On denoising images using wavelet-based statistical techniques
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Abstract—

Techniques based on thresholding of wavelet coefficients are
gaining popularity as approaches to denoising data. The main
idea is to transform the data into a different basis, the wavelet
basis, where the “large” coeflicients are mainly the signal, and
the “smaller” ones represent the noise. By suitably modifying
the coefficients in the new basis, the noise can be removed from
the data. Much of the work done in this fleld has focused on
one dimensional data, though a few publications have compared
select two-dimensional generalizations. In this paper, we extend
several one-dimensional denoising procedures to two dimensions,
and provide a comprehensive evaluation of the resulting meth-
ods. We show that for images, there are several different ways
in which these techniques can be applied. Using test images
corrupted by additive Gaussian noise, we compare and contrast
the methods across a range of noise levels. Our results, using
the mean squared error as a measure of the quality of denoising,
show that the SureShrink and the BayesShrink methods consis-
tently outperform the other wavelet-based techniques we consid-
ered. We also compare the effectiveness of these methods with
simple spatial filters. While no filter was consistently the best,
we found that a combination of the minimum mean squared er-
ror filter, followed by a Gaussian filter, often led to smaller error
than the best wavelet techniques.

I. INTRODUCTION

With sensors becoming ubiquitous and computers becoming
more powerful, scientists are collecting and analyzing data at
an ever increasing pace. This has resulted in several interesting
problems in the analysis of data from areas as diverse as as-
tronomy, medical imaging, and computer vision. In these fields,
the data that is collected by sensors is often noisy, either as
a result of the data acquisition process or due to natural phe-
nomena such as atmospheric disturbances. Therefore, removing
the noise from the data is an important problem that must be
addressed before we can analyze the data.

One approach to denoising data, proposed by several re-
searchers in the statistics and signal processing communities,
involves the thresholding of wavelet coefficients, as described in
[31], [13], [14], [15], [2], [20], [30], and the references therein.
Most methods in the literature have been designed for one-
dimensional signals, but they can be easily extended to higher
dimensional signals as well. More recent publications dealing
directly with images include [10], [9], [6], [25].

In this paper, we compare and contrast various wavelet de-
noising techniques that have been proposed in the literature
using two-dimensional data as an example. This work was done
as part of the Sapphire project in large-scale scientific data min-
ing [22], which involves the analysis of massive data sets arising
in scientific applications. As these data are frequently noisy,
with the noise statistics varying from domain to domain, and
sometimes from image to image, we developed a software toolkit
to enable experimentation with the different options in wavelet
denoising. Our goal was three-fold. The first was to create a
comprehensive software library of wavelet denoising techniques
to complement the extensive literature on the subject. While
there are some software packages such as MR/1 [21] that include

denoising using wavelets, none provide a complete implementa-
tion of all the techniques proposed in the literature. Second,
we wanted to provide scientists, who are not experts in wavelet
denoising, with a choice of techniques, so that they could select
a combination appropriate for their data. Third, we wanted to
compare and contrast the various options in order to provide
guidance and recommendations on their usage.

This paper is organized as follows. Section II provides a
brief introduction to the technique of denoising by threshold-
ing of wavelet coefficients. We explain the various options in
the denoising methods such as the choice of wavelet transforms,
noise estimation techniques, threshold calculation methods (or
shrinkage rules), and threshold application schemes (or shrink-
age functions). Next, in Section III, we provide a comprehen-
sive evaluation of the various methods. We compare the per-
formance of various denoising combinations on test images with
simulated noise and evaluate them with respect to the known
noiseless images. In Section IV, we compare and contrast these
wavelet-based techniques with the more traditional approaches
to denoising based on spatial filters. Finally, in Section V we
summarize our findings and propose ideas for future work.

II. WAVELET DENOISING

The problem of denoising data can be stated as follows: given
the zero-mean observation data Y; ; as a noisy realization of the
signal X ;:

Yij=Xij+e,; i=1--,1I, j=1,--,J, (1)
find an “optimal” estimate of X;; based on Y; ;. The solu-
tion to this optimization problem depends on the distribution
of the noise {¢;;} and on the form of the optimization crite-
rion. A common approach, assumed throughout this paper, is
to specify that the {e; ;}s are independent from the signal and
are independent and identically distributed (4id) Gaussian ran-
dom variables, ¢ ; ~ N(0,6%), and to use the minimal mean
square error (M SE) to evaluate the optimality of the estimates.
Though we stated the problem using two-dimensional data as an
example, it can be applied to data in any number of dimensions.
Wavelet denoising provides one particular way of obtaining
the estimates X; ; of the original signal X; ;. The main idea is
to transform the data into a different basis, where the “large”
coefficients correspond to the signal, while the “small” ones rep-
resent mostly the noise in the data. If Y, X, and € denote
the observed data, the noiseless data, and the error matrices
in Equation (1), respectively, then the three main steps of the
wavelet denoising process are as follows:
Step 1. Calculate the wavelet coefficient matrix w by applying
a wavelet transform W to the data:

w=WY=W X+ We, (2)

Step 2. Threshold the detail coefficients of w to obtain the
estimate W of the wavelet coefficients of X:

w— W, (3)
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Fig. 1. Wavelet decomposition subbands using a decimated transform
with two multiresolution levels.

Step 3. Inverse transform the thresholded coefficients to ob-
tain the denoised estimate:

X=W1w. (4)

Under our assumptions, the orthogonal transform W in
Equation (2) preserves the normality of the errors We in the
new wavelet basis. Thus, the wavelet coefficients w;; of the
observed data can be written as noisy realizations of the true
wavelet coefficients {WX};,; = pi,; of the unknown signal:

wi,jNN(/,ti,j,O'Z), 1=1,---I, j3=1,---,J. (5)

The number N of the wavelet coefficients w in Equation (2)
can vary depending on the type of transform used. For ex-
ample, in the case of decimated transforms [18], [1], there are
as many coefficients as the number of points in the dataset.
That is, N = IJ, regardless of the number of multiresolution
levels K used in the decomposition. On the other hand, non-
decimated transforms [16], [23], [1], also referred to as station-
ary or translation-invariant methods, provide an overcomplete
representation, resulting in N = KIJ coeflicients, with I.J coef-
ficients on each of the K levels. Denoising using the coefficients
of the non-decimated transforms generally leads to fewer visual
artifacts than denoising based on the corresponding decimated
transform [11], [19]. In this paper, we focus on the decimated
transforms as they involve fewer coefficients and therefore have
lower memory requirements. However, the methods we describe
carry over easily to the non-decimated case.

Fig. 1 displays the subbands of a two-level (K = 2) deci-
mated decomposition. The N wavelet coefficients are grouped
into subbands according to the number of multiresolution levels
and three spatial directions (plus the smooth part on the second
level). The directions reflect the order in which the high-pass
(H) and the low-pass (L) filters corresponding to the wavelet
transform are applied along the two dimensions of the original
image. First, the original image is decomposed into the level
one coefficients, which are represented by the subbands LH;
(vertical detail, first level), HL1, (horizontal detail, first level),
H H, (diagonal detail, first level), and LL; (smooth, first level).
The smooth part is then similarly decomposed into the four sub-
bands corresponding to the second multiresolution level. The
process can be further iterated for additional multiresolution
levels. Under this scenario, the number of wavelet coefficients

on a given subband at level k is 2% 2%, the number of detail co-

efficients on level k is 3 2% 2ik, the number of smooth coefficients

on level k is zik 2ik, and the total number of coefficients on level

k is 42% 2i,c

We next provide the details of the three denoising steps in
Equations (2)-(4) and the parameters required in each step.

First, we need to select a wavelet for the forward and inverse
transformations W and W~ in Equation (2) and Equation (4),
respectively. We have a choice of either orthogonal or biorthog-
onal transforms. Well-known orthogonal wavelets include the
Haar, the Daubechies family (daublets), the least asymmetric
wavelet family (symmlets), and the coiflets [12]. The simplest
of the orthogonal wavelets, the Haar wavelet, is symmetric but
discontinuous. Its analysis and synthesis filters have a compact
support, with two coefficients each. The latter three families
of wavelets come in a variety of widths, each associated with
a different number of filter coefficients, and possessing different
smoothness properties. The daublets are continuous, but asym-
metric, with compact support. The symmlets are also continu-
ous with compact support, and are the least asymmetric. In ad-
dition to having vanishing moments for the mother wavelets, as
the daublets and the symmlets do, the coiflets also have vanish-
ing moments for the father wavelets. The biorthogonal B-spline
and V-spline wavelet families are symmetric and, with proper
boundary treatments provide perfect reconstruction [12]. It has
been argued that the biorthogonal wavelets are preferable over
the orthogonal ones as symmetry leads to visually more pleasing
results in images [6].

In addition to the choice of a wavelet, we also need to se-
lect the number of multiresolution levels in the decomposition,
along with the option for handling values near the boundary. We
have implemented several boundary treatment rules [29], includ-
ing periodic, symmetric, reflective, constant, and zero-padding.
The periodic extension preserves orthogonality, has perfect re-
construction properties, and can be used for both orthogonal
and biorthogonal wavelets. It is therefore the default in most
statistical software [2]. For biorthogonal wavelets, the reflection
rule preserves biorthogonality, leads to perfect reconstruction,
and, in addition, might minimize artifacts at the boundary [2].

Note that for two-dimensional data, it is possible to use a
different wavelet in each direction as well as at each level of
the multiresolution analysis [27]. We could also use different
boundary treatments for each direction at each level.

The last step in the denoising indicated in Equation (4) is
straightforward, once the coefficients have been thresholded.

In the remainder of this section, we describe the issues in-
volved in implementing the second step in denoising, namely,
the thresholding step in Equation (3). Let w denote a single
generic detail coefficient and @ its thresholded version. Let A
be the threshold, d() denote the thresholding (or shrinkage)
function, and & be an estimate of the standard deviation o of
the noise in Equation (1). Then, the thresholded coefficient, 0,
is obtained through either

W =6 ox(w/d), (6)

or

W = dx(w), (7

depending on whether the threshold A was determined assuming
a unit noise scale o = 1, in which case Equation (6) applies, or
an estimation of the actual noise was built-in into the method, in
which Equation (7) would be the appropriate choice. Note that,
in the notation above, we suppressed the possible dependence of
the noise estimate, the threshold, and the thresholding function
on either the multiresolution level or the subband.
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Fig. 2. Thresholding functions.

