44) to distribute the combined source
weight at the grid interface. Furthermore, the moment conditions are satisfied to one order higher
than the minimal requirement for second order accuracy on a uniform grid, i.e., we use Q = 2 in
(36) and Q = 3 in (37).

We start by comparing the energy conserving interpolation (12), (13) to a straight forward
interpolation formula,

U0 = uN−2, uN+1 = −1

8
U0 +

3

4
U1 +

3

8
U2 = −1

8
uN−2 +

3

4
U1 +

3

8
U2, (52)

which is third order accurate for smooth solutions. The results with non-conservative interpolation
are shown in Figure 6. On the left we show the solution when the source is located away from
the grid interface, at x∗ = 0.33. Here the solution is smooth over the grid interface and the
interpolation formula (52) works well. The situation is very different on the right side of Figure 6,
in which case the source is located at x∗ = 0.5077, i.e., very close to the grid interface. This case
uses the composite grid discretization of the source, because x∗ is less than one coarse grid spacing
(2h = 0.0125) away from the grid refinement interface. Since the solution is discontinuous at x∗,
the interpolation formula (52) leads to large errors in the ghost points which pollute the numerical
solution away from the discontinuity.

The distance between the source and the grid interface has a much smaller influence on the
solution error when the energy conserving interpolation (12), (13) is used. The left side of Figure 7
shows the solution when the source is placed away from the grid refinement interface, at x∗ = 0.33.
The right side of the same figure displays the result when the source is located very close to the
grid refinement boundary, at x∗ = 0.5077. For both source locations, the numerical solution is
accurate in all but one or two points, right next to the source.

Table 1 quantifies the maximum norm of the error when x∗ = 0.33 and x∗ = 0.5077. To
eliminate effects of the homogeneous Dirichlet boundary conditions in the numerical solution, we
compare the solution at time t = 0.33. The error, ẽ, is defined as the difference between the
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Figure 6: Solution on the composite grid at time t = 0.33 when the source is located at x∗ = 0.33
(left) and at x∗ = 0.5077 (right) with non-conservative interpolation. Here blue and red color
mark the numerical solution on the fine and coarse grids, respectively. The black curve is the exact
solution. In both figures, the grid size on the fine grid is h = 0.00625.
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Figure 7: Solution on the composite grid at time t = 0.33 when the source is located at x∗ = 0.33
(left) and at x∗ = 0.5077 (right) with energy conserving interpolation. Here blue and red color
mark the numerical solution on the fine and coarse grids, respectively. The black curve is the exact
solution. In both figures, the grid size on the fine grid is h = 0.00625.
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x∗ = 0.33 x∗ = 0.5077

h ‖ẽ‖∞ p ‖ẽ‖∞ p

1.25 · 10−2 1.37 · 10−4 – 4.69 · 10−4 –

6.25 · 10−3 3.36 · 10−5 2.02 1.37 · 10−4 1.78

3.125 · 10−3 8.45 · 10−6 1.99 3.14 · 10−5 2.12

1.5625 · 10−3 2.12 · 10−6 2.00 7.84 · 10−6 2.00

Table 1: Errors and convergence rates with energy conserving interpolation at time t = 0.33 on
the composite grid when the source is located at x∗ = 0.33 and x∗ = 0.5077, respectively. Here,
h is the grid size on the fine grid. The two grid points closest to x∗ are excluded from the norm
computation.

numerical and exact solutions at all grid points, except at the two grid points closest to x∗, where
it is set to zero. In these two points, the error remains O(1) as the grid is refined. However, as
shown by Table 1, these errors do not affect the accuracy away from x∗. As the grid size h goes
to zero, the norm of the error should behave as ‖ẽ(h)‖ = Chp, where C is a constant. When
the grid size is reduced by a factor of two, we can therefore estimate the convergence rate as
p = log2(‖ẽ(2h)‖/‖ẽ(h)‖). We conclude that the numerical solution is second order accurate for
both source locations. Note that x∗ = 0.5077 is located on the coarse grid, which explains why
those errors are approximately four times larger than for x∗ = 0.33.

