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ABSTRACT 
 
With computers becoming more pervasive, disks becoming cheaper, and sensors becoming 
ubiquitous, we are collecting data at an ever-increasing pace. However, it is far easier to collect 
the data than to extract useful information from it.  Sophisticated techniques, such as those 
developed in the multi-disciplinary field of data mining, are increasingly being applied to the 
analysis of these datasets in commercial and scientific domains. As the problems become larger 
and more complex, researchers are turning to heuristic techniques to complement existing 
approaches. This survey paper examines the role that evolutionary algorithms (EAs) can play in 
various stages of data mining. We consider data mining as the end-to-end process of finding 
patterns starting with raw data.  The paper focuses on the topics of feature extraction, feature 
selection, classification, and clustering, and surveys the state of the art in the application of 
evolutionary algorithms to these areas. We examine the use of evolutionary algorithms both in 
isolation and in combination with other algorithms including neural networks, and decision trees. 
The paper concludes with a summary of open research problems and opportunities for the future. 
 
 
INTRODUCTION 
 
Data mining is increasingly being accepted as a viable means of analyzing massive data sets. 
With commercial and scientific datasets approaching the terabyte and even petabyte range, it is 
no longer possible to manually find useful information in this data. As the semi-automated 
techniques of data mining are applied in various domains, it is becoming clear that methods from 
statistics, artificial intelligence, optimization, etc., that comprise data mining, are no longer 
sufficient to address this problem of data overload. Often, the data is noisy and has a high level 
of uncertainty. It could also be dynamic, with the patterns in the data evolving in space and time. 
To address these aspects of data analysis, we need to incorporate heuristic techniques to 
complement the existing approaches. 
 
In this paper, we survey the role that one category of heuristic algorithms, namely, evolutionary 
algorithms (EAs), plays in the various steps of the data mining process.  After a brief definition 
of both the data mining process and evolutionary algorithms, we focus on the many ways in 
which these algorithms are being used in data mining. This survey is by no means exhaustive. 
Rather, it is meant to illustrate the diverse ways in which the power of evolutionary algorithms 
can be used to improve the techniques being applied to the analysis of massive data sets. 

                                                        
1 Accepted for publication in “Data Mining: A Heuristic Approach”, H. A. Abbass, R.A. Sarker, and C. S Newton, 
Eds., Idea Group Publishing, 2001. 
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Following a survey of current work in the use of EAs for data mining tasks such as feature 
extraction, feature selection, classification, and clustering, we describe some challenges 
encountered in applying these techniques. We conclude with the exciting opportunities that await 
future researchers in the field.   
 
 
AN OVERVIEW OF DATA MINING 
 
Data mining is a process concerned with uncovering patterns, associations, anomalies and 
statistically significant structures in data (Fayyad et al., 1996). It typically refers to the case 
where the data is too large or too complex to allow either a manual analysis or analysis by means 
of simple queries. Data mining consists of two main steps, data pre-processing, during which 
relevant high-level features or attributes are extracted from the low level data, and pattern 
recognition, in which a pattern in the data is recognized using these features (Figure 1.). Pre-
processing the data is often a time-consuming, yet critical, first step. To ensure the success of the 
data-mining process, it is important that the features extracted from the data are relevant to the 
problem and representative of the data. 

 
Depending on the type of data being mined, the pre-processing step may consist of several sub-
tasks. If the raw data is very large, we could use sampling and work with fewer instances, or use 
multi-resolution techniques and work with data at a coarser resolution. Next, noise in the data is 
removed to the extent possible, and relevant features are extracted. In some cases, where data 
from different sources or sensors are available, data fusion may be required to allow the miner to 
exploit all the data available for a problem. At the end of this first step, we have a feature vector 
for each data instance. Depending on the problem and the data, we may need to reduce the 
number of features using feature selection or dimension reduction techniques such as principal 
component analysis (PCA) (Jackson 1991) or its non-linear versions.  After this pre-processing, 
the data is ready for the detection of patterns through the use of algorithms such as classification, 
clustering, regression, etc. These patterns are then displayed to the user for validation.  Data 
mining is an iterative and interactive process. The output of any step, or feedback from the 
domain experts, could result in an iterative refinement of any, or all, of the sub-tasks. 
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While there is some debate about the exact definition of data mining (Kamath 2001), most 
practitioners and proponents agree that data mining is a multi-disciplinary field, borrowing ideas 
from machine learning and artificial intelligence, statistics, high performance computing, signal 
and image processing, mathematical optimization, pattern recognition, etc. What is new is the 
confluence of the mature offshoots of these technologies at a time when we can exploit them for 
the analysis of massive data sets. As data mining has been applied to new problem domains, this 
technology mix has grown as well. For example, the growth of the Internet and the World Wide 
Web has resulted in tasks such as clustering text documents, multi-media searches, or mining a 
user’s web surfing patterns to predict what page they are likely to visit next or to target the 
advertising on a web page. This has added natural language processing and privacy issues to the 
technological mix that comprises data mining.  
  
Data mining techniques are being applied for the analysis of data in a variety of fields including 
remote sensing, bio-informatics, medical imaging, astronomy, web mining, text mining, 
customer relationship management, and market-basket analysis. While much of the focus in the 
data mining process tends to be on pattern recognition algorithms, the data pre-processing steps 
are more influential in the success of the data-mining endeavor (Langley and Simon, 1995; Burl 
et al., 1998). Unfortunately, the pre-processing steps often depend on the domain and problem. 
As a result, given the space limitations of this chapter, any discussion of the role of evolutionary 
algorithms in data pre-processing is likely to be limited in scope. Rather than ignore this 
important subject altogether, we will discuss aspects of this subject that are broadly applicable to 
several problem domains. 
 