The various denoising methods we consider differ in the
choices for §(), A and &, in Equations (6) and (7). That is,
we can obtain different denoisers by considering different

« thresholding or shrinkage functions (Section II-A)
« noise estimates (Section II-B), and
« shrinkage rules to determine the threshold A (Section II-C).
For one-dimensional data, wavelet denoising methods calcu-
late thresholds either globally, with one threshold for all the co-
efficients, or on a level-dependent basis, with K different thresh-
olds for the K different dyadic levels. The extension to two di-
mensions has another possibility - we can calculate thresholds
in a subband-dependent manner, that is, 3K thresholds for the
3K detail coefficient subbands. We found that typical image
denoising publications considered either the level-dependent or
the subband-dependent alternative in addition to the global im-
plementation [6], [9], instead of including all three possibilities.
For the denoising methods considered in our software, we pro-
vide all the three different options, namely, global thresholds,
level-dependent thresholds, and subband-dependent thresholds.
Next, we describe the different ways in which we can select
the thresholding functions, estimate the noise, and select the
rules for denoising.

A. Thresholding or Shrinkage Functions

The thresholding or shrinkage function determines how the
threshold is to be applied to the data. In this sub-section, we
assume that the threshold has already been calculated using
one of the rules in Section II-C. Since some of the rules depend
on the thresholding function to be applied, the user must first
choose the thresholding function.

Fig. 2 displays the four most widely used thresholding func-
tions. The x axis represents the wavelet coefficients w in Equa-
tion (2), and the y axis shows the corresponding thresholding
function dx(w). We scaled the graphs to the [—1,1] interval,
but the data need not be in that range. The dotted verti-
cal lines indicate the values of the single threshold +\ for the
hard (6 (w)), soft (65 (w)) and garrote (5 (w)) functions. The
semisoft function Jfls A, (W) requires two thresholds, £A: and
=+, represented by the four dotted vertical lines in its graph.

The hard wavelet shrinkage function depends on a single
threshold parameter, and involves a keep or kill strategy. A
wavelet coefficient is kept unchanged if it is larger in absolute
value than the positive threshold A, and it is set to zero other-
wise:

N (w) = wlfjui>a; (8)

where I;,} denotes the {0, 1} indicator function, corresponding
to {a = False,a = True}.

The soft wavelet shrinkage function also depends on a single
threshold value, and is a shrink or kill procedure. A coefficient
is shrunk toward zero if its absolute value is larger than the
positive threshold, and is set to zero otherwise:

83 (w) = sgu(w)(1w] = MIgjwj>y- (9)

The garrote wavelet shrinkage function also depends on a sin-
gle threshold value, and is also a shrink or kill procedure. A
coefficient is shrunk toward zero if its absolute value is larger
than the positive threshold, and is set to zero otherwise:

2
85 (w) = (w - %)I{|w|>x}- (10)

The semisoft shrinkage function is more general than the
other shrinkage functions, and includes the hard and the soft
functions as special cases. The semisoft function depends on
two positive thresholds, A1 and A2, with A1 < A2. It has the
following form:

0, |U)| S )\1
Sxpag(w) = ¢ sgn(w)22LA) -y < w] < X, (11)
w, |w| > Ao.

B. Noise Estimation Methods

Certain thresholds, as described in Section II-C, are deter-
mined assuming a unit noise scale, i.e. o = 1. Therefore, in
practice, the data must be scaled by ¢ according to Equation (6)
when applying these thresholds. In some cases, there is prior
knowledge about the noise distribution. However, in many sit-
uations, & must be calculated from the observed data. The
options for estimating the noise scale include the choice of the
functional form of the estimator and the choice of the detail
coefficients to include in the estimation.

We implemented different estimation functions, including the
sample standard deviation (sd) and the more robust median ab-
solute deviation (M AD) suggested in [15]. Our software allows
the user to calculate noise estimates based on different detail
coefficients. For example, global estimates (one estimate for all
the coefficients) can be based on either the detail coefficients
from a specified level or subband, or all the detail coefficients
combined. Level- and subband-dependent estimates (one esti-
mate per level and one estimate per subband, respectively) are
calculated using only the coefficients from the corresponding
level or subband.

C. Thresholding or Shrinkage Rules

This section describes the options for selecting the thresholds
using various thresholding or shrinkage rules. Let A denote a
threshold. For the sake of convenience, the possible dependence
of A on the multiresolution level, {k,1 < k < K}, or on the
subband, {s,1 < s < 3K}, is suppressed in the notation.

Certain rules (e.g. universal, Section II-C.1) calculate thresh-
olds independently of the shrinkage function, that is, the same
threshold is obtained for the soft, hard, and garrote func-
tions. However, other rules (e.g. SURE, Section 1I-C.4) provide



thresholds that depend on the shrinkage function, resulting in
different thresholds for the different shrinkage functions. In ad-
dition, certain rules assume a unit noise scale for the wavelet
coefficients, o = 1, others do not. We indicate the assumptions
of each method as we describe them in more detail.

C.1 Universal

The universal threshold for a signal of size N from a standard
normal distribution N'(0,1) is simply A = v/2log N [14]. Thus,
applying this threshold to the data at hand requires using an
estimate ¢ in Equation (6). The threshold is determined inde-
pendently of the shrinkage function. This method was originally
proposed as a global thresholding scheme for one-dimensional
signals.

C.2 Minimizing the false discovery rate

Thresholds based on minimizing the false discovery rate,
minFDR, are determined with the aim of minimizing the frac-
tion of coefficients erroneously included in the reconstruction
[30]. This method calculates the same threshold for all the
shrinkage functions. It was proposed originally as a global
thresholding scheme for one-dimensional data. Let @ be the
number of coefficients incorrectly kept, and R be the total num-
ber of coefficients kept in the reconstruction. Given a pre-
determined fraction g, the goal is to keep the expected value
of Q/R below g. Note that ¢ is similar to the Type I error,
usually denoted by «, in testing problems. The calculations
proceed as follows. For each of the N wavelet coefficients w;;,
first compute the p-values

piyj = 2[1 = ®(|lwi;]/6)], (12)
where ®() is the cumulative distribution function of the stan-
dard normal distribution A(0,1), and & is an estimate of the
noise standard deviation. Then, order the p;,; values above as

Py Spe) < <SPy (13)

Next, starting with n = 1, let m be the largest index n such
that

n
< —q. 14
OB X (14)

The threshold is then selected as
A=60"" (1 - @) (15)

As the estimate of the noise & is already factored into the
formula, this threshold is applied according to Equation (7).

C.3 Top

The most flexible of all the shrinkage rules, the top method
requires as input the percentage p of the wavelet coefficients to
keep [1]. It does not need to estimate o as it determines the
thresholds directly from the data. Therefore, it is applied to the
coefficients using Equation (7). Given p, which is the fraction of
the largest coefficients to keep, the threshold A is simply set to
be the (1 —p)th quantile of the empirical distribution of the ab-
solute values of the wavelet coefficients of interest. The selected
threshold does not have any theoretical optimality properties,
but it allows the user to experiment with any given dataset
by selecting different percentages of the wavelet coefficients to
represent the signal. For the semisoft shrinkage function, this
method can be called twice, with different parameters, to obtain
the lower and the upper thresholds. The threshold is determined
independently from the shrinkage function, and was originally
proposed as a global method for one-dimensional signals.

C.4 SURE

For one-dimensional data, thresholds derived by minimizing
Stein’s Unbiased Risk Estimate (SURE) depend on the shrink-
age function and on the multiresolution level [15]. As mentioned
earlier, the generalization to images can be achieved in either
level- or subband-dependent manner. In the latter case, the
threshold on subband s is

As = arg min, 5 ,SURE(), w,), (16)

where w denotes the detail coefficients from subband s, and
SURE(A, ws) denotes the corresponding Stein’s unbiased esti-
mate of the risk corresponding to a specific shrinkage function,
as explained in the next paragraphs. The procedure is com-
pletely analogous for the level-dependent implementation, ex-
cept that one changes the subscripts s to I, and substitutes
coefficients on a given level w; for the coefficients on a given
subband w, in Equation (16).

Concentrating on the subband-dependent case, for ease of
notation, let us rearrange the N, wavelet coefficients from sub-
band s, ws = {w; ; : 1, € indices corresponding to subband s},
into the one-dimensional vector wy, = {w, : n = 1,---, Ns}.
According to Equation (5), the individual wavelet coefficients
w;,; are distributed as N (psj,02) under our assumptions.
Let us next combine the N, unknown means {u;; : %,j €
indices corresponding to subband s} corresponding to the co-
efficients w, from subband s into the corresponding one-
dimensional vector ps = {pn : n = 1,---, Ny}. In vector nota-
tion, we have ws ~ N (ys,07).

Stein showed that, for almost any fixed estimator jis based
on the data w, the expected loss (i.e. risk)

E{|lAs — psll3}

can be estimated unbiasedly. In the general case, assuming
o = 1, and writing fis = ws + g(ws), with the RYs — RN
function g = {g,}*,, we have from [26] that

(17)

E{llas — psllz} = No + E{llg(wo)ll; +2V - g(w.)},  (18)
where V-g=3" ggﬁ.

Depending on the estimator fi;, one obtains different formulas
for the quantities in Equation (18). For example, in the case
of the soft shrinkage function with a fixed threshold A, we have
from Equation (9) that for the nth wavelet coefficient wn,

fin = 03 (wn) = sgn(wn) (|wn| = NI {ju,|>}- (19)
Correspondingly,
=, Wn > A
gn(wn) =fin —wn ={ —wn, —A<w, <A B, (20)
A, wy, < —A,
with
) 0, Wy > A
ag" ={ 1, A<w. <\ Y, (21)
Wn 0, wn <=M\
Ogn
Veoglw) =Y 29 = —{(#of wn) i lwal <AL, (22)
and
A2 wn > A
lgn(wn)ll3 =4 wa, —A<wn <X . (23)
)\2, wy, < —A.



Equation (23) is equivalent to
llgn (wa)ll3 = [min(jwa |, 1)}, (24)

so that
w2 =3 llga(wa)ll} = 3 min(wal, NP (25)

Substituting all the intermediate results for the data on subband
s and the soft shrinkage function into Equation (18), we obtain

Ni+E {Z[minuwu,»]?} +

n=1

. 2
E{”NSS - NS||2} =

E{=2[(#of wn) : lwn| < AJ}.  (26)
The quantity
SURE®(A\,ws) = N+ Zs[min(|wn|, N2
~o(of wa) s lwal <X (20)

therefore, is an unbiased estimate of the risk associated with
the soft shrinkage estimator on subband s:
. 2
B{li - pally} = E{SURE® (\, w.)}. (28)
The threshold on subband s to be used with the soft shrink-
age function, A5, is then chosen as the value that minimizes
SURE?® (), w,) in Equation (27). Accordingly,
A = arg min,,,SURE®(\, w,). (29)
The thresholds above were derived assuming o = 1. For data
with non-unit variance, the coefficients are standardized by an
appropriate & estimate before calculating the threshold with
Equation (29).
It has been shown that if the wavelet coefficient decomposi-

tion is sparse, thresholds based on the SURE method perform
poorly. As a solution to the problem, one first tests for “sparse-

ness”. If
Ns 3/2
IS ((Emy? o) < Qo N (30)
N — o /N

then one uses the wuniversal threshold, otherwise the SURE
threshold is used for the wavelet coefficients on subband s. This
hybrid method, when combined with the soft shrinkage function
is referred to as SureShrink in the literature.