Our numerical experiments show that the composite grid discretization of a singular source
works well with the energy conserving interpolation, and produces second order accurate solutions
under two conditions. First, the combined source weight should be distributed according to (44)
on the grid interface, and secondly, the moment conditions should be satisfied to one order higher
than what is necessary for a uniform grid. Violation of either of these conditions leads to solution
errors that are orders of magnitude larger, where the error is substantial over a significant portion
of the computational domain, similar to the right side of Figure 6.

5.3 Three space dimensions

To generalize the one-dimensional formulas to the three-dimensional case we discretize the singular
source as a Cartesian product of one-dimensional grid functions. We focus our presentation on the
grid configuration described in Section 4, where a fine grid of grid size h meets a coarse grid of grid
size 2h along z = c0. At the grid interface, the grid points in the x- and y-directions are aligned
as in Figure 4, while they are laid out as in Figure 3 in the z-direction. To approximate δ(x−x∗),

where x∗ = (x∗, y∗, z∗), we use one-dimensional grid functions d
(x)
h , d

(x)
2h , d

(y)
h , d

(y)
2h , and d̄(z). For

example, with Q = 2 the grid functions in the x-direction have three non-zero components on
either the fine or the coarse grid,

{
d
(x)
h = (· · · , 0, δ

(x)
i−1, δ

(x)
i , δ

(x)
i+1, 0, · · · )T , on the fine grid,

d
(x)
2h = (· · · , 0, ∆

(x)
I−1, ∆

(x)
I , ∆

(x)
I+1, 0, · · · )T , on the coarse grid.

Here, grid points xi and XI are the closest to x∗. The grid functions d
(y)
h and d

(y)
2h have corre-

sponding components centered around the grid points yj and YJ , which are the closest to y∗. In
the z-direction, we use the composite grid notation from section 5.1. For example, if the closest
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grid point to z∗ is znz
= Z1 and Q = 2, we get the components

d̄(z) = (d
(z)
h , d

(z)
2h ), d

(z)
h =

(
· · · , 0, δ

(z)
nz−1, δ

(z)
nz

)T

, d
(z)
2h =

(
∆

(z)
1 , ∆

(z)
2 , 0, · · ·

)T

.

Denote the discretization of the three-dimensional Dirac distribution by the three-dimensional
composite grid function d̄(3). Its components are defined by the Cartesian product

d̄
(3)
i,j,k =

{
∆

(x)
i ∆

(y)
j ∆

(z)
k , (i, j, k) belongs to the coarse grid,

δ
(x)
i δ

(y)
j δ

(z)
k , (i, j, k) belongs to the fine grid.

In the above example, ∆
(x)
i = 0 for i < I − 1 and i > I + 1, ∆

(y)
j = 0 for j < J − 1 and j > J + 1,

and ∆
(z)
k = 0 for k ≥ 3. Therefore, d̄(3) is only non-zero on the 3 × 3 × 2 stencil I − 1 ≤ i ≤ I + 1,

J − 1 ≤ j ≤ J + 1, 1 ≤ k ≤ 2 on the coarse grid, with a corresponding 3× 3× 2 stencil on the fine
grid.

The sources should satisfy moment conditions in the composite scalar product over both grids,

(ū, w̄)3,cg = (u, w)3,h,nx,ny,nz
+ (U, W )3,2h,Nx,Ny,Nz

= h3
nx∑

i=1

ny∑

j=1

nz∑

k=1

α
(x)
i α

(y)
j α

(z)
k ui,j,kwi,j,k + (2h)3

Nx∑

i=1

Ny∑

i=1

Nz∑

k=1

a
(x)
i a

(y)
j a

(z)
k Ui,j,kWi,j,k.