 
 
AN OVERVIEW OF EVOLUTIONARY ALGORITHMS  
 
Evolutionary algorithms are randomized search procedures inspired by the mechanics of genetics 
and natural selection. EAs are often used as optimization algorithms, and this is the role that they 
play in most data mining applications. EAs work on a population of individuals that represent 
possible solutions to a problem in their chromosomes. Each individual can be as simple as a 
string of zeroes and ones, or as complex as a computer program. The initial population of 
individuals may be created entirely at random, or some knowledge about previously known 
solutions may be used to seed the population. The algorithm evaluates the individuals to 
determine how well they solve the problem at hand with an objective function, which is unique 
to each problem and must be supplied by the user. The individuals with better performance are 
selected to serve as parents of the next generation. Evolutionary algorithms create new 
individuals using simple randomized operators that are similar to sexual recombination and 
mutation in natural organisms. The new solutions are evaluated, and the cycle of selection and 
creation of new individuals is repeated until a satisfactory solution is found or a predetermined 
time limit has elapsed. 
 
There are several major types of evolutionary algorithms: genetic algorithms (GAs), genetic 
programming (GP), evolution strategies (ES), and evolutionary programming (EP). All 
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evolutionary algorithms share the same basic concepts, but differ in the way they encode the 
solutions and on the operators they use to create the next generation. 
 
Evolutionary algorithms are controlled by several inputs, such as the size of the population, and 
the rates that control how often mutation and crossover are used. In general, there is no guarantee 
that the evolutionary algorithm will find the optimal solution to an arbitrary problem, but a 
careful manipulation of the inputs and choosing a representation that is adequate to the problem 
increase the chances of success.  
 
There are many ways to encode a potential solution as a chromosome, and there are many 
variations of selection methods, crossover, and mutation operators. Some of these choices are 
better suited to a particular problem than others, and no single choice is the best for all problems. 
Traditionally, genetic algorithms use chromosomes composed of zeroes and ones, but other 
encodings may be more natural to the problem and may facilitate the search for good solutions. 
Genetic programming encodes solutions as computer programs. ES and EP use floating-point 
numbers, which may be more suitable for function optimization problems where the parameters 
to optimize are real numbers, but may be an awkward match to a problem of finding the shortest 
route between multiple cities.  
 
The choice of encoding is related to the operators that are used to produce new solutions from 
the selected ones. The simplest operator is mutation, and it acts by randomly changing a short 
piece of the chromosome. For example, when applied to strings of binary digits, it randomly 
chooses a location in the chromosome of an individual and flips a bit from zero to one or vice-
versa. ES and EP use more sophisticated mutation operators. 
 
Taking a cue from nature, genetic algorithms do not use mutation very often. The primary 
mechanism in GAs to create new individuals is crossover. In its simplest form, crossover 
randomly chooses two individuals from the pool that were selected to be parents, and exchanges 
segments of their two chromosomes around a single randomly-chosen point. The result is two 
new individuals, each with a segment of chromosome from each parent. Other variants of 
crossover exchange material around more than one point, and some researchers have 
experimented with recombining chromosomes from more than two parents. Some of the new 
solutions will be more fit than the parents, but others will be less fit. Evolutionary algorithms 
cannot avoid creating solutions that turn out to be unfit, but the selection process eliminates the 
bad solutions and keeps the best. 
 
The selection of the parents can occur in many ways, but all selection methods have the same 
objective of preserving good individuals and discarding the less fit ones. Roughly, there are two 
kinds of selection: hard and soft. Soft selection methods assign to each individual a probability of 
survival based on their fitness, so that individuals with high fitness are more likely to be selected 
than individuals with low fitness. The soft selection methods then use the probabilities to select 
the parents. The hard methods do not involve any probabilities; they choose deterministically a 
fixed number of the best solutions available. 
 
 
THE ROLE OF EVOLUTIONARY ALGORITHMS IN DATA MINING  
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After the brief overview of data mining and evolutionary algorithms, we next discuss the 
important role these algorithms can play in the various steps of data mining. In the following 
sections, we discuss how evolutionary algorithms can be used to improve the robustness and 
accuracy of the more traditional techniques used in feature extraction, feature selection, 
classification, and clustering.  
 
In our survey, we view data mining as a multi-step process, focusing on the role that EAs can 
play in each step. However, we would be remiss if we did not include the work of those authors 
who blur the separation between the different steps, and use EAs to perform data mining as a 
whole on the input data. For example, in an early paper, Tackett (1993) identifies targets in a 
cluttered image by combining simple features extracted from the segmented image through linear 
and non-linear operations. If the resulting single value at the root of the tree is greater than zero, 
the object is classified as a target. Stanhope and Daida (1998) use a similar approach in their 
work on target classification using Synthetic Aperture Radar (SAR) images.  Sherrah, Bogner, 
and Bouzerdoum (1996) also use non-linear pre-processing functions to create new features from 
primitive features. In addition, they associate one of three simple classifiers with each individual. 
The objective function is to minimize the number of errors made by each individual (a parse tree 
+ a classifier) on the training data, with smaller trees being favored as a tie-breaker. In the 
process, the classifier is selected automatically. 
 
 
EVOLUTIONARY ALGORITHMS IN FEATURE EXTRACTION 
 
The process of extracting features that are relevant to the problem being addressed in data 
mining is very problem- and data-dependent. In some types of data, the features are relatively 
easy to identify. For example, in text data, the features are the words in the text, and in market 
basket analysis, the features are the items bought in a transaction. In each case, some processing 
of these raw features may be required. In text mining, words that do not represent the content of 
the text (e.g., articles) are removed and stemming of words performed so that similar words such 
as “computers” and “computing” are not considered as different (Frakes and Baeza-Yates, 1992). 
In market-basket analysis, we may need to convert the units so that all items bought by weight 
are measured in ounces. 
 