The level-dependent thresholds corresponding to the soft
shrinkage function, A7, are derived using a formula identical
to Equation (29), except that the wavelet coefficients from sub-
band s are replaced by the coefficients from level I:

A = arg min, , ,SURE® (\, w;). (31)

Thresholds for the other shrinkage functions can be derived
following the steps in Equations (19) through (27), starting with
the corresponding formula in Equation (19). We worked out the
details for hard thresholding, but in reporting the results, we
simply call the resulting method SURE thresholding with hard
function, instead of WaveChop, as suggested in [15].

C.5 Hypothesis Testing

The hypothesis testing approach, hypTest, for one-
dimensional signals calculates level-dependent thresholds based
on testing the hypothesis that some of the wavelet coefficients
at a given level are zero [20]. In a manner similar to the SURE
case described in Section II-C.4, thresholds based on hypothe-
sis testing for two-dimensional data can be obtained on either
the separate levels or on the separate subbands. However, un-
like their SURE counterparts, these thresholds are independent
of the thresholding function. Using the notation of Section II-
C.4 for the subband-dependent version, and assuming that the
N, wavelet coefficients on subband s are normally distributed,
ie. W, ~ N(us,0?), one can separate the “large” coefficients
from the “small” ones by testing the hypothesis that the mean
of some of the wavelet coefficients equals zero. The sequential
approach we implemented first finds the largest of the squared
wavelet coefficients on the subband, denoted by w%Ns), then
compares it to the critical value

5. -]

where « is the pre-determined Type I error probability in the
testing and @®() is the cumulative distribution function of the
standard normal density. If

2
’

(32)

2
W(N,)
6-2

> N, s (33)
where & is an estimate of the standard deviation of the noise,
the null hypothesis of zero mean associated with the largest (in
absolute value) coefficient is rejected, and so w(y,) is retained
as signal. The next step in selecting the threshold is to continue
the above procedure with the square of the second largest (in
absolute value) wavelet coeflicient w?Ns,l). If w?Ns,l) /5% >
c%,—1, the procedure continues until at some point the mth
largest (in absolute value) coefficient satisfies

“’?m)
6-2

< Cm, (34)
that is, until there is no more significant signal left in the rest
of the coefficients. The threshold at subband s is then set as

As = |[wiml, (35)

and is applied according to Equation (7).

C.6 BayesShrink

The BayesShrink method uses a Bayesian mathematical
framework to derive subband-dependent thresholds that are
nearly optimal for soft thresholding [9]. The formula for the
threshold on a given subband s is:

~2
g
As = ,

X

(36)

Q>

where &2 is the estimated noise variance, and 6% is the esti-

mated signal variance on the subband considered. Unless the
noise variance is available a-priori, in which case the estimator
&% in Equation (36) is replaced by its known value o2, it is es-
timated as the median absolute deviation of the diagonal detail
coefficients on level 1 (i.e. subband HH;). The estimate of the
signal standard deviation is

6x = y/max(6% —62,0),

(37)



where

(38)

is an estimate of the variance of the observations, with N, being
the number of the wavelet coefficients w, on the subband under
consideration. In case §2 > 6%, the threshold is set to As =
max(|wn|), and all coefficients from the subband are set to zero.
Since the standard deviation of the noise is already factored in,
the thresholds are applied according to Equation (7).

This method has been proposed to be used with soft thresh-
olding. We use the thresholds calculated via this procedure
with other thresholding functions as well, but, in compliance
with [9], we reserve the term BayesShrink for denoising using
the soft shrinkage function.

III. RESULTS

This section reports our results on three test images widely
used in the image processing community: Lena, Einstein, and
Goldhill. For each image, we first obtained a 512 x 512 noiseless
grayscale original. Then, we added Gaussian noise to the images
according to Equation (1), using o = 10,20, and 30. Fig. 3
shows the original images, and the noisy version of the Lena
image, with ¢ = 30. Next, we applied the wavelet denoising
methods described in Section II. We evaluated the performances
of the methods using the mean square error (M SE) and the
signal-to-noise-ratio (SN R) defined below. For a given denoised
estimate X (4, j) of X (i, j), the MSE is

I J
MSE = 3" SV (X6, ) - X6 )Y,

(39)
=1 j=1
the corresponding normalized M SE is
I J .. e 2
. L (X(2,7) — X(4,
MSE, Dict ijzl( J( 7) - (i, ) | (40)
Ei=1 Z]’:l X(,7)?
and the SNR on dB scale [25] is
1

There are other possible choices for evaluating the quality of
the results, as there are indications that the M SE does not nec-
essarily correspond to “best” visual quality [6]. Before reporting
our main results in Section ITI-B; we first explain in Section I1I-
A the various choices we made in selecting the parameters for
the different denoising methods.

A. Selecting the Parameters for the Methods

This section describes the techniques we employed in selecting
the “optimal” parameters used in the various denoising meth-
ods. The experiments described in the following paragraphs are
all based on the Lena image, with ¢ = 10, using the symmlet8
wavelet with four multiresolution levels (K = 4) and periodic
boundary treatment. Our choice of the wavelet was prompted
by the need for a relatively symmetric wavelet with a reason-
ably compact support. In each of the following tables, the best
parameter set is presented in bold.

For all the methods that required an estimate of o, we em-
ployed the M AD estimator based on the detail coefficients on
the H H; subband. We experimented with other options as well,
but this method, which was suggested in [15], appeared to be
indeed the most robust. For example, this method obtains a

TABLE I
DETERMINING THE ¢ PARAMETER FOR THE MINFDR METHOD.

Global Subband-dep. Level-dep.

q MSE | SNR | MSE | SNR | MSE | SNR
0.01 | 56.63 16.07 | 57.98 | 15.97 | 57.72 | 15.99
0.05 | 4471 17.09 | 46.75 | 16.90 | 45.08 | 17.06
0.1 39.84 17.60 | 41.15 | 17.46 | 40.35 | 17.54
0.2 | 36.56 | 17.97 | 38.64 | 17.73 | 37.32 | 17.88
0.3 | 36.96 | 17.92 | 38.15 | 17.78 | 37.11 | 17.90
0.4 40.54 17.52 | 40.48 | 17.53 | 40.55 | 17.52
0.5 45.61 17.01 | 45.55 | 17.01 | 46.03 | 16.97

TABLE I1

DETERMINING THE p PARAMETER FOR THE TOP METHOD: GLOBAL AND
SUBBAND-DEPENDENT THRESHOLDS, USING THE SAME p ON ALL THE SUBBANDS.

Global Subband-dep.

p [ MSE | SNR | MSE | SNR
0.05 | 58.65 15.92 | 277.02 | 9.17
0.1 45.67 | 17.00 | 204.76 | 10.49
0.2 37.87 17.82 | 129.41 | 12.48
0.3 | 36.50 | 17.98 | 89.10 14.10
0.4 38.49 17.75 70.24 15.13
0.5 43.07 | 17.26 59.20 | 15.87
0.8 71.55 15.05 72.73 | 14.98

typical estimate of & = 10.52 for the image with known value
of o = 10.

For the minFDR method, based on the results of a smaller
experiment reported in Table I, we determined the parameter
to be ¢ = 0.2. As it can be seen in the corresponding columns
in Table I, the global implementation outperformed both the
level-dependent and the subband-dependent implementations.
This agrees with the literature, as this method was proposed
for global thresholding. The second best results were obtained
with the level-dependent method, while the subband-dependent
version lead to the poorest results. In contrast with ¢ = 0.2 for
the best global implementation, the parameter corresponding to
the optimal level- and subband-dependent versions was ¢ = 0.3.

Table II presents the first set of findings for the top proce-
dure. It compares the global thresholding results with subband-
dependent results, using the same fraction p on all the subbands.
The difference thus is in the detail coefficients used when calcu-
lating the threshold(s): all of them were combined in the former,
while only the ones from the given subband were used in the lat-
ter. As the rows indicate, the global procedures outperformed
the corresponding subband-dependent implementations. This
makes sense from a theoretical perspective, as one wishes to
keep the largest coefficients overall, not the largest ones from
each subband.

Table III presents the results of our next experiment with
the top method. Because we expected more significant coeffi-
cients on the higher multiresolution levels, we varied the param-
eter p across the different levels, and calculated subband- and
level-dependent thresholds. In line with our expectation, we ap-
plied more aggressive thresholding on the first level than on the
higher multiresolution levels. For the subband-dependent case,
we used only the detail coefficients from the given subband in
the calculation, while in the level-dependent case we combined
all the detail coefficients from a given level. As the bold-face row
indicates, the level-dependent implementation with p; = .15,
p2 = .4, ps = .8, and ps = .95 outperformed all the subband-



TABLE III
DETERMINING THE p PARAMETER FOR THE TOP METHOD: SUBBAND- AND
LEVEL-DEPENDENT THRESHOLDS, USING DIFFERENT p VALUES ON THE LEVELS.

p Subband-dep.
levell | level2 | level3 | leveld | MSE SNR
.1 2 .8 1 38.08 17.79
2 .8 .8 .8 38.40 17.76
.15 4 .8 9 33.86 18.30
.15 4 .8 .95 33.86 18.30
.15 4 7 .95 34.01 18.28
.15 3 .9 .95 35.39 18.11
Level-dependent
15 | 4 | .8 [ .95 |33.14] 18.40
TABLE IV

DETERMINING THE o« PARAMETER FOR THE HYPTEST METHOD.

Global Subband-dep. Level-dep.

«a MSE | SNR | MSE SNR | MSE | SNR
0.001 | 93.03 | 13.91 | 68.24 15.26 | 86.79 | 14.21
0.01 | 37.23 | 17.89 | 37.11 1790 | 38.11 | 17.79
0.05 | 39.05 | 17.68 | 36.07 | 18.03 | 36.86 | 17.93
0.1 38.567 | 17.74 | 35.67 18.08 | 36.37 | 18.00
0.2 38.05 | 17.80 | 35.29 18.12 | 3591 | 18.05
0.3 37.78 | 17.83 | 35.08 18.14 | 35.64 | 18.08
0.4 37.55 | 17.85 | 34.95 18.16 | 35.46 | 18.10
0.5 37.39 | 17.87 | 34.86 18.17 | 35.32 | 18.12
0.9 36.84 | 17.94 | 34.70 | 18.20 | 34.88 | 18.17
095 | 37.75 | 17.95 | 34.71 18.19 | 34.83 | 18.18
0.99 | 36.62 | 17.96 | 34.79 18.18 | 34.76 | 18.19

dependent methods, and it even resulted in a superior image
than the best image obtained through global thresholding with
p = 0.3 in Table II. If the noise levels in the three different direc-
tions (vertical, horizontal, diagonal) are different across levels,
we could also introduce different values for p on the different
levels and subbands.