The three-dimensional moment conditions follow directly from the one-dimensional moment con-
ditions. For example, the discrete moment of the polynomial functions P (x, y, z) = xq, 0 ≤ q ≤ Q,
satisfy

(d̄(3), xq)3,cg = h3
nx∑

i=1

ny∑

j=1

nz∑

k=1

α
(x)
i α

(y)
j α

(z)
k δ

(x)
i δ

(y)
j δ

(z)
k xq

i

+ (2h)3
Nx∑

i=1

Ny∑

j=1

Nz∑

k=1

a
(x)
i a

(y)
j a

(z)
k ∆

(x)
i ∆

(y)
j ∆

(z)
k Xq

i

=

(
h

nx∑

i=1

α
(x)
i δ

(x)
i xq

i

)
h

ny∑

j=1

α
(y)
j δ

(y)
j



(

h

nz∑

k=1

α
(z)
k δ

(z)
k

)

+

(
2h

Nx∑

i=1

a
(x)
i ∆

(x)
i Xq

i

)
2h

Ny∑

j=1

a
(y)
j ∆

(y)
j



(

2h

Nz∑

k=1

a
(z)
k ∆

(z)
k

)
. (53)

Each sum on the right hand side of (53) can be identified as a one-dimensional scalar product,

h

nx∑

i=1

α
(x)
i δ

(x)
i xq

i = (d
(x)
h , xq)1,h,1,nx

= xq
∗, 2h

Nx∑

i=1

a
(x)
i ∆

(x)
i Xq

i = (d
(x)
2h , xq)1,2h,1,Nx

= xq
∗,

h

ny∑

j=1

α
(y)
j δ

(y)
j = (d

(y)
h , 1)1,h,1,ny

= 1, 2h

Ny∑

j=1

a
(y)
j ∆

(y)
j = (d

(y)
2h , 1)1,2h,1,Ny

= 1,

h

nz∑

k=1

α
(z)
k δ

(z)
k = (d

(z)
h , 1)1,h,1,nz

, 2h

Nz∑

k=1

a
(z)
k ∆

(z)
k = (d

(z)
2h , 1)1,2h,1,Nz

.
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Since (d
(z)
h , 1)1,h,1,nz

+ (d
(z)
2h , 1)1,2h,1,Nz

= (d̄(z), 1)1,cg = 1, it follows that

(d̄(3), xq)3,cg = xq
∗, q = 0, 1, . . . , Q.

Because we have restricted the grid refinement boundary to only occur in the z-direction, the
sums over i and j will always be over uniform grids. This leads to the general expression

(d̄(3), xqylzm)3,cg = xq
∗y

l
∗

(
d̄(z), zm

)
1,cg

= xq
∗y

l
∗z

m
∗ , (54)

for all 0 ≤ q, l, m ≤ Q.
The gradient of the Diract distribution, ∇δ(x−x∗), is discretized by a composite grid function

d̄
′. Similar to the Dirac distribution, d̄

′ is defined by a Cartesian product of one-dimensional grid
functions,

d̄
′
i,j,k =




∆
′(x)
i ∆

(y)
j ∆

(z)
k

∆
(x)
i ∆

′(y)
j ∆

(z)
k

∆
(x)
i ∆

(y)
j ∆

′(z)
k


 on the coarse grid; d̄

′
i,j,k =




δ
′(x)
i δ

(y)
j δ

(z)
k

δ
(x)
i δ

′(y)
j δ

(z)
k

δ
(x)
i δ

(y)
j δ

′(z)
k


 on the fine grid. (55)

The three-dimensional moment conditions for d̄
′ follows from the one-dimensional properties in

the same way as for d̄(3). However, note that the rule of using Q = 3 for d′ while Q = 2 for d
means that not all of the moments conditions for d̄

′ are satisfied to the same order. As a topic for
future investigation, it might be advantageous to use Q = 3 also for d when they are used as part
of a moment source.