While some types of data lend themselves easily to feature extraction, this task is more difficult 
in other cases. A typical example is image data, where feature extraction is far more challenging. 
In the past, image data was restricted to a few domains such as astronomy and remote sensing; 
however, it is now becoming more pervasive. With data mining being applied to domains such as 
medical imaging, multi-media on the web, and video images, it is important that we have robust 
techniques to identify features representing an image. Since images tend to vary widely, even 
within a domain, the adaptive nature of evolutionary algorithms can be exploited very effectively 
to address this important and difficult problem of feature extraction in image data.  
 
An image is a rectangular array of pixels, where each pixel has either a gray-scale value, or a real 
value representing some physical quantity. In image mining, the first task is to identify an object 
in the image, followed by extraction of features that represent the object. Object identification is 
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often the more difficult of these two tasks, as it involves the conversion of the low-level 
representation (i.e., pixels) into a higher-level representation (i.e., objects). It is here that 
evolutionary algorithms can be used very efficiently and effectively. Two techniques that are 
traditionally used to identify an object in an image are segmentation, where the image is 
separated into several regions based on some desired criteria, and edge detection, where edges or 
contours in an image are identified (Weeks, 1996).  
 
Several authors have exploited the use of evolutionary algorithms for image segmentation to deal 
with large and complex search spaces where limited information is available about the objective 
function. As Bhanu, Lee, and Ming (1995) point out, a key challenge in image segmentation is 
that most algorithms require the selection of several control parameters for optimal performance. 
This results in a high-dimensional search space, where the interactions between the parameters 
are complex and non-linear. Further, variations between images could cause the objective 
function representing the quality of segmentation to vary from one image to another. The 
problem is worsened by the fact that there is no single, universally accepted measure of the 
quality of the segmented image. To address these problems, Bhanu and Lee (1994) have 
explored the use of genetic algorithms to adaptively find the optimal set of control parameters for 
the Phoenix segmentation algorithm. The genetic algorithm selects an initial set of parameters 
based on the statistics of an image along with the conditions under which the image was obtained 
(time of day, cloud cover, etc.). The performance is evaluated using multiple measures of 
segmentation quality that include both global characteristics of the image and local features of 
the object.  The system is adaptive as a global population of images, their associated 
characteristics, and the optimal control parameters, is maintained and used to seed the population 
each time a new image is analyzed.  This global population is also constantly updated with 
higher strength individuals. Using scene images, Bhanu, Lee, and Ming (1995) show that their 
approach provides high quality results in a minimal number of cycles. 
 
Another approach to segmentation using genetic algorithms is the work done in three-
dimensional medical imaging by Cagnoni, Dobrzeniecki, Poli, and Yanch (1997). They too 
observe that the extreme variability of the features in biological structures causes the solutions 
generated by general-purpose algorithms to be unacceptable. As a result, some degree of 
adaptivity is required when segmenting medical images. Their approach identifies the contours 
of an object by first identifying the edge points using a filter whose parameters are optimized by 
a GA. These edge points are then used to seed an interpolation process, where the interpolation 
parameters are also generated by a GA. The fitness function is proportional to the degree of 
similarity between the contours generated by the GA and the contours identified in manually 
generated training examples.  These filter and interpolation parameters are obtained for each new 
class of problems. Results on three-dimensional MRI images show that the GA–based techniques 
are insensitive to significant changes in shape across a sequence of images as well as the inter- 
and intra-slice variability in the contours, thus illustrating the power of these techniques. 
 
The task of edge detection can also benefit from the use of evolutionary algorithms. Most edge 
detectors use simple first- and second-order derivatives to identify an edge. However, these 
operators are sensitive to noise and are not very general. In addition, they identify a pixel as an 
edge pixel based on the response of the edge detector at that pixel, ignoring the edge structure 
around the pixel. To overcome this disadvantage, several authors, including Tan, Gelfand, and 
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Delp (1989) and Bhandarkar, Zhang, and Potter (1994) have proposed an approach based on cost 
minimization, where the cost takes into account issues such as local edge structure, continuity of 
the edge, and fragmentation. This lends itself very naturally to the use of genetic algorithms for 
minimizing the cost. Bhandarkar et al. (1994), first define edge pixels as those that satisfy certain 
constraints, and then define the corresponding cost functions based on the local edge structure. 
Since the data is an image, the most natural representation of a chromosome is a two dimensional 
sequence of zeroes and ones, where an edge pixel is a one, and a non-edge pixel is a zero. The 
crossover operator is defined in two dimensions, with two-dimensional sub-images swapped 
between individuals. Their results show that both simulated annealing and an integrated GA 
(which includes elitism, intelligent mutation etc.) are better at detecting edges than a local search 
or a simple GA for both noisy and noise-free images. 
 
This idea of using evolutionary algorithms to find an optimal set of parameters has also been 
used for image registration, where points in one image are mapped to corresponding points in 
another image of the same scene taken under different conditions. For example, Mandava, 
Fitzpatrick, and Pickens (1989) use GAs to find the parameters of a non-linear transformation 
that warps the four corners of one sub-image and maps them to another sub-image. To reduce the 
time, the quality of the transformation is evaluated using only a select sample of pixels in the 
sub-image.  
 
In addition to genetic algorithms, several authors have used genetic programming to address 
image-processing problems. In particular, GP is often used for constructing image-processing 
operators for specific tasks. The idea is to start with a set of basic primitive functions such as a 
median filter applied to an image or the square of an image, and use GP to create a new 
operation.  The fitness of the parse tree is usually evaluated by comparison with training 
examples, where the task to be achieved has been performed manually.  Ebner and Zell (1999) 
describe how this approach can be used to measure optical flow, which requires the 
establishment of corresponding points between one image and the next. Brumby et al. (1999) use 
a similar approach for finding open water, such as rivers and lakes, amidst vegetation in remote 
sensing images. Their approach implements several checks to reduce unnecessary computation, 
and also gives credit for finding the anti-feature, that is, everything but the open water. Poli 
(1996) illustrates how GP can be used to find effective filters for medical images. He considers 
several ways of specifying the fitness function to account for the fact that any algorithm that uses 
filters for tasks such as image segmentation will give rise to false positives and false negatives. 
Depending on the application, the fitness function could assign weights to each, thus 
emphasizing appropriately the costs associated with either the false positives or the false 
negatives. 
 