Based on the results summarized in Tables II and III, we
set the percentage-to-keep parameter to p = 0.3 for the global
threshold implementation, and to p1 = .15, p2 = .4, p3 = .8, and
pa = .95 on multiresolution levels one through four, respectively,
for the level-dependent pyramidal implementation.

We estimated the best parameter for the hypTest approach
to be @ = 0.9 — an unusually high value for a testing prob-
lem. However, similarly high values for one-dimensional sig-
nals are reported in [3]. Our results are displayed in Table IV.
For a fixed value of «, the subband-dependent implementation
achieved the lowest, the level-dependent resulted in the second
lowest, and the global version lead to the highest M SE value.

For the semisoft thresholding function, we determined two
thresholds by using the top rule with two different p parameter
values. As reported in Table V, the optimal combination for the
global implementation was found to be {p1 = 0.1, p» = 0.01}.
The results for the subband-dependent method are shown in
Table VI. The best subband-dependent result (M SE = 61.12)
was much worse than the best result obtained with the global
implementation (M SE = 37.47 in Table V). The correspond-
ing level-dependent implementations lead to similar values. Per-
haps a more sophisticated threshold calculation method, instead
of this ad-hoc procedure, would result in improvements.

TABLE V
DETERMINING THE p PARAMETERS FOR THE GLOBAL SEMISOFT TOP
COMBINATION.

p1 P2 MSE SNR
0.9 0.8 105.41 13.37
0.9 0.1 98.04 13.68
0.5 0.3 90.04 14.05
0.7 0.3 95.74 13.79
0.3 0.1 62.71 15.63
0.7 0.5 101.23 13.55
0.3 0.2 75.90 14.80
0.4 0.2 79.58 14.59
0.15 0.1 56.12 16.11
0.1 0.05 43.64 17.20
0.1 0.01 | 37.47 | 17.86
0.05 | 0.01 44.10 17.15
TABLE VI

DETERMINING THE p PARAMETERS FOR THE SUBBAND-DEPENDENT SEMISOFT
TOP COMBINATION.

level4 | level3 | level2 | levell MSE SNR
9 .9 9 9
.8 .8 .8 .8 105.41 13.37
9 .9 9 .9
.1 1 1 1 98.08 13.68
.5 .5 b .5
3 3 3 3 92.75 13.92
7 7 .7 .7
3 3 3 3 96.16 13.77
.95 .8 4 2
9 7 3 1 68.63 15.23
.95 .8 4 .15
9 7 3 .1 66.66 15.36
.95 .8 4 .15
7 .5 2 1 64.84 15.48
.8 7 3 .15
7 .5 2 1 64.36 15.51
7 .6 .3 .15
.3 .2 1 .1 61.12 15.74
3 3 3 3
1 1 1 1 81.23 14.50
7 .6 3 .15
1 1 1 1 61.21 15.73

B. Comparison of the Wavelet-based Denoising Methods

Table IX displays the results of all the denoising combinations
explained, using the parameters described in Section III-A, for
the Lena image. Fig. 4 and Fig. 5 display a few examples for
o = 10 and for o = 20, respectively. The three main columns
of Table IX report the M SE and SNR values corresponding to
the three different noise levels, ¢ = 10,20, and 30. The first
row indicates the M SE and SNR values for the noisy images,
as a comparison for judging the denoised results. The remaining
rows indicate the type of thresholding function and the thresh-
olding rule that is used. The thresholding rules are prefixed
with either S_or P_, depending on whether the thresholds were
calculated globally (i.e. a Single threshold), or dependent on
the level or subband (i.e. a Pyramid of thresholds). We im-
plemented all the methods included in this study both level- or
subband-dependently. However, because of the large number of
the possible combinations, we only report the best of the two



approaches for each method. The boldfaced entry reflects the
winning method with the smallest M SE and largest SIVNR, in
this case the subband-dependent SURE thresholding with the
soft function, P_SURE, regardless of the noise level. We refer to
this method as SureShrink. Similarly, the term BayesShrink
denotes the subband-dependent P_Bayes implementation with
the soft shrinkage function.

The corresponding results for the Goldhill and Einstein im-
ages are displayed in Table X and Table XI, respectively. Ex-
cept for the different quantities involved, the main conclusions
reached for the Lena image are valid for these two images
as well. A minor difference appears in the case of Goldhill
with ¢ = 10, where the BayesShrink method was the best,
with MSE = 42.44. However, the second best method was
SureShrink, with the very comparable M SE = 42.57. In all the
other cases, just as for Lena, the winner was SureShrink, the
runner-up was BayesShrink, and the other techniques lagged
far behind in terms of M SFE performance.

Next, we summarize the findings for the three test images,
illustrating our observations with the results obtained for Lena.

o Influence of Shrinkage Function. As the values in Ta-
ble IX indicate, in most cases, soft thresholding lead to estimates
that were superior to the corresponding estimates obtained with
the garrote shrinkage function, which, in turn, were superior to
corresponding estimates obtained with the hard shrinkage func-
tion. For example, for the global hypTest method with o = 10,
the M SE values for the soft, garrote, and hard functions were
33.50, 36.12, and 72.39, respectively. This is expected as each
pixel of the original image is contaminated by noise and a shrink
or kill procedure would perform better than a keep or kill ap-
proach. An important exception occurred with the universal
rule, when both hard and garrote thresholding resulted in bet-
ter estimates than the corresponding ones using soft thresh-
olding, regardless of the noise level. The optimal SureShrink
method, however, led to much better denoising than did the best
universal rule with hard thresholding (compare MSE = 29.23
to MSE = 49.55, for o = 10). Subband-dependent semisoft
thresholding results with the top rule were always inferior to
the corresponding soft thresholding results. The global semisoft
implementation, however, led to values comparable to the cor-
responding values obtained with soft thresholding in the o = 10
and o = 20 cases. Again, in our experiments, the optimal
SureShrink method led to lower MSE values than the best
method using the semisoft thresholding function.

We conclude that the choice of the shrinkage function strongly
influences the results, and that soft thresholding is preferred to
either garrote, hard or semisoft thresholding.
¢ Influence of Shrinkage Rule. Since soft thresholding re-
sulted in the best estimates overall, we analyze the different
rules by concentrating on the soft thresholding function. The
conclusions are similar for the other thresholding functions.

The pyramidal implementations of the rules resulted in better
estimates than their global counterparts regardless of the noise
level, except for the case of the minFDR and the hypTest rules.
For the minFDR method, the two implementations (pyramidal
and global) lead to very similar results. For the hyp Test method,
the results depended on the amount of noise in the data: the
pyramidal hypTest rule outperformed its global form when o =
10, but underperformed when o = 20 and o = 30.

Despite the global implementation proposed in the litera-
ture [14], we found that subband-dependent universal threshold-
ing outperformed its global version, regardless of the shrinkage
function and the amount of noise in the image. For example,
in the ¢ = 10 hard thresholding case, the global method re-

sulted in MSE = 55.98, while the subband-dependent one in
MSE = 49.55.

The difference between the best two MSEs and the rest
of the MSE values increased as o increased. For exam-
ple, at ¢ = 10, there were quite a few rules that resulted
in comparable MSE values (P.SURE=29.23, P_Top=29.92,
P_Bayes=30.26, P_HypTest=31.83), but at ¢ = 30 there was a
larger gap (P.SURE=91.34, P_Bayes=92.74, S_.SURE=113.01,
S Bayes=115.18). In the o = 10 case, the second best method,
after SureShrink, was the pyramidal top. The third was
BayesShrink, with MSE close to the first two M SE values.
At higher noise levels, the results of BayesShrink were close to
the results of the still best SureShrink, but results with the top
rule lagged behind. Since we want our results to be general, we
exclude the top rule from the list of best denoisers.

Judging from the range of values in Table IX, the choice of
the shrinkage rule strongly affects the outcome of the denoising
operation. We found that the SURE and the Bayes rules were
the best for our tests.
¢ Influence of Noise. Regardless of the noise level, the
SureShrink method outperformed the other denoising methods
that we considered. For o = 10, the corresponding optimal
MSE value was M SE = 29.23. Level-dependent top threshold-
ing with soft shrinkage achieved an MSE = 29.92, very close
to the optimal value, and BayesShrink came in third, with a
still close MSE = 30.26. For ¢ = 20 and o = 30, we have
MSE = 61.59 and M SE = 91.34, respectively, for SureShrink.
In both cases, BayesShrink was the second best denoiser, with
the comparable values of MSE = 63.33 and MSE = 92.74,
respectively.

Our main conclusion, stating that SureShrink and
BayesShrink were the best denoisers overall, is not sensitive to
the amount of noise in the images. The near-optimality of the
level-dependent top rule with soft thresholding in the o = 10
case was not consistent across the other noise levels and images,
so we exclude it from the list of “good” denoisers. We think that
choosing the optimal parameter for the top method needs more
data-adaptive tuning than we proposed in Section ITI-A.

We stress that it is important to use a robust estimator of the
noise. As explained in the second paragraph of Section ITI-A,
our results were obtained using the global estimate & based on
the M AD of the coefficients from the H H; subband.
¢ Influence of Wavelets. Our findings are also robust across
the wavelet used. The results in Table IX were obtained us-
ing the symmlet12 wavelet with 12 coefficients [1] with K = 3
multiresolution levels and periodic boundary treatment. We
performed the same analyses using different wavelets, different
numbers of levels, and different boundary extensions. In agree-
ment with [9], we found that the choice of wavelet, the number
of levels, and the boundary treatment rule had little effect on
the results. The ordering of the methods, as measured by their
MSE values, remained the same for the alternatives we tried.
As an example, Table VII displays the M SE and SNR val-
ues of the winning SureShrink method for several wavelets and
multiresolution levels. The values correspond to the o = 10
case, and periodic boundary treatment. Tables XV through
XX present some additional results, illustrating the effects of
using different wavelets and different multiresoluion levels on
different images.