6 Numerical experiments

6.1 Method of manufactured solutions

We start by evaluating the error in the numerical solution on a composite grid, when both the
material and the solution are smooth. Let the computational domain be the cube (x, y, z) ∈ [0, 5]3

and impose a free surface boundary condition on the z = 0 boundary and Dirichlet conditions on
all other boundaries. We take the material properties to be

ρ(x, y, z) = Aρ (2 + sin(ωmx + θm) cos(ωmy + θm) sin(ωmz + θm)) ,

µ(x, y, z) = Aµ (3 + cos(ωmx + θm) sin(ωmy + θm) sin(ωmz + θm)) ,

λ(x, y, z) = Aλ (2 + sin(ωmx + θm) sin(ωmy + θm) cos(ωmz + θm)) ,

where ωm = 3.2, θm = 0.8, Aρ = 2, Aµ = 3, and Aλ = 1. The internal forcing, boundary forcing
and initial conditions are chosen such that the exact (manufactured) solution becomes

ue(x, y, z, t) = sin(ω(x − cet)) sin(ωy + θ) sin(ωz + θ), (56)

ve(x, y, z, t) = sin(ωx + θ) sin(ω(y − cet)) sin(ωz + θ), (57)

we(x, y, z, t) = sin(ωx + θ) sin(ωy + θ) sin(ω(z − cet)), (58)

with ω = 3, θ = 0.2, and ce = 1.3.
The computational grid consists of a base grid with size 2h in 2 ≤ z ≤ 5 and a refined grid

with size h in 0 ≤ z ≤ 2. In terms of the number of grid points in the x-direction on the base grid,
the grid sizes are

2h = 5/(Nx − 1), h = 2.5/(Nx − 1),

23



Nx 2h ‖u(·, t) − ue(·, t)‖2 p2 ‖u(·, t) − ue(·, t)‖∞ p∞

31 1.67 · 10−1 2.36 · 10−1 – 6.16 · 10−2 –

61 8.33 · 10−2 5.74 · 10−2 2.04 1.59 · 10−2 1.95

121 4.17 · 10−2 1.42 · 10−2 2.02 4.17 · 10−3 1.92

241 2.08 · 10−2 3.52 · 10−3 2.01 1.03 · 10−3 2.02

Table 2: Errors in the numerical solution and convergence rates at time t = 4.8, on a composite
grid, when the exact solution is (56)-(58).

respectively. For sufficiently small h, the norm of the error should behave as e(h) = Chp, where C
is a constant. As before, we estimate the convergence rate as p = log2(e(2h)/e(h)). The errors in
the numerical solutions and the convergence rates, evaluated in max and L2-norm at time t = 4.8
are given in Table 2. As we can see the error in both norms is of the order O(h2).

6.2 Energy conservation test

To test the energy conserving property of the new interface condition, we solve the elastic wave
equation on the domain (x, y, z) ∈ [0, 5]3 and impose a free surface boundary condition on the
z = 0 boundary and homogeneous Dirichlet conditions on all other boundaries. The material is
ρ = 2 + θ, µ = 3 + θ, and λ = (r − 2)2µ + θ, where the velocity ratio r = cp/cs = 3 in the
computations below. Here θ is a stochastic variable, uniformly distributed between zero and one.
Furthermore, the initial data are also assigned by stochastic variables with uniform distribution.
Note that every evaluation of θ gives a different value between 0 and 1, resulting in extremely noisy
material properties and initial data. The computational grid is the same two-grid configuration as
in Section 6.1, here with Nx = 31. The equations were integrated to time 500, which corresponds
to 30,746 time steps.

Figure 8a shows the relative change of energy, defined as (en+1
3,cg −en

3,cg)/e0
3,cg as function of time,

where en
3,cg is the energy defined in (25). The average relative change per time step is 1.1× 10−10,

hence there is a small increase in energy. This increase is due to the iterative Jacobi iteration that
solves the interface equations (27)–(31) only to a given residual tolerance. For the computation in
Fig. 8a, the residual tolerance was set to 10−6. We show in Fig. 8b results from exactly the same
computation, but with the residual tolerance set to 10−10. The average relative energy increase
per time step is now −3.9 × 10−15, i.e., the energy changes are smaller and decreasing. This is
consistent with the analysis presented in Section 4, which states that the energy will be conserved
perfectly if the interface equations are solved exactly.