 
EVOLUTIONARY ALGORITHMS IN FEATURE SELECTION  
 
Once the relevant features representing the data items have been extracted, it is often helpful to 
reduce this set of features. There are several reasons for this. In many situations, it is not possible 
to know a priori which features extracted from the data will be relevant to the problem at hand.  
Including features that are irrelevant not only increases the time complexity of many algorithms, 
but also increases the time needed to extract the features. Further, as the number of examples 
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needed for learning a concept is proportional to the dimension of the feature space, fewer 
training examples will be required if the number of features is reduced.  In addition, some 
features may have costs or risks associated with them, and these should be weighted accordingly 
during the process of data mining. This leads to the problem of feature subset selection which is 
the task of identifying and selecting a useful subset of features to be used to represent patterns 
from a larger set of often mutually redundant, possible irrelevant, features with different 
associated measurement costs and risks (Yang and Honavar, 1997). Note that we use the term 
feature to indicate the attributes that represent an object or a data instance — these may be 
obtained directly from the original data, or derived by processing the original data. 
 
The simplest way to remove irrelevant features is to apply domain knowledge. For example, if 
we are interested in clustering text documents, it is obvious that articles, such as “a”, “an”, and 
“the” are irrelevant variables (Frakes and Baeza-Yates, 1992). However, this approach is feasible 
only when a domain scientist can easily identify irrelevant attributes, which is rarely the case.  
More complex techniques such as principal component analysis can also be used to obtain linear 
combinations of attributes by projecting them along the directions of the greatest variance. We 
next discuss the ways in which evolutionary algorithms can be used to address the problem of 
feature selection.  
 
The evolutionary approach most often used for feature selection is to combine the selection with 
the learning algorithm, in what is referred to as the wrapper approach. In this approach, the 
fitness of the feature subsets obtained during the evolutionary computation is evaluated using the 
learning algorithm itself. While this is more computationally intensive than selecting the features 
independent of the learning algorithm, it preserves any inductive and representational biases of 
the learning algorithm. Early work by Siedlecki and Sklansky (1989) with genetic algorithms 
identified an individual in the population as a series of zeros and ones, where a one indicated that 
a feature was included in the classification, and a zero indicated that it was not. The k-nearest-
neighbor algorithm was chosen to evaluate how good each individual was based on its 
classification accuracy and the number of the features (i.e. ones) used. Others have applied the 
same basic binary encoding to select features in classification problems using neural networks 
(Brill, Brown, & Martin, 1990; Brotherton & Simpson, 1995) 
 
Punch et al. (1993) extended the simple binary feature selection idea by representing an 
individual by a series of weights between zero and ten, thus weighting some features as more 
important than others. They found that their extension appeared to work better than the zero/one 
approach of Siedlecki and Sklansky (1989) on noisy real world datasets. Vafaie and DeJong 
(1998) also investigated a similar approach to feature selection using decision trees for 
classification. However, in their work, instead of just weighting each feature, they allowed the 
combination of existing features to form new features through simple operations such as add, 
subtract, multiply, and divide. This adaptive feature-space transformation led to a significant 
reduction in the number of features and improved the classification accuracy.  Other related work 
in this area is that of Yang and Honavar (1997) who used neural networks as the classifier and a 
simple zero/one strategy for weighting each feature. 
 
A very different use of genetic algorithms in feature selection is in the generation of ensembles 
of classifiers. Recent work by several authors (see, for example, Dietterich 2000) has shown that 
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it is possible to improve classification accuracy by combining the prediction of multiple 
classifiers. These ensembles of classifiers differ in the ways in which the classifiers are generated 
and their results are combined. Early work of Ho (1998), which used a random selection of 
features to create an ensemble, was extended by  Guerra-Salcedo and Whitley (1999). They 
replaced the random selection with a more intelligent approach using genetic algorithms, and 
showed empirically that their idea was more accurate. 
 
 
EVOLUTIONARY ALGORITHMS IN CLASSIFICATION 
 
In this section, we describe how evolutionary algorithms can be used in conjunction with 
classification algorithms such as rule-based systems, neural networks, and decision trees.  
 
Rule-Based Systems 
 
Representing concepts as sets of rules has long been popular in machine learning, because, 
among other properties, rules are easy to represent and humans can interpret them easily. In EAs 
there are two main ways to represent rule sets. In the “Michigan” approach (Holland, 1975; 
Booker, Goldberg and Holland, 1989), each individual in the population represents one fixed-
length rule, and the entire population represents the target concept. In contrast, in the 
“Pittsburgh” approach (Smith, 1980, 1983; DeJong, Spears, Gordon, 1993) each variable-sized 
individual represents an entire set of rules. The two representations have their merits and 
drawbacks and have been used successfully in classifier systems, which are rule-based systems 
that combine reinforcement learning and evolutionary algorithms. 
 
The basic loop in a classifier system is that the system is presented with inputs from the 
environment, the inputs are transformed into messages that are added into a message list, and the 
strongest rules that match any message in the list are fired (possibly adding more messages to the 
list or acting on the environment). Rules are assigned a fitness value based on a reward returned 
by the environment. A genetic algorithm is used as the discovery component of the system, 
creating new rules based on the current best.  
 