In our study, the biorthogonal wavelets fared worse, as mea-
sured by the M SE, than the orthogonal symmlets. Because
their symmetry leads to fewer visual artifacts in the recon-
structed images, the biorthogonal wavelets are sometimes pre-
ferred over the orthogonal wavelets [6]. However, in our experi-



TABLE VII
ExAMPLES OF M SE AND SN R VALUES FOR DIFFERENT WAVELETS AND
NUMBER OF MULTIRESOLUTION LEVELS.

Wavelet K | MSE | SNR
Symmlet8 4 | 32.42 | 18.49
Symmlet8 3 | 31.14 | 18.67
Symmlet12 | 3 | 29.23 | 18.94
B-splinel.3 | 3 | 33.16 | 18.39
B-spline3.7 | 3 | 38.24 | 17.77

ments, the denoised images obtained with the nearly-symmetric
orthogonal symmlets are visually comparable to the correspond-
ing denoised images obtained with the biorthogonal wavelets.

e VisuShrink Compared to SureShrink. The authors in
[14] define the term VisuShrink to refer to global soft thresh-
olding with the universal threshold for one-dimensional signals,
because it leads to visually pleasing results. However, for two-
dimensional images, just as the authors in [6], we found that
SureShrink yielded much better results, both in terms of M SE
and visual quality, than the corresponding VisuShrink proce-
dure. In fact, we found that even the global hard thresholding
with the wniversal threshold (MSE = 103.95) outperformed
VisuShrink (MSE = 136.52). To illustrate some of the typical
artifacts resulting from non-optimal thresholding, Fig. 5 dis-
plays the original Lena image, its noisy ¢ = 20 counterpart,
the best denoiser SureShrink (M SE = 61.59), and the result of
applying the global universal threshold with the hard shrinkage
function (M SE = 103.95). Notice the ringing around the edges
and the blurring in the hair in the latter image. The same effect
is also visible, although less pronounced, in Fig. 4 (d).

« Final remarks. Clearly, there is a wide range of variation in
the quality of the denoised images. For example, for the o = 20
image, although all methods decrease the M SE = 399.50 of the
noisy image, the denoised M SE values range from the worst of
339.18 to the best of 61.59. Choosing the right method therefore
has a large effect on the results.

In conclusion, we found that in our experiments SureShrink
and BayesShrink were the best denoisers among the ones we
studied. They yielded similar results and consistently outper-
formed the other methods in all but one case. SureShrink had
slightly smaller M SE values than BayesShrink in most of the
cases, but the differences were small enough to be just random
fluctuations, and are in agreement with [9]. The denoised im-
ages using these two methods were generally indistinguishable
to the human eye. Consequently, we do not recommend one
method over the other, and rate them both number one, with
a tie. However, because of the simplicity of the BayesShrink
formula, some users might prefer it over SureShrink. One wel-
come property of these two winners is that they do not depend
on any user-defined parameters, but are completely adaptive to
the dataset at hand. We note that in the case of the Lena image
with o = 10, the level-dependent top method with soft shrinkage
resulted in a slightly smaller M SE than BayesShrink. However,
this one case seemed to be an anomaly and the result did not
repeat consistently across the other noise levels and images. It
is certainly possible to experiment further with the user-defined
parameters of the various methods on a case-by-case basis and
slightly reduce the M SE values for those methods. But, in
general, SureShrink and BayesShrink achieved nearly optimal
performance without any tuning of parameters.

TABLE VIII
ESTIMATE OF THE VARIANCE OF THE NOISE IN THE TEST IMAGES.

=10 | o0=20 | 0 =30
Lena 120.01 | 386.47 | 828.44
Goldhill | 148.07 | 412.25 | 858.92
Einstein | 127.49 | 392.16 | 839.22

IV. COMPARISON WITH SPATIAL FILTERS

While wavelet-based denoising techniques are certainly a
powerful tool for image restoration, our study would be in-
complete without a comparison with the more traditional ap-
proaches based on the use of spatial filters [32], [28]. In this
section, we compare the effectiveness of denoising using several
linear and non-linear filters applied either by themselves or in
combination with other spatial filters. Our choice of filters is
listed below, where the filter size is indicated in parenthesis:

o Mean filters (3 x 3,5 x 5)
o Gaussian filters (3 x 3,5 x 5)
¢ Scaled unsharp masking filters (3 x 3,5 x 5). Given the real
number (3, these filters calculate

(1.0 + B)original image — (B)mean_filtered_image  (42)
In our experiments, 3 = —0.8 gave relatively good results.
o Alpha-trimmed mean filters (3 x 3,5 x 5) with a trim size of
either 1 or 2. The trim size is the number of smallest and largest
pixels that are excluded in the calculation of the mean.
o Median filters (3 x 3,5 x 5)
o Mid-point filters (3 x 3,5 x 5). The value calculated is the
average of the minimum and maximum within the filter mask.
e Minimum mean squared error filters (3 x 3,5 x 5)
o Scaled unsharp masking filter (3 x 3) followed by a mean filter
(3x3)
e Mean filter (3 x 3) applied twice
¢ Minimum mean squared error filter (5 x 5) followed by a mean
filter (3 x 3)
o Minimum mean squared error filter (5 x 5) followed by a Gaus-
sian filter (3 x 3)
o Scaled unsharp masking filter (3 x 3) followed by a Gaussian
filter (3 x 3)
o Gaussian filter (3 x 3) applied twice

The minimum mean squared error filter requires the noise
variance, which is usually unknown for many images. In order
to obtain an estimate of the noise variance of an image with
additive Gaussian noise, we use the following approach:

Step 1. Obtain a mean-filtered version of the image using a
(3 x 3) filter.

Step 2. Subtract the mean filtered image from the original.
This gives us a high pass version of the original image consisting
of the noise and the edges.

Step 3. Obtain the standard deviation o of the high pass image
and drop all pixel values that are above o or below —o, thus
removing the edge pixels.

Step 4. The standard deviation (or the M AD) of the remain-
ing pixels gives an estimate of the standard deviation of the
noise in the image.

For our test images, the values of the variance of the noise
obtained using this method are given in Table VIII. These
results indicate that the estimates obtained are reasonably close
to the known values of the variance.

The MSE and SNR values for the Lena, Goldhill, and Ein-
stein images as a result of denoising using spatial filters are
given in Tables XII, XIII, and XIV. All our experiments use



periodic boundary treatment to handle values near the edges of
the image. Examples of denoised versions of the Lena image
with ¢ = 20 are given in Fig. 6.

The authors in [9] show empirically that the results of the
best possible linear filtering, using the Wiener filter, are inferior
to the results obtained with SureShrink. Comparing the MSE
values in Tables XII, XIII, and XIV, to the corresponding values
in Tables IX, X, and XI, however, indicates that combinations
of spatial filters can be very competitive with wavelet-based
denoising techniques.

The best spatial filter denoiser for the Lena image was the
5 x 5 minimum M SEFE filter followed by a 3 x 3 mean filter. Its
MSE value was slightly higher than that of the best wavelet
denoiser (compare 31.78 to 29.23) when o = 10, but it achieved
superior results when ¢ = 20 (compare 56.80 to 61.59) and
when o = 30 (compare 88.52 to 91.34). As Tables XIII and XIV
indicate, there was no unique best denoiser for the Goldhill and
Einstein images. Depending on the image and on the noise level,
the optimal denoiser can be based either on a simple Gaussian
filter, on a combination of a minimum M SE filter followed by
a mean filter, or, on a combination of minimum MSE filter
followed by a Gaussian filter.

Spatial filters are very simple to implement and are computa-
tionally faster than wavelet-based methods as they require far
less computation in many cases. However, a comparison of the
images indicates that the images that result from the applica-
tion of spatial filters are often grainier than the ones obtained
from wavelet techniques. This can be noticed in areas of the
image that are relatively smooth, and around the edges which
are better preserved in the wavelet denoised images. On the
other hand, wavelet-based approaches sometime create notice-
able artifacts that can substantially degrade the image.

V. SUMMARY

In this paper, we evaluated several denoising methods on test
images with known noise characteristics. We considered an ex-
tensive set of techniques based on statistical thresholding of
wavelet coefficients as well as the more traditional approaches
using spatial filters.

Based on our experiments, we conclude that SureShrink and
BayesShrink are the best wavelet-based denoising methods for
the types of images we considered, among the methods we con-
sidered. Nomne of the other wavelet-based procedures that we
examined achieved lower error rates, in terms of MSE, than
these two techniques.

Comparing our results to relevant advances in denoising of
images using wavelets, we find some agreements and some dis-
agreements. For statistical reasons, such as near-optimality
properties over a range of Besov spaces and continuity of the
thresholding function, soft thresholding is the a-priori preferred
choice of the authors in [9]. They only consider soft thresh-
olding, and show that their newly proposed BayesShrink proce-
dure outperforms SureShrink in most situations that they con-
sidered. Owur analyses indicate empirically the superiority of
the soft thresholding function in the test cases we investigated.
In contrast, the authors in [24] use hard thresholding with
the global universal rule to represent wavelet thresholding ap-
proaches in their work on comparing the denoising performance
of wavelets and curvelets. Our study shows that SureShrink and
BayesShrink achieve significantly better denoising results than
the hard shrinkage using wuniversal thresholds (Tables IX, X,
and XI, and Fig. 5), suggesting that perhaps the former should
be used in any comparison studies with competing procedures.

For completeness, we also compared the wavelet-based de-
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noisers with various spatial filter-based methods. Our results
indicate that on an case-by-case basis, it is often possible to
find a denoiser based on combinations of spatial filters that is
superior to the best wavelet-based denoiser. In most, but not
all, of those cases, that optimal method is given by the 5 x 5
Min-M SE filter followed by the 3 x 3 Gaussian filter. However,
overall, there is no unique optimal denoiser of the former type
for all the images and noise levels that we considered.

In addition to the denoising methods we considered in this
study, there are several other alternatives. These include the
use of non-decimated transforms [16], [23], [1] in the multireso-
lution decomposition, as well as the use of other basis functions,
such as ridgelets and curvelets [4], [6]. The emerging research
on curvelets indicates that, in certain cases, they offer improve-
ments over the wavelets [24]. Different alternatives, such as par-
tial differential equations-based techniques using level set [17]
and total variation methods [8], and computational fluid dynam-
ics approaches using essentially non-oscillatory (ENO) schemes
[7] have also been proposed for image denoising. Hybrid denois-
ers, first selecting the best candidates of the different methods,
then combining their results, might offer additional improve-
ment in denoising performance.
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Fig. 3. Example test images. (a) Lena. (b) Lena corrupted with ¢ = 30 noise. (c) Goldhill. (d) Einstein.
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(c)

Fig. 4. Denoising results with the Lena image with ¢ = 10, symmletl2 wavelet, three multiresolution levels, periodic boundary treatment. (a)
SureShrink, MSE = 29.23. (b) Level-dependent top rule with soft thresholding, MSE = 29.92. (c) BayesShrink, MSE = 30.26. (d) Global
universal rule with hard thresholding, MSE = 55.98.
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(c)

Fig. 5. Wavelet-based results for the Lena image with o = 20, symmlet12 wavelet, three multiresolution levels, periodic boundary treatment.
(a) Original image. (b) Noisy image, MSE = 399.50. (c) SureShrink, MSE = 61.59. (d) Global universal rule with hard thresholding,
MSE = 103.95.
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(a)

Fig. 6. Filter-based results for the Lena image with ¢ = 20, spatial filters, periodic boundary treatment. (a) Minimum mean squared error (5 X 5)
followed by Gaussian (3 X 3) filter, MSE = 56.80. (b) Minimum mean squared error (5 X 5) followed by mean (3 x 3) filter, MSE = 64.80.