6.3 Source discretization

To test the discretization of a moment tensor source term for the 3-D elastic wave equation, we
consider the half-space problem with homogeneous material properties: ρ = 2, 650, cs = 2, 000,
cp = 4, 000, corresponding to µ = ρc2

s, λ = ρ(c2
p − 2c2

s). In the simulation, the half-space z ≥ 0
is truncated to the computational domain (x, y, z) ∈ [0, 4 · 104]2 × [0, 5 · 104]. The moment source
(34) is located at the center of the computational domain in the (x, y)-plane, at depth z∗,

x∗ =
(
2 · 104, 2 · 104, z∗

)T
,
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Figure 8: Relative energy change vs. time with random material and initial data. The convergence
tolerance in the Jacobi iteration is 10−6 in figure a) (to the left) and 10−10 in figure b) (to the
right).

and is characterized by the matrix

M = 1018




0 1 0

1 0 0

0 0 0


 ,

which in seismic applications often is described by the sesimic moment m0 = 1018 and the angles
dip= 90◦, rake= 0◦, and strike= 0◦ (when the x-axis is parallel to North), see [1]. The time
function is the Gaussian,

g(t) =
1

σ
√

2π
e−(t−t0)

2/2σ2

, σ = 0.25, t0 = 6σ. (59)

The solution is recorded in time at xr = 2.6 · 103, yr = 2.8 · 104, zr = 0 and compared to a semi-
analytical frequency-wavenumber (FK) solution [12, 34, 37] using the FK code [36]. An example is
shown in Figure 9, where we present the radial, transverse, and vertical components of the solution,
as is customary in seismology. The radial, transverse, and vertical components are defined in a
polar coordinate system centered at the (x, y)-location of the source, with the vertical component
in the negative z-direction, i.e., uvert = −w. Since xr −x∗ = 0.6 ·104, yr − y∗ = 0.8 ·104, the radial
component is urad = 0.6u + 0.8v, and the transverse component is utran = −0.8u + 0.6v.

We measure the error in the time interval 0 ≤ t ≤ T using the norms

‖u(xr, ·)‖2
2 =

1

T

∫ T

0

(
u(xr, t)

2 + v(xr , t)
2 + w(xr , t)

2
)

dt, (60)

‖u(xr, ·)‖∞ = max
0≤t≤T

√
u(xr, t)2 + v(xr , t)2 + w(xr , t)2. (61)

As before, we estimate the convergence rate using the formula p = log2(e(2h)/e(h)), where e(h)
is the norm of the error in the solution on a composite grid with characteristic grid size h. The
computational domain is discretized on a composite grid where the fine grid with size h covers
0 ≤ z ≤ 2 · 103 and the base grid with size 2h covers 2 · 103 ≤ z ≤ 5 · 104. A free surface boundary
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Figure 9: Semi-analytical solution as function of time at reciever location xr = 2.6 · 104, yr =
2.8 · 104, zr = 0 for a source at depth z∗ = 2.1 · 103 in a uniform material.

condition is imposed on the z = 0 boundary and homogeneous Dirichet conditions are used on all
other boundaries together with a damping sponge layer. As was indicated in Section 5.3, the stencil
for discretizing the gradient of the Dirac distribution (55) should to be 4 points wide (Q = 3) to
obtain second order accuracy. Since we center the source discretization stencil around the source
location x∗, the composite grid formula is only used if the source is within 2 grid sizes of the
refinement boundary. In the results given in Table 3, the source location z∗ = 2, 100 therefore uses
the composite grid discretization for all presented grid sizes, while the case z∗ = 4, 000 always uses
the uniform grid discretization formula. Our results indicate that the solutions on the two finest
composite grids are in the asymptotic regime and give O(h2) accuracy for both source locations.