This is not the place to describe classic classifier systems or their relatives in detail. The 
interested reader should consult the book by Goldberg (1989) for a good introduction to classic 
CS, or the papers by Wilson (1995; 2000a) that describe some extensions. Wilson and Goldberg 
(1989) present an early critical review of classifier systems, and Wilson (2000b) presents a 
summary and outlook of research on XCS. 
 
Classifier systems are commonly used as control systems in changing or uncertain environments, 
where there may not be sufficient or clear expert knowledge to produce a more conventional 
control (e.g., Goldberg, 1983). Closer to our interests in data mining, classifier systems have 
been used to learn Boolean functions (Wilson, 1995), which are of significance because they 
illustrate the ability of the system to learn complex non-linear concepts. Other applications 
include the classification of letters (Frey, 1991), and breast cancer diagnosis (Wilson, 2000a). 
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In classifier systems, the left side of rules is a conjunctive expression. This limits the descriptive 
power of the rules compared to, for example, first-order logic statements. First-order logic is 
important because it permits to express relationships between entities in databases. As Augier et 
al. (1995) noted, most of the machine learning algorithms that use first-order logic discover new 
rules using deterministic or heuristic approaches that can get trapped in local optima. To address 
this problem one can try to use EAs. A critical problem is to represent the rules, so that the 
evolutionary operators can act on them effectively and produce rules that make sense. Giordana 
and Neri (1995) proposed to use a user-defined template to specify the predicates. The EA finds 
the specific values that will be used in the rules. Their scheme has the advantage that the EA 
does not require modifications, because chromosomes are of fixed length and all combinations 
form valid rules. They also proposed two specialized crossover operators that are designed to 
promote specialization and generalization. 
 
Another advantage of Giordana and Neri’s system is also one of its main disadvantages: the 
dependence on the user to supply a template for the rules. Although this permits the 
incorporation of domain knowledge into the algorithm, the user must have a rough idea of the 
desired result. Augier et al. (1995) proposed an algorithm that addresses this issue by 
manipulating both the predicates and their values. The algorithm begins with a single rule that 
matches a single example. Specialized evolutionary operators modify the rule and create 
offspring that are added to the population until a limit is reached. The best rule after the 
execution of the EA is selected to form part of the final rule set, and the examples covered by the 
rule are deleted from the training set. The algorithm is repeated until there are no examples left.  
 
 
Evolutionary Algorithms and Neural Networks 
 
Genetic algorithms and artificial neural networks (ANNs) have been used together in two major 
ways. First, EAs have been used to train or to aid in the training of ANNs. In particular, EAs 
have been used to search for the weights of the network, to search for appropriate learning 
parameters, or to reduce the size of the training set by selecting the most relevant features. The 
second major type of collaboration has been to use EAs to design the structure of the network. 
The structure largely determines the efficiency of the network and the problems that it can solve. 
It is well known that to solve non-linearly separable problems, the network must have at least 
one layer between the inputs and outputs; but determining the number and the size of the hidden 
layers is mostly a matter of trial and error. EAs have been used to search for these parameters, as 
well as for the pattern of connections and for developmental instructions for the network. The 
interested reader may consult the reviews by Branke (1995), Whitley (1995) or Yao (1999).  
 
Training an ANN is an optimization task with the goal of finding a set of weights that minimizes 
some error measure. The search space has many dimensions and it is likely to contain multiple 
local optima. Some traditional network training algorithms, such as backpropagation, use some 
form of gradient search, and may get trapped in local optima. In contrast, EAs do not use any 
gradient information, and are likely to avoid getting trapped in a local optimum by sampling 
simultaneously multiple regions of the space.  
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A straightforward combination of evolutionary algorithms and neural networks is to use the EAs 
to search for weights that make the network perform as desired. In this approach, each individual 
in the EA is a vector with all the weights of the network. Assessing the fitness of each network 
involves measuring the accuracy of classification or regression on the training set, so for each 
fitness evaluation, the training set is passed through the network. This can be inefficient if the 
training set is large, but the fitness may be estimated using a sample of the training set. Although 
the fitness would change over different samples, EAs are known to search well using such noisy 
evaluations. 
 
There are three main variants of the training method: 
 
• Start from a random population and use the weights found by the EA in the network without 

any further refinement (Caudell and Dolan,1989; Montana and Davis, 1989; Whitley and 
Hanson, 1989). This method may be particularly useful when the activation function of the 
neurons is non-differentiable. 

 
• Use backpropagation or other methods to refine the weights found by the EA (Kitano, 1990; 

Skinner & Broughton, 1995). The motivation for this approach is that EAs quickly identify 
promising regions of the search space, but they do not fine-tune parameters very fast. So, 
EAs are used to find a promising set of initial weights from which a gradient-based method 
can quickly reach an optimum. This involves additional passes through the training data (for 
each epoch of backpropagation, for example), extending the processing time per individual, 
but sometimes the overall training time can be reduced because fewer individuals may need 
to be processed. 

 
• Use the EA to refine results found by a NN learning algorithm. Although EAs do not refine 

solutions very fast, there have been some attempts to seed the initial population of the EA 
with solutions found with backpropagation (Kadaba & Nygard, 1990).  

 
These approaches suffer from several problems. First, the length of the individuals grows rapidly 
with the size of the network. Since adjacent layers in a network are usually fully connected, the 
total number of weights that need to be represented is O(n2) (where n is the number of neurons). 
Longer individuals usually require larger populations, which in turn result in higher 
computational costs. For small networks, EAs can be used to search for good weights efficiently, 
but this method may not scale up to larger networks.  
 