TABLE IX
‘WAVELET-BASED RESULTS FOR THE LENA IMAGE, THE SYMMLET12 WAVELET, THREE MULTIRESOLUTION LEVELS AND PERIODIC BOUNDARY TREATMENT.

o=10 ag=20 =30
Rule MSE | SNR MSE | SNR MSE | SNR
Noisy image 99.53 | 13.62 399.50 | 7.58 894.66 | 4.08
S_Universal 86.57 14.22 136.52 12.25 169.40 11.31
S_MinFDR, 33.26 18.38 81.13 14.51 143.89 12.02
S_Top 33.35 18.37 91.46 13.99 177.24 11.11
S_HypTest 33.50 18.35 103.12 13.47 261.45 9.42
S_SURE 33.70 18.32 74.91 14.85 113.01 | 13.07
Soft S_Bayes 39.09 17.68 75.77 14.80 115.18 | 12.98
P_Universal 76.45 14.76 123.54 12.68 156.90 11.64
P_MinFDR 33.59 18.34 81.80 14.47 143.74 12.02
P_Top 29.92 18.84 75.06 14.84 141.46 | 12.09
P HypTest 31.83 18.57 112.41 13.09 292.43 8.94
P_SURE 29.23 | 18.94 || 61.59 | 15.70 || 91.34 | 13.99
P_Bayes 30.26 18.79 63.33 15.58 92.74 13.93
S_Universal 55.98 16.12 103.95 13.43 142.44 12.06
S_MinFDR 75.40 14.83 282.55 9.09 622.14 5.66
S_Top 80.20 14.56 317.27 8.58 709.56 5.09
S_HypTest 72.39 15.00 339.18 9.29 810.56 4.51
S_SURE 70.23 15.13 257.76 9.49 562.66 6.10
Hard S_Bayes 92.38 13.94 240.58 9.79 255.64 9.52
P_Universal || 49.55 16.65 93.58 13.89 128.61 | 12.51
P_MinFDR 75.11 14.84 280.66 9.12 618.50 5.69
P_Top 68.56 15.24 263.28 9.39 584.97 5.93
P _HypTest 76.71 14.75 351.63 8.14 829.56 4.41
P_SURE 70.24 15.13 257.81 9.49 561.53 6.10
P _Bayes 48.26 16.76 101.29 13.54 152.54 11.76
S_Universal 69.81 15.16 121.28 12.76 158.12 11.61
S_MinFDR 37.70 17.83 115.52 | 12.97 234.12 9.90
S_Top 41.09 17.46 143.96 12.02 311.00 8.67
S_HypTest 36.12 18.02 169.95 | 11.30 463.92 6.93
Garrote S_Bayes 58.01 15.96 93.61 13.89 112.14 13.10
P _Universal 60.98 15.75 107.77 | 13.27 143.52 | 12.03
P_MinFDR 37.60 17.85 114.75 | 13.00 231.91 9.95
P_Top 34.79 18.18 111.59 13.12 234.01 9.91
P HypTest 38.36 17.76 190.23 10.81 511.85 6.51
P_Bayes 34.37 | 18.24 71.35 15.06 103.66 | 13.44
SemiSoft S_Top 33.09 18.40 91.46 13.99 200.92 | 10.57
P_Top 56.95 16.04 214.62 | 10.28 475.91 6.82




TABLE X

WAVELET-BASED RESULTS FOR THE GOLDHILL IMAGE, THE SYMMLET12 WAVELET, THREE MULTIRESOLUTION LEVELS AND PERIODIC BOUNDARY TREATMENT.

oc=10 =20 =30
Rule MSE | SNR || MSE | SNR MSE | SNR
Noisy image 100.28 | 13.84 | 398.09 | 7.85 901.14 [ 4.30
S_Universal 130.90 | 12.68 183.76 | 11.20 214.37 10.53
S_MinFDR 49.39 16.91 105.90 | 13.60 174.68 11.42
S_Top 48.78 | 16.96 || 111.08 | 13.39 199.68 | 10.84
S_HypTest 50.25 16.83 122.25 | 12.97 283.68 9.32
S_SURE 48.44 | 16.99 || 105.05 | 13.71 152.22 | 12.02
Soft S_Bayes 48.73 16.97 104.10 | 13.67 154.24 11.96
P_Universal || 118.58 | 13.10 170.79 | 11.52 204.18 10.75
P_MinFDR 50.43 16.82 106.06 | 13.59 175.27 11.41
P_Top 47.12 17.11 95.02 14.07 165.08 11.67
P HypTest 46.21 17.20 128.90 | 12.74 312.67 8.89
P_SURE 42.57 17.55 88.11 | 14.40 || 127.77 | 12.78
P _Bayes 42.44 | 17.57 90.07 14.30 128.22 12.77
S_Universal 92.83 14.17 152.47 | 12.01 194.45 10.96
S_MinFDR 82.78 | 14.67 || 296.89 | 9.12 646.46 5.74
S_Top 83.93 14.61 321.42 8.77 719.45 5.27
S_HypTest 81.39 | 14.74 || 345.97 | 8.45 823.85 4.69
S_SURE 79.29 | 14.85 || 274.51 | 9.46 589.84 6.14
Hard S_Bayes 95.43 14.05 272.17 9.50 347.42 8.44
P _Universal 83.70 14.62 139.17 | 12.41 180.27 11.29
P_MinFDR 82.97 14.66 295.40 9.14 644.87 5.75
P_Top 73.94 | 15.16 || 269.67 | 9.54 597.29 6.08
P _HypTest 83.86 | 14.61 || 356.30 | 8.33 841.29 5.60
P_SURE 79.30 | 14.85 || 274.41 | 9.46 589.37 6.14
P _Bayes 68.48 15.49 137.88 | 12.45 205.15 10.72
S_Universal 111.67 | 13.37 169.87 | 11.54 207.24 10.68
S_MinFDR 49.84 | 16.87 || 136.87 | 12.48 262.87 9.65
S_Top 50.34 | 16.83 || 156.45 | 11.90 325.61 8.72
S_HypTest 49.36 | 16.91 || 185.74 | 11.16 484.63 6.99
Garrote S_Bayes 65.33 15.69 || 123.64 | 12.92 157.47 | 11.87
P _Universal || 99.95 | 13.85 || 155.36 | 11.93 194.23 | 10.96
P _MinFDR 50.26 | 16.83 || 136.07 | 12.51 261.91 9.66
P_Top 46.20 17.20 125.79 | 12.85 252.93 9.82
P _HypTest 49.70 | 16.88 || 203.35 | 10.76 530.43 6.60
P _Bayes 46.91 17.13 98.27 | 13.92 142.73 | 12.30
SemiSoft S_Top 57.19 16.27 116.67 | 13.18 230.12 10.23
P_Top 67.48 | 15.55 || 226.15 | 10.30 491.77 6.93
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TABLE XI
‘WAVELET-BASED RESULTS FOR THE EINSTEIN IMAGE, THE SYMMLET12 WAVELET, THREE MULTIRESOLUTION LEVELS AND PERIODIC BOUNDARY TREATMENT.

oc=10 =20 o=30
Rule MSE | SNR | MSE | SNR | MSE | SNR
Noisy image | | 100.28 | 10.10 [] 398.09 | 4.11 [ 901.14 | 0.56 |

S_Universal 87.14 10.71 117.77 | 9.40 139.02 | 8.68
S_MinFDR 40.87 | 14.00 85.56 10.79 || 145.87 | 8.47

S_Top 40.52 14.03 95.25 10.32 179.14 7.58
S_HypTest 41.36 13.94 107.00 9.81 266.06 5.86
S_SURE 41.09 13.97 78.80 11.14 110.28 9.68
Soft S_Bayes 41.90 13.89 78.81 11.14 112.88 9.58

P_Universal 80.45 11.05 110.54 9.67 132.42 8.89
P_MinFDR 41.87 13.89 86.15 10.76 145.16 8.49

P_Top 38.11 14.30 80.82 11.03 148.17 | 8.40
P_HypTest 39.12 14.18 116.18 9.46 297.96 5.37
P_SURE 36.80 | 14.45 || 68.65 | 11.74 || 95.44 | 10.31
P_Bayes 37.24 14.40 69.98 11.66 95.45 10.31

S_Universal 67.85 11.79 || 100.79 | 10.07 | 124.86 | 9.15
S_MinFDR 81.41 11.00 || 288.32 5.51 631.20 2.11

S_Top 83.67 | 10.88 | 320.13 5.05 717.94 1.55
S_HypTest 79.23 11.12 || 341.63 4.77 819.73 | 0.97
S_SURE 77.45 11.22 || 264.56 5.88 570.96 2.54
Hard S_Bayes 92.07 | 10.47 || 199.50 7.11 201.72 7.06

P_Universal 62.75 12.13 93.53 10.40 118.49 9.37
P_MinFDR 81.57 10.99 287.12 5.53 627.14 2.14

P_Top 72.60 11.50 || 266.90 5.85 593.38 2.38
P_HypTest 82.20 10.96 || 352.90 4.63 838.31 0.87
P_SURE 77.46 11.22 264.67 5.88 573.55 2.52
P_Bayes 63.15 12.10 105.87 | 9.86 157.80 8.13

S_Universal 77.17 11.23 || 109.73 9.71 132.89 | 8.87
S_MinFDR 45.37 | 13.54 || 122.18 9.24 239.80 | 6.31

S_Top 46.84 13.40 148.64 8.39 315.09 5.12
S_HypTest 44.30 | 13.64 | 174.80 | 7.68 471.79 | 3.37
Garrote S_Bayes 56.81 12.56 85.39 10.79 || 109.77 | 9.70

P _Universal 70.80 11.61 101.98 | 10.02 125.32 9.13
P_MinFDR 45.77 13.50 121.47 9.26 237.14 6.36