In a second test, we calculate the error as function of the source depth z∗, for grid sizes
h = 100 and 2h = 200 in the refined and base grids, respectively. The results shown in Figure 10
demonstrate that the error is essentially independent of the distance between the source and the
grid refinement boundary.

6.4 The layer over half-space problem

Here we consider a variation of the layer over half-space problem which was used by Day et al. [9] to
evaluate the accuracy of various seismic wave propagation codes. We consider the half-space z ≥ 0,
where the material properties in the top layer (0 ≤ z ≤ 2, 000) are ρ = 2, 500, cp = 2, 000, and
cs = 1, 000. Below the top layer (z > 2, 000), the material properties are ρ = 2, 650, cp = 4, 000,
and cs = 2, 000. Because of the slow material in the top layer, the solution is more complex
compared to a homogeneous material, and we increase the size of the computational domain to
(x, y, z) ∈ [0, 5 · 104]3 to further reduce artificial reflections from the outer boundaries. As before,
we impose a free surface boundary condition on the z = 0 surface and homogeneous Dirichlet
conditions together with a sponge layer on all other boundaries. Similar to Section 6.3, we place
a point moment tensor source with m0 = 1018, dip= 90◦, rake= 0◦, and strike= 0◦, at the center
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z∗ 2h ‖us(xr , ·)‖2 ‖u(xr, ·) − us(xr, ·)‖2 p2 ‖u(xr, ·) − us(xr , ·)‖∞ p∞

4000 400 2.52 · 10−1 1.53 · 10−1 – 6.16 · 10−1 –

4000 200 4.85 · 10−2 1.66 2.26 · 10−1 1.45

4000 100 1.25 · 10−2 1.96 5.88 · 10−2 1.94

2100 400 2.87 · 10−1 1.99 · 10−1 – 7.41 · 10−1 –

2100 200 5.96 · 10−2 1.74 2.64 · 10−1 1.49

2100 100 1.34 · 10−2 2.15 6.37 · 10−2 2.05

Table 3: Errors and convergence rates in the numerical solution on a composite grid, with a moment
tensor source at depth z∗, measured at the reciever location xr = 2.6 · 104, yr = 2.8 · 104, zr = 0.
The norms are taken over the period 0 ≤ t ≤ 10 after which the solution is essentially zero.
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Figure 10: Errors in the numerical solution on a composite grid, with a moment tensor source at
depth z∗, measured at the reciever location xr = 2.6 · 104, yr = 2.8 · 104, zr = 0. The L2-norm is
shown in red ’+’ and the max norm in blue ’o’. The norms are taken over the period 0 ≤ t ≤ 10
after which the solution is essentially zero. The grid size is 2h = 200 in the base grid and h = 100
in the refined grid
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Case Grid size ‖u(xr, ·) − us(xr, ·)‖2 ‖u(xr, ·) − us(xr , ·)‖∞
Conservative 100/50 4.88 · 10−2 2.77 · 10−1

Non-conservative 100/50 1.41 · 10−1 5.58 · 10−1

Uniform grid 50 8.61 · 10−2 3.76 · 10−1

Table 4: Errors in the numerical solutions of the layer over half-space problem.