Another drawback is the so-called permutations problem (Radcliffe, 1990). The problem is that 
if the order of the hidden nodes is permuted, the representation of the weights would be different, 
so functionally equivalent networks can be represented in various ways. Some orderings may not 
be very suitable for EAs that use recombination because it might disrupt some favorable 
combinations of weights. To ameliorate this problem, Thierens et al. (1991) suggest that 
incoming and outgoing weights of a hidden node should be encoded next to each other. Hancock 
(1992) has done some analysis that suggests that the permutation problem is not as hard as it is 
often presented. Later, Thierens (1995) presented an encoding that completely avoids the 
permutations problem.  
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There are two basic approaches to using EAs to design the topology of an ANN: use a direct 
encoding to specify each connection of the network or evolve an indirect specification of the 
connectivity. The resulting network may be trained with a traditional learning algorithm (e.g., 
backpropagation), or the EA may be used to search the configuration and the weights 
simultaneously.  
 
The key idea behind direct encodings is that a neural network may be regarded as a directed 
graph where each node represents a neuron and each edge is a connection. A common method of 
representing directed graphs is with a binary connectivity matrix: the (i, j)-th element of the 
matrix is one if there is an edge between nodes i and j, and zero otherwise. The connectivity 
matrix can be represented in the EA simply by concatenating its rows or columns. Several 
researchers have used this approach successfully (e.g., Miller, Todd, and Hegde (1989); and 
Belew, McInerney, and Schraudolph (1990)). Using this method, Whitley, Starkweather, and 
Bogart (1990) showed that the EA could find topologies that learn faster than the typical fully-
connected feedforward network. The EA can be explicitly biased to favor smaller networks, 
which can be trained faster. However, since each connection is explicitly coded, the length of the 
individuals is O(n2), and the algorithm may not scale up to large problems.  
 
Although direct encoding is straightforward to implement, it is not a good analogy of the way 
things work in nature. The genome of an animal does not specify every connection in its nervous 
system. Instead, the genome contains instructions that—in conjunction with environmental 
factors—determine the final structure of the network. Many interesting combinations of EAs 
with NNs imitate nature's indirect specification of nervous systems, and use a developmental 
approach to construct the networks.  
 
A simple method to avoid specifying all the connections is to commit to a particular topology 
(feedforward, recurrent, etc.) and a particular learning algorithm, and then use the EA to set the 
parameters that complete the network specification. For example, with a fully-connected 
feedforward topology the EA may be used to search for the number of layers and the number of 
neurons per layer. Another example would be to code the parameters of a particular learning 
algorithm such as the momentum and learning rate for backpropagation (Belew, McInerney, & 
Schraudolph, 1990; Marshall & Harrison, 1991). By specifying only the parameters for a given 
topology, the coding is very compact and well suited for a evolutionary algorithm, but this 
method is constrained by the initial choice of topology and learning algorithm.  
 
A more sophisticated approach to indirect representations is to use a grammar to encode rules 
that govern the development of a network. Kitano (1990) introduced the earliest grammar-based 
approach. He used a connectivity matrix to represent the network, but instead of coding the 
matrix directly in the chromosome, he used a graph rewriting grammar to generate the matrix. 
The chromosomes contain rules that rewrite scalar matrix elements into 2 x 2 matrices. To 
evaluate the fitness, the rules are decoded from the chromosomes, and the connectivity matrix is 
created applying all the rules that match non-terminal symbols. Then, the connectivity matrix is 
interpreted to build a network, which is trained by backpropagation, and the fitness is measured. 
Perhaps the major drawback in this approach is that the size of the network must be 2i (where i is 
any non-negative integer that represents the number of rewriting steps), because after each 
rewriting step the size of the matrix doubles in each dimension.  
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Another example of a grammar-based developmental system is the work of Boers and Kuiper 
(1992). Each individual contains the rules for one Lindenmayer system (L-system), which are 
parallel string rewriting grammars (every applicable rule is used at each derivation step). L-
systems have been used to model the development of living organisms. To evaluate the fitness, 
the system uses the rules of the L-system to generate a string that represents the structure of a 
neural network. Then, the network is trained using backpropagation and the fitness is determined 
by combining the accuracy of the classifications on separate training and testing sets.  
 
Gruau  (1992) invented a “cellular encoding” method to evolve the topology and the weights of 
the network simultaneously. His objective was to produce a coding for modular networks that 
would scale up to large and interesting problems naturally. Gruau (1994) proved that cellular 
encoding has many desirable properties for a neural network representation. For example, all 
possible networks are representable, and only valid networks result after applying the genetic 
operators. Each cell in the network has a copy of a grammar tree (a grammar encoded as a tree), 
a read head, and some internal registers. The development of the network starts with a single 
cell. The grammar tree contains instructions that make the cell divide, increment or decrement its 
bias or some weights, cut a connection, and stop reading the tree. At each step, every cell 
executes the instruction pointed to by its head, and the development finishes when all the cells 
reach stop instructions. Gruau solved large parity and symmetry problems, and his approach 
compares favorably to direct encoding (Gruau, Whitley, & Pyeatt, 1996).  
 
Nolfi, Elman, and Parisi (1994) developed another grammar-based encoding. Their objective was 
to simulate cell growth, migration and differentiation, three processes involved in the 
development of natural neural networks. Their networks may contain up to 16 types of cells, and 
for each type there is a rule that governs how the cell reproduces. The rules are encoded in the 
chromosome, and they specify the types of the daughter cells and their relative spatial locations. 
After a fixed number of divisions, the cells grow artificial axons to reach other cells. Cells live in 
a two-dimensional space that is partitioned into three regions. The developmental process begins 
with a cell placed near the center. The neurons that end up in the lower and upper regions serve 
as the inputs and outputs, respectively. The cells in the middle region function as hidden units.  
 
The grammar-based methods share several properties. First, the developmental process begins 
with a single cell, just as in nature. Second, all the methods are very sensitive to changes in parts 
of the genome that govern early development (e.g., the initial cell’s type or the first rule to be 
applied).  
 