P_Top 41.52 13.93 117.49 9.41 242.20 6.27
P _HypTest 45.65 13.51 194.34 7.22 520.16 2.95
P_Bayes 41.73 13.90 76.85 11.25 104.69 9.91
SemiSoft S_Top 44.94 13.58 107.29 9.80 221.41 6.66

P_Top 63.89 12.05 || 221.54 | 6.65 485.92 | 3.24




TABLE XII

SPATIAL FILTER-BASED RESULTS FOR THE LENA IMAGE WITH PERIODIC BOUNDARY TREATMENT.

o=10 =20 g=30
Image MSE | SNR MSE | SNR MSE | SNR
[Noisy image [ 9953 | 13.62 | 399.50 | 7.58 || 894.66 | 4.08 |
Mean (3) 42.67 17.30 76.34 14.77 130.46 | 12.44
Mean (5) 82.07 14.46 93.91 13.87 113.59 | 13.05
Gaussian (3) 32.95 18.42 95.25 13.81 196.92 | 10.66
Gaussian (5) 45.58 17.01 67.09 15.33 101.58 | 13.53
Scaled Unsharp Masking (3) || 34.84 | 18.18 79.13 | 14.62 || 150.75 | 11.82
Scaled Unsharp Masking (5) || 57.79 | 15.98 81.32 | 14.50 | 119.63 | 12.82
Alpha Trimmed Mean (3,1) 39.12 17.68 76.11 14.78 134.52 | 12.31
Alpha Trimmed Mean (5,2) 74.20 14.89 88.48 14.13 11041 | 13.17
Median (3) 40.16 17.56 94.50 13.84 178.17 | 11.09
Median (5) 59.31 15.87 84.41 14.33 120.39 | 12.79
Mid-point (3) 78.76 14.64 131.29 | 12.42 222.31 | 10.13
Mid-point (5) 178.00 | 11.09 196.15 | 10.67 249.49 9.63
Min-MSE (3) 70.67 15.11 192.53 | 10.75 389.93 7.69
Min-MSE (5) 39.35 17.65 91.97 13.96 163.36 | 11.47
S-Unsharp (3), Mean (3) 50.50 | 16.57 69.00 | 15.21 98.65 | 13.66
Mean (3), Mean (3) 54.07 | 16.27 || 70.67 | 16.11 | 97.35 | 13.72
Min-MSE (5), Mean (3) 4495 | 17.07 || 64.80 | 15.48 || 89.44 | 14.08
Min-MSE (5), Gaussian (3) 31.78 | 18.58 56.80 | 16.06 88.52 | 14.13
S-Unsharp (3), Gaussian (3) || 41.56 | 17.41 || 66.99 | 15.34 || 107.81 | 13.27
Gaussian (3), Gaussian (3) 37.09 | 17.91 68.64 | 15.23 | 119.50 | 12.83
TABLE XIII
SPATIAL FILTER-BASED RESULTS FOR THE (GOLDHILL IMAGE WITH PERIODIC BOUNDARY TREATMENT.
oc=10 o=20 =30
Image MSE | SNR MSE | SNR MSE SNR
[Noisy image [ 100.28 | 13.84 | 398.09 | 7.85 | 90L.14 | 4.30
Mean (3) 70.66 15.35 103.61 | 13.69 159.69 11.81
Mean (5) 118.84 | 13.10 130.92 | 12.68 150.56 12.07
Gaussian (3) 43.23 | 17.49 || 104.99 | 13.63 209.47 10.63
Gaussian (5) 69.31 | 15.44 90.57 | 14.28 126.10 | 12.84
Scaled Unsharp Masking (3) || 52.90 | 16.61 96.54 | 14.00 170.55 | 11.53
Scaled Unsharp Masking (5) || 81.51 | 14.73 || 105.03 | 13.63 143.90 | 12.27
Alpha Trimmed Mean (3,1) 66.87 15.59 103.27 | 13.71 163.42 11.71
Alpha Trimmed Mean (5,2) 112.43 | 13.34 126.57 | 12.82 148.22 12.14
Median (3) 65.24 15.70 119.50 | 13.07 206.30 10.70
Median (5) 0547 | 14.05 || 121.43 | 13.00 || 157.77 | 11.87
Mid-point (3) 107.57 | 1353 || 159.92 | 11.81 || 254.28 | 9.79
Mid-point (5) 198.11 | 10.88 223.84 | 10.35 278.38 9.40
Min-MSE (3) 102.12 | 13.75 214.07 | 10.54 420.92 7.60
Min-MSE (5) 59.10 16.13 112.05 | 13.35 186.82 11.13
S-Unsharp (3), Mean (3) 76.76 | 14.99 95.05 | 14.07 125.53 | 12.86
Mean (3), Mean (3) 80.14 | 14.81 | 96.65 | 13.09 || 123.04 | 12.01
Min-MSE (5), Mean (3) 81.12 14.75 100.561 | 13.82 125.80 12.85
Min-MSE (5), Gaussian (3) 57.45 16.25 84.51 | 14.58 || 119.08 | 13.09
S-Unsharp (3), Gaussian (3) || 64.08 | 15.78 89.15 | 14.34 131.31 | 12.66
Gaussian (3), Gaussian (3) 55.64 | 16.39 86.83 | 14.46 139.32 | 12.41
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TABLE XIV

SPATIAL FILTER-BASED RESULTS FOR THE EINSTEIN IMAGE WITH PERIODIC BOUNDARY TREATMENT.

oc=10 =20 =30
Image MSE | SNR MSE | SNR MSE | SNR
[ Noisy image 100.28 | 10.10 [| 398.09 | 4.11 [ 901.14 | 0.56
Mean (3) 49.80 | 13.14 || 82.66 | 10.04 || 138.87 | 8.68
Mean (5) 76.29 11.28 87.65 10.68 107.64 9.79
Gaussian (3) 36.14 | 14.53 97.73 10.21 202.20 7.05
Gaussian (5) 48.00 | 13.30 68.82 | 11.73 || 104.61 | 9.91
Scaled Unsharp Masking (3) 39.50 14.14 83.00 10.92 157.05 8.15
Scaled Unsharp Masking (5) 54.20 | 12.77 77.10 | 11.24 || 116.21 | 9.46
Alpha Trimmed Mean (3,1) 47.72 13.32 83.47 10.89 143.51 8.54
Alpha Trimmed Mean (5,2) 71.73 11.55 84.63 10.83 106.26 9.85
Median (3) 49.78 13.14 102.43 | 10.01 188.06 7.37
Median (5) 61.68 12.21 84.34 10.85 119.37 9.34
Mid-point (3) 78.33 11.17 132.11 8.90 227.41 6.54
Mid-point (5) 139.32 | 8.67 168.03 | 7.86 226.30 | 6.56
Min-MSE (3) 78.08 11.18 196.54 7.17 404.35 4.04
Min-MSE (5) 46.60 13.43 93.85 10.39 163.17 7.98
S-Unsharp (3), Mean (3) 52.34 | 12.02 | 70.15 | 11.65 | 100.92 | 10.07
Mean (3), Mean (3) 54.38 | 12.76 70.33 | 11.64 97.95 | 10.20
Min-MSE (5), Mean (3) 55.04 | 12.70 || 70.49 | 11.63 | 92.51 | 10.45
Min-MSE (5), Gaussian (3) || 43.34 | 13.74 || 64.86 | 11.99 || 94.25 | 10.37
S-Unsharp (3), Gaussian (3) || 45.04 | 13.57 69.77 | 11.67 || 112.13 | 9.61
Gaussian (3), Gaussian (3) 40.76 | 14.01 71.63 | 11.56 || 124.29 | 9.17
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TABLE XV

‘WAVELET-BASED RESULTS FOR THE LENA IMAGE, THE SYMMLET8 WAVELET, FOUR MULTIRESOLUTION LEVELS AND PERIODIC BOUNDARY TREATMENT.

o=10 o=20 o =30
Method MSE | SNR || MSE | SNR MSE | SNR
Noisy image | 99.53 [ 13.62 [| 399.50 | 7.58 894.66 | 4.08
S_Universal || 103.92 | 13.43 | 178.33 | 11.09 237.39 9.84
S_MinFDR, 36.56 | 17.97 || 84.49 | 14.33 146.70 | 11.93
S_Top 36.50 | 17.98 || 93.63 | 13.88 178.38 | 11.09
S_HypTest 36.84 17.94 || 106.07 | 13.34 261.56 9.42
S_SURE 36.56 | 17.97 || 80.50 | 14.54 124.16 | 12.66
S_Adapt 36.56 17.97 80.50 14.54 124.16 12.66
Soft S_Bayes 53.00 | 16.36 || 100.79 | 13.56 127.73 | 12.54
P_Universal 87.78 14.16 || 150.79 | 11.82 202.27 10.54
P_MinFDR 38.64 17.73 89.16 14.10 148.80 11.87
P_Top 33.14 18.39 77.68 14.70 144.78 11.99
P_HypTest 34.70 | 18.20 || 114.80 | 13.00 292.36 8.95
P_SURE 32.42 18.49 64.00 15.54 93.10 13.91
P_Adapt 32.47 | 18.48 || 64.00 | 15.54 93.94 13.87
P_Bayes 34.19 | 18.26 || 66.90 | 15.34 95.64 13.79
S_Universal 61.58 | 15.70 || 116.62 | 12.93 167.80 | 11.35
S_MinFDR, 80.55 | 14.54 || 285.39 | 9.04 618.71 5.68
S_Top 84.84 | 14.31 || 320.69 | 8.54 710.89 5.08
S_HypTest 77.86 14.69 || 345.52 8.21 816.34 4.48
S_SURE 75.26 | 14.83 || 263.31 | 9.39 558.03 6.13
S_Adapt 75.26 | 14.83 || 263.31 | 9.39 558.03 6.13
Hard S_Bayes 103.05 | 13.47 || 336.77 | 8.33 494.30 6.66
P_Universal 53.81 16.29 || 101.09 | 13.55 143.16 12.04
P_MinFDR 80.48 | 14.54 || 287.77 | 9.00 617.45 5.69
P_Top 73.38 | 14.94 || 268.31 | 9.31 590.12 5.89
P_HypTest 82.33 | 14.44 || 357.97 | 8.06 835.94 4.38
P_SURE 75.27 | 14.83 || 263.21 | 9.40 557.96 6.13
P_Adapt 62.93 15.61 152.21 | 11.77 159.77 11.56
P_Bayes 54.86 | 16.21 | 105.69 | 13.35 152.93 | 11.75
S_Universal 77.86 14.69 || 143.84 | 12.02 201.73 10.55
S_MinFDR, 41.12 17.46 || 116.32 | 12.94 231.03 9.96
S_Top 44.05 | 17.16 || 144.41 | 12.00 || 308.84 8.70
S HypTest 39.67 | 17.61 || 173.59 | 11.20 || 464.174 | 6.93
Garrote S_Bayes 78.68 | 14.64 | 161.93 | 11.51 166.27 | 11.39
P_Universal || 66.15 | 15.39 || 120.81 | 12.78 168.77 | 11.33
P_MinFDR 41.34 | 17.45 || 118.83 | 12.85 230.59 9.97
P_Top 38.61 | 17.73 || 114.89 | 13.00 239.76 9.80
P_HypTest 42.26 | 17.34 || 194.56 | 10.71 513.67 6.49
P_Bayes 39.13 | 17.67 || 76.45 | 14.76 108.78 | 13.23
SemiSoft S_Top 37.46 17.86 84.09 14.35 181.31 11.01
P_Top 61.12 15.74 || 217.46 | 10.22 477.55 6.81
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TABLE XVI