of the (x, y)-plane at depth z∗,

x∗ =
(
2.5 · 104, 2.5 · 104, z∗

)T
,

and use the Gaussian time-function (59).
The velocity structure of this problem makes it an ideal candidate for grid refinement and we

use a refined grid with size h = 50 in the top layer (0 ≤ z ≤ 2, 000), and a base grid with size
2h = 100 in z ≥ 2, 000. The example from the introduction shown in Figure 2 reports the L2-norms
of the solution and the error as function of time at receiver location xr = (3.1 · 104, 3.3 · 104, 0)T

when the source is located at z∗ = 2, 550. As in the previous section, the error is evaluated by
comparing the numerical simulation with a solution from the semi-analytical FK code [36]. Since
the source is separated by more than two grid sizes from the grid interface, we use the uniform source
discretization formula. To further demonstrate the importance of the conservative interpolation,
we compare it with a 3-D generalization of the straight forward non-conservative interpolation
formula (52). Due to the material discontinuity, the gradient of the solution is discontinuous at
z = 2, 000, which also coincides with the grid refinement interface. The accuracy of the non-
conservative interpolation is therefore reduced, even though the source is separated from the grid
refinement interface. As a result the solution error is larger for the non-conservative approach
compared to the conservative interpolation, see Table 4. A more serious problem occurs at later
times, when the non-conservative interpolation formula makes the simulation go unstable, while the
conservative approach remains stable, see Figure 2. For this simple material model, the instability
can be controlled by adding artificial dissipation to the non-conservative scheme, but for more
complex heterogeneous materials it is difficult to automatically choose both the strength of the
dissipation and the time step. Furthermore, artificial dissipation requires additional computational
resources, often slowing down the simulation by 50 percent or more.

For comparison, we also simulated the layer over half-space problem on a uniform grid with size
h = 50, see Figure 2. In this case, no jump conditions are enforced at the material discontinuity
and the finite difference stencil is applied across the discontinuous material properties without any
special treament. This leads to significant numerical errors in the solution, and the uniform grid
simulation produces larger errors compared to the conservative composite grid case, see Table 4.

The computational requirements of the different computational approaches are summarized in
Table 5. Not surprisingly, the uniform grid calculation requires more than six times the number
of grid points, and has to be run on a much larger partition of the parallel machine. Since
the conservative composite grid case has a grid size which is in perfect parity with the material
velocities, it only requires 1,530 time steps to get to time t = 25, while the uniform grid approach
has to use 3,061 time steps. The total CPU time for the uniform grid case is therefore about 13
times longer than in the conservative composite grid case. The computation with non-conservative
interpolation also requires 3,061 time steps because the ghost points and the grid points on the
material interface in the refined grid must use the faster velocities of the half-space to produce a
solution with reasonable accuracy. As a result, that calculation took about 75 percent longer than
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Grid type Grid points Interpolation Cores Wall clock [s] Total CPU [s]

Composite 1.62 · 108 Conservative 80 1,525 1.22 · 105

Composite 1.62 · 108 Non-conservative 80 2,660 2.13 · 105

Uniform 1.00 · 109 N/A 1024 1,534 1.57 · 106

Table 5: Computational requirements for different simulation approaches for solving the layer over
half-space problem to time t = 25.

the conservative case, even though the conservative method requires additional computations to
satisfy the jump conditions. This example illustrates the significant savings that can be realized
by using a composite grid in seismic applications. In more realistic material models, where the
material velocities often vary by a factor of ten, several levels of grid refinements can be used to
further improve on the efficiency.

To make it straight forward to display the solution in a vertical plane extending through both
the source and the receiver, we rotate the computational grid clock-wise in the horizontal plane
by the angle cos−1(0.6) ≈ 53.13◦. In the rotated coordinate system, the reciever is located at
xr = 35, 000, yr = 25, 000, zr = 0, and the strike angle in the moment tensor source is now
−51.13◦ relative to the rotated x-direction. In Figure 11, we plot the three velocity components as
function of time at the reciever location, providing a visual comparison of the solutions from the
numerical simulation and the semi-analytical FK code. Overall, the wave forms agree very well,
in particular for the transverse component. There are however some small amplitude errors in the
radial and vertical components around time 12, and in the vertical component around time 16.
To estimate the resolution in terms of grid points per shortest wave length, we approximate the
upper power frequency in the Gaussian time function (59) by fmax ≈ 2.5f0, where the fundamental
frequency is f0 = 1/2πσ ≈ 0.6366. This results in the shortest wave length L = cs/fmax ≈ 628.3,
corresponding to approximately P = L/h ≈ 12.6 grid points per wave length.