Decision Trees and Evolutionary Algorithms 
 
Decision trees are a popular classification method because they are easy to build and experts can 
interpret them easily. The internal nodes represent tests on the features that describe the data, and 
the leaf nodes represent the class labels. A path from the root node to one of the leaves represents 
a conjunction of tests. Since genetic programming traditionally uses trees to represent solutions, 
it seems well suited for the task of finding decision trees. Koza (1992) offered an early example 
of this use of GP in classification, where the fitness of each decision tree is based on its accuracy 
on a training set. Nicolaev and Slavov (1997) extended the fitness measure to include terms 
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related to the tree size, and determined that GP could find small trees that were comparable in 
accuracy to those found by C4.5 in several test cases. Folino, Spizzuti, and Spezzano (2000) 
demonstrate that a fine-grained GP system can find trees that are smaller and comparatively 
accurate to those found with C4.5 on several test problems. Their system was designed with the 
intention of implementing it on a parallel computer to shorten the computation time. 
 
The trees considered above used tests on a single attribute of the data. These tests are equivalent 
to hyperplanes that are parallel to one of the axes in the attribute space, and therefore the 
resulting trees are called axis-parallel. Axis-parallel trees are easy to interpret, but may be 
complex and inaccurate if the data is partitioned best by hyperplanes that are not axis-parallel. 
Oblique decision trees use linear combinations of attributes in the tests in each of the internal 
nodes. Cantú-Paz and Kamath (2000) used evolution strategies and genetic algorithms to find the 
coefficients for the tests. They used the traditional top-down construction method, where the 
algorithm determines the test of each node, splits the data according to the test, and applies itself 
recursively to each of the resulting subsets. Cantú-Paz and Kamath compared their methods 
against axis-parallel and other oblique tree algorithms. They found that when the data was best 
split by oblique hyperplanes, the evolutionary methods were in general faster and more accurate 
than the existing oblique algorithms, but when the target concepts were well represented by axis-
parallel hyperplanes, the existing methods were superior.  
 
Other approaches to build oblique decision trees consider the entire tree at a time, just as Koza’s 
original method. Bot and Langdon (2000) use traditional GP complemented with a multi-
objective selection method that attempts to minimize the tree size and the classification errors 
simultaneously. When compared to other algorithms, the classification accuracy results were 
mixed, but GP was consistently slower. 
 
Venturini et al. (1997) presented an interactive evolutionary algorithm that permits the user to 
evaluate combinations of the attributes that describe the data. The objective of the system is to 
find new variables that can describe the data concisely and that can be used in a traditional 
classification algorithm afterwards. Each individual in the algorithm uses two GP trees to 
represent new variables that are a transformation of the original attributes. The two new variables 
can be regarded as new axes on which the training set is projected and the result is displayed as a 
scatter plot. All the individuals are processed in this way and presented to the user who decides 
which projections show some interesting structures. The selected individuals undergo crossover 
and mutation, and the cycle is repeated. Venturini et al. (1997) present mixed results on several 
data sets from the UCI repository, but suggest several interesting extensions of their system, such 
as allowing the user to create rules directly by specifying thresholds on the screen. 
 
 
EVOLUTIONARY ALGORITHMS IN CLUSTERING 
 
We can distinguish two major methods to apply evolutionary algorithms to clustering problems. 
In the first method, each position in the chromosome represents an item in the training set. The 
task of the EA is to find the right cluster for each data item. If the number of clusters, k, is known 
a priori, each position in the chromosomes can take a value in [1,k]. This method is somewhat 
analogous to the direct encoding of neural nets. It is easy to implement, as there is no need for 
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special evolutionary operators, but it suffers from a severe scalability problem: the length of the 
individuals is exactly the size of the training set, and for large problems this option may not be 
practical. Examples of this approach include the work by Murthy and Chowdhury (1996). 
 
Park and Song (1998) created a variation of the direct representation. They recognized that the 
clustering problem could be cast as a graph-partitioning problem. The objective is to consider the 
items in the data set as nodes in a graph and the objective is to use a GA to find connected 
subgraphs that represent clusters. Each data item has a corresponding position in the 
chromosomes, but the alleles are not the cluster labels, but the indices of other data items. So if 
position i contains the value j, there is a link in the graph between the nodes that represent items i 
and j. The values for each position are limited to the nearest neighbors of each data item, and the 
number of neighbors is an input parameter to the algorithm. Park and Song tested their algorithm 
on the problem of generating a thesaurus of word meanings and compared their results to other 
clustering algorithms. An advantage of their algorithm is that the number of clusters does not 
have to be specified in advance. The problem of scalability is still present as the individual’s 
length is the size of the data set, and since this algorithm computes the nearest neighbors of all 
the data items, the algorithm may not be very efficient on data sets with many dimensions. 
 
Another use of EAs in clustering is to identify the cluster centroids. Hall, Ozyurt and Bezdek 
(1999) described an evolutionary approach where the individuals represent the coordinates of the 
centers of the k desired clusters. They used a standard genetic algorithm, trying both floating 
point and binary representations, but did not observe a clear advantage to either approach. Their 
study considered both fuzzy and hard clustering, and their fitness functions included terms to 
penalize degenerate solutions (with fewer than k clusters). Hall et al. compared their algorithm to 
conventional clustering algorithms (FCM/HCM) and observed that their evolutionary approach 
usually found solutions as good as the other methods, and avoided degenerate solutions when the 
other methods did not. They experimented with adaptive methods to set the parameters of the 
algorithm and found the results encouraging. This is important because it facilitates the use of the 
evolutionary algorithm in practice. However, Hall et al. also reported that the execution time of 
the evolutionary method can take up to two orders of magnitude more than FCM/HCM. Despite 
the efficiency problem, Hall et al. noted that the evolutionary approach could be useful to 
evaluate other clustering fitness functions for which no optimization method has been devised. A 
similar approach is to use the EA to search for the optimal initial seed values for the cluster 
centroids and then run a clustering algorithm (Babu and Murty, 1993).  
 