Note the three main wave pulses in the transverse velocity arriving around times 8, 12, and 15.5.
Snap-shots at times 8, 12, and 16, of the same velocity component along a vertical cross-section
through the source-receiver plane are shown in Figure 12. Note that the top layer acts as a wave
guide, and the motion is dominated by waves trapped between the material interface and the free
surface. As expected, the wave lengths in the fast material below z = 2, 000 are significantly longer
than in the top layer, further illustrating the sensibility of using a refined grid where the velocities
are low.

7 Conclusions

We have described a second order accurate and energy conserving discretization of the elastic wave
equation in second order formulation on a composite grid. The composite grid consists of a set
of structured rectangular component grids with hanging nodes on the grid refinement interface,
allowing the grid size to approximately follow the material velocity structure in sesimic applications.
We have also developed second order accurate discretizations of singular source terms of point force
and point moment tensor type, that work in the vicinity of grid refinement interfaces. This allows
complex ruptures to be modeled on a composite grid, where the fault surface extends through
grid refinement interfaces. The composite grid method and the source discretization have been
implemented as part of version 2.0 of the open source software WPP [29], which also handles free
surfaces on a realistic topography.

29



0 5 10 15 20
−1

0

1

R
ad

ia
l

0 5 10 15 20
−1

0

1

T
ra

ns
ve

rs
e

0 5 10 15 20
−1

0

1

V
er

tic
al

Time

Figure 11: Radial, transverse and vertical velocity components as function of time at xr = 3.5 ·104,
yr = 2.5 · 104, zr = 0. The dashed black line is the semi-analytical FK solution and the red solid
line is the numerical solution on the composite grid.
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(center), and 16 (bottom).
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Plans for the near future include generalizations to visco-elastic materials. As a longer term
goal, it would be desirable to raise the spatial and temporal accuracy to fourth order. This would
improve the efficiency of the method in terms of the number of grid points per wave length that is
required to obtain a given accuracy. The main challenge is clearly to develop a stable fourth order
spatial discretization, becuase the temporal accuracy can easily be matched by using a modified
equation approach, see for example [8].

Much work is needed to develop a higher order accurate summation by parts operator for
the elastic wave equation with heterogeneous material properties. A good starting point would
be to first develop a higher order accurate approach for a uniform grid, using the framework
developed for higher order approximations of second derivatives in 1-D [22]. Cross-derivatives
could be discretized as first derivatives in each spatial direction using the higher order approach
in [31]. The combined scheme would need to satisfy the free surface boundary condition to higher
order accuracy, and handle heterogeneous material properties in a stable fashion. Once a higher
order accurate uniform grid discretization has been established, the remaining challenge would be
a stable and higher order accurate treatment of grid refinement interfaces with hanging nodes.

To accurately handle elastic wave propagation through complex 3-D geological structures in
the earth, jump conditions should be enforced across the material interfaces. For this purpose it
would be desirable to generalize the embedded boundary method with jump conditions for the
scalar wave equation [19].

References

[1] K. Aki and P.G. Richards. Quantitative seismology. University Science Books, Sausalito, CA,
USA, 2nd edition, 2002.
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[23] S. Nilsson, N. A. Petersson, B. Sjögreen, and H.-O. Kreiss. Stable difference approximations for
the elastic wave equation in second order formulation. SIAM J. Numer. Anal., 45:1902–1936,
2007.

[24] J. Nordström, J. Gong, E. van der Weide, and M. Svärd. A stable and conservative high
order multi-block method for the compressible Navier-Stokes equations. J. Comput. Phys.,
228:9020–9035, 2009.

[25] F. Olsson and N. A. Petersson. Stability of interpolation on overlapping grids. Computers
and Fluids, 25(6):583–605, 1996.
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