As in other problems, in clustering we can use domain knowledge in several ways to try to 
improve the performance of the algorithm. For example, we could design specialized 
evolutionary operators or we can hybridize the evolutionary algorithm with a conventional 
clustering algorithm. Fränti et al. (1997) tried both approaches. Their clustering algorithm 
represented the coordinates of the centroids. They used five different crossover methods (three of 
their own invention) and after crossover each new individual underwent two iterations of the k-
means clustering algorithm. Later they extended the algorithm to include self-adaptation of 
parameters and automatic choice of operators (Kivijärvi, 2000). Fränti et al. (1997) observed that 
adding the k-means iterations was critical for obtaining good results, and although there can be a 
considerable increase of the computation time if many iterations are used, their experiments 
suggest that only a few iterations are needed. Along these lines, Krishna and Murty (1999) used a 
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single k-means iteration. The hybridization raises the question of how to allocate the computing 
time: should we use many generations of the EA and a few iterations of the local methods, or run 
the EAs for a few generations and use the local methods to improve the solutions considerably? 
 
As we saw in the neural networks section, another way to use domain knowledge in GAs is to 
initialize the population with good known solutions. One way to do this in clustering problems 
would be to use the output of independent runs of the k-means algorithm to create at least part of 
the initial population (Murthy and Chowdhury, 1996).  
 
In principle, the centroid-based representation has the advantage that the individuals are shorter, 
because they only need to represent the coordinates of the k centroids. This means that the length 
of the individuals is proportional to the dimensionality of the problem and not to the size of the 
training set as in the partitioning-based encoding. In addition, using the GA to assign the right 
cluster labels to each data item allows more flexibility in the shape of the clusters. For example, 
non-adjacent regions of the data space can belong to the same cluster.  
 
 
 
 
PERFORMANCE OF EVOLUTIONARY ALGORITHMS 
 
Evolutionary algorithms are proving themselves in solving real problems in data mining, 
especially in cases where the data is noisy, or requires the solution of a multi-objective 
optimization problem. However, they are not without their drawbacks.  
 
A key concern expressed by several authors is that evolutionary algorithms can be very time 
consuming.  For example, Poli (1996) comments that the tremendous computational demands of 
fitness evaluations in the use of genetic programming for image processing has prevented 
researchers from doing an extensive study of the behavior of these algorithms in solving real 
problems.  A similar sentiment is expressed by Ebner and Zell (1999) who observe that the 
evolution of an image processing operator typically takes several days to complete on a single 
PC, making it difficult to use their algorithm in an adaptive vision system that adapts to changing 
environmental conditions.    
 
Several approaches have been proposed to address this need for enormous computational 
resources. For example, Mandava, Fitzpatrick, and Pickens (1989) and Poli (1996) suggest that, 
in image processing, instead of using all pixels in an image to evaluate the fitness of an operator, 
only a small sample of pixels could be used in order to reduce the time required. Other authors, 
such as Bhanu, Lee, and Ming (1995) keep a global population of fit individuals, which can be 
used to seed the genetic algorithm for each image. This not only makes the system adaptive, but 
also reduces the computation time. Bhandarkar, Zhang, and Potter (1994) propose exploiting the 
inherent parallelism in genetic algorithms to reduce the time for edge detection operators in 
image analysis.  
 
Researchers using evolutionary algorithms for feature selection also echo this need for extensive 
computer resources. Since the approach requires the classification step to be performed for each 
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fitness evaluation, it can be time consuming. A common solution in this case is the use of 
parallel processing (Punch et al., 1993). 
 
Of course, sampling and parallel processing can also aid in classification and clustering 
problems. In addition, in previous sections we also hinted that using representations that are 
more appropriate for the problems at hand or designing custom operators could result in a more 
scalable algorithm. For example, directly encoding each weight in a neural network or each 
possible assignment of a data item to a cluster will not scale up to large and interesting problems.  
 
 
RESOURCES FOR EVOLUTIONARY ALGORITHMS IN DATA MINING  
 
With evolutionary algorithms rapidly gaining acceptance in data mining, there are a variety of 
resources that the interested researcher can refer to for the most recent advances in the field.  
There are several conferences held in the various topics covered in this chapter, including the 
EvoIASP conferences organized by the Working Group on Evolutionary Algorithms in Image 
Analysis and Signal Processing (2001), Knowledge Discovery and Data Mining (KDD), 
International Conference on Machine Learning (ICML), and the Genetic and Evolutionary 
Computation Conference (GECCO). The journals Evolutionary Computation, Genetic 
Programming and Evolvable Machines, IEEE Transactions on Systems, Man, and Cybernetics, 
and the IEEE Transactions on Evolutionary Computation are also excellent resources. There are 
several resources available on the Internet as well. A comprehensive bibliography on genetic 
algorithms by Alander (2000) includes their use in classifier systems, image processing, signal 
processing, neural networks, etc. 
 
 
SUMMARY  
 
In this survey paper, we have shown that evolutionary algorithms can complement many existing 
data mining algorithms. They can extract and select features, train neural networks, find 
classification rules, and build decision trees. Evolutionary algorithms are particularly useful 
when the problems involve the optimization of functions that are not smooth and differentiable, 
or functions where the objective value changes over time, which can happen in data mining as 
more data becomes available or if sampling is used to reduce the computation time. 
 
While evolutionary algorithms enable us to solve some difficult problems, they come at a price, 
namely a need for high computational resources. However, with processors becoming faster and 
the increasing acceptance of parallel systems, we hope that this problem will be minimized in the 
future. 
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