‘WAVELET-BASED RESULTS FOR THE LENA IMAGE, THE SYMMLET8 WAVELET, THREE MULTIRESOLUTION LEVELS AND PERIODIC BOUNDARY TREATMENT.

a=10 =20 =30
Method MSE | SNR MSE | SNR || MSE | SNR
Noisy image | 99.53 | 13.62 || 399.50 | 7.58 894.66 | 4.08
S_Universal 88.45 | 14.13 139.93 | 12.14 || 175.89 | 11.15
S_MinFDR 34.58 | 18.21 81.62 14.48 143.40 | 12.03
S_Top 34.74 | 18.19 92.16 13.95 178.36 | 11.09
S_HypTest 34.74 | 18.19 104.47 | 13.41 261.63 9.42
S SURE 34.83 | 18.18 75.66 14.81 114.90 | 13.00
S_Adapt 34.83 | 18.18 75.66 14.81 114.90 | 13.00
Soft S_Bayes 41.59 | 1741 76.99 14.73 118.80 | 12.85
P_Universal || 78.11 | 14.67 || 126.48 | 12.58 162.50 | 11.49
P_MinFDR 34.83 | 18.18 82.28 14.45 143.28 | 12.04
P_Top 31.88 | 18.56 76.76 14.75 144.37 | 12.00
P_HypTest 33.36 | 18.37 || 114.14 | 13.02 || 292.97 | 8.93
P_SURE 31.14 | 18.67 63.32 15.58 93.61 13.89
P_Adapt 31.19 | 18.66 63.32 15.58 94.46 13.85
P _Bayes 32.84 | 18.43 66.04 15.40 95.93 13.78
S_Universal 57.32 | 16.01 105.49 | 13.37 || 147.27 | 11.92
S_MinFDR 79.06 | 14.62 || 285.28 9.05 617.99 5.69
S_Top 83.94 | 14.36 || 321.05 8.53 712.83 5.07
S HypTest 76.43 | 14.77 || 344.09 8.23 814.94 | 4.49
S_SURE 73.78 | 14.92 || 262.39 9.41 557.93 6.13
S_Adapt 73.78 | 14.92 || 262.39 9.41 557.93 6.13
Hard S_Bayes 97.22 | 13.72 || 252.55 9.57 235.09 9.89
P_Universal || 51.13 | 16.51 95.43 13.80 132.28 | 12.38
P_MinFDR 78.87 | 14.63 || 285.88 9.04 615.71 5.70
P_Top 71.95 | 15.03 || 266.91 9.33 588.64 | 5.90
P_HypTest 80.88 | 14.52 || 356.59 8.07 834.44 | 4.38
P_SURE 73.80 | 14.92 || 261.64 9.42 556.25 6.15
P_Adapt 61.47 | 15.71 150.64 | 11.82 158.03 | 11.61
P_Bayes 53.43 | 16.32 104.29 | 13.42 151.47 | 11.79
S_Universal 71.15 | 15.08 123.24 | 12.69 163.95 | 11.45
S_MinFDR 39.77 | 17.60 116.37 | 12.94 || 231.79 9.95
S_Top 43.22 | 17.24 145.51 | 11.97 || 312.88 8.64
S HypTest 38.34 | 17.76 172.90 | 11.22 || 464.50 6.92
Garrote S_Bayes 42.99 | 15.66 98.27 13.67 || 112.19 | 13.10
P_Universal || 62.23 | 15.66 109.68 | 13.20 148.26 | 11.89
P_MinFDR 39.69 | 17.61 116.80 | 12.92 || 230.30 9.98
P_Top 37.20 | 17.89 113.55 | 13.05 || 238.41 9.82
P_HypTest 40.94 | 17.48 193.57 | 10.73 || 513.03 6.50
P_Bayes 37.70 | 17.83 75.14 14.84 || 107.76 | 13.27
SemiSoft S_Top 34.99 | 18.16 91.21 14.00 || 200.82 | 10.57
P_Top 59.41 | 15.86 || 216.55 | 10.24 || 478.16 6.80
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TABLE XVII
WAVELET-BASED RESULTS FOR THE GOLDHILL IMAGE, THE SYMMLET8 WAVELET, FOUR MULTIRESOLUTION LEVELS AND PERIODIC BOUNDARY TREATMENT.

a=10 a=20 o =30
Method MSE | SNR MSE | SNR || MSE | SNR
Noisy image | || 100.28 | 13.83 || 398.09 | 7.85 || 901.14 | 4.30 |

S_Universal || 147.30 | 12.16 | 223.04 | 10.36 || 274.05 | 9.47
S_MinFDR 52.60 | 16.63 || 110.17 | 13.42 || 177.84 | 11.34

S_Top 52.52 | 16.64 | 114.09 | 13.27 || 199.97 | 10.84
S_HypTest 53.46 | 16.56 | 125.63 | 12.85 || 285.28 | 9.29
S_SURE 50.70 | 16.79 || 109.21 | 13.46 || 160.47 | 11.79
S_Adapt 50.70 | 16.79 | 109.21 | 13.46 || 160.47 | 11.79
Soft S_Bayes 59.64 | 16.09 || 121.89 | 12.99 || 166.13 | 11.64

P_Universal || 128.93 | 12.74 || 195.22 | 10.94 | 241.27 | 10.02
P_MinFDR 54.70 | 16.46 || 111.34 | 13.38 || 182.09 | 11.42

P_Top 50.42 | 16.82 98.34 | 13.92 || 166.15 | 11.64
P_HypTest 49.05 | 16.94 || 131.86 | 12.64 || 314.06 | 8.88
P_SURE 46.38 | 17.18 91.40 | 14.23 || 127.25 | 12.80
P_Adapt 46.43 | 17.18 91.40 | 14.23 || 128.01 | 12.77
P_Bayes 46.55 | 17.16 94.15 | 14.11 || 128.50 | 12.76

S_Universal 99.61 | 13.86 || 163.92 | 11.70 | 214.23 | 10.54
S_MinFDR 89.08 | 14.35 || 303.24 | 9.03 651.72 | 5.70

S_Top 89.24 | 14.34 || 325.66 | 8.72 721.80 | 5.26
S_HypTest 87.61 | 14.42 || 353.10 | 8.37 831.92 | 4.64
S_SURE 83.20 | 14.63 || 281.16 | 9.36 597.72 | 6.08
S_Adapt 83.20 | 14.63 || 281.16 | 9.36 597.72 | 6.08
Hard S_Bayes 104.93 | 13.64 || 346.48 | 9.45 581.70 | 6.20

P_Universal 88.04 | 14.40 || 144.92 | 12.23 || 188.78 | 11.09
P_MinFDR 88.86 | 14.36 || 302.92 | 9.03 651.45 | 5.71

P_Top 79.58 | 14.84 || 276.39 | 9.43 602.41 | 6.05
P _HypTest 90.33 | 14.29 || 363.53 | 8.24 848.33 | 4.56
P_SURE 85.49 | 14.53 || 281.24 | 9.35 597.40 | 6.08
P_Adapt 73.78 | 15.17 || 226.19 | 10.30 || 316.87 | 8.84
P_Bayes 75.88 | 15.04 || 144.45 | 12.25 || 208.62 | 10.65

S_Universal || 119.94 | 13.06 | 191.74 | 11.02 243.8 9.97
S_MinFDR, 53.76 | 16.54 || 140.55 | 12.37 || 264.02 | 9.63

S_Top 53.84 | 16.53 || 157.83 | 11.86 | 323.20 | 8.75
S_HypTest 53.17 | 16.59 || 190.12 | 11.05 || 488.78 | 6.95
Garrote S_Bayes 83.19 | 14.64 || 180.94 | 11.27 | 222.96 | 10.36

P_Universal || 105.14 | 13.63 || 166.67 | 11.63 | 211.66 | 10.59
P_MinFDR 53.98 | 16.52 || 140.54 | 12.37 || 265.16 | 9.61

P_Top 50.47 | 16.81 || 130.59 | 12.69 || 255.62 | 9.77
P _HypTest 54.10 | 16.51 | 208.55 | 10.65 || 535.62 | 6.55
P_Bayes 52.76 | 16.63 | 103.96 | 13.68 || 144.99 | 12.23
SemiSoft S_Top 63.19 | 15.84 || 114.07 | 13.27 || 213.76 | 10.55

P_Top 72.92 | 15.22 || 231.67 | 10.20 || 494.84 | 6.90




TABLE XVIII
WAVELET-BASED RESULTS FOR THE GOLDHILL IMAGE, THE SYMMLET8 WAVELET, THREE MULTIRESOLUTION LEVELS AND PERIODIC BOUNDARY TREATMENT.

=10 a=20 o =30
Method MSE | SNR MSE | SNR MSE SNR
Noisy image | || 100.28 | 13.83 || 398.09 | 7.85 || 901.14 | 4.30 |

S_Universal || 129.70 | 12.72 || 181.64 | 11.25 211.64 | 10.59
S_MinFDR 50.44 | 16.82 || 106.52 | 13.57 173.89 | 11.44

S_Top 50.04 | 16.85 || 111.74 | 13.36 198.98 | 10.86
S_HypTest 51.09 | 16.76 || 123.57 | 12.93 284.92 9.29
S_SURE 48.96 | 16.95 || 104.56 | 13.65 150.48 | 12.07
S_Adapt 48.96 | 16.95 || 104.56 | 13.65 150.48 | 12.07
Soft S_Bayes 51.35 | 16.74 || 104.63 | 13.65 || 151.424 | 12.04

P_Universal || 117.83 | 13.13 || 168.57 | 11.58 200.30 | 10.83
P_MinFDR 50.91 | 16.78 || 106.88 | 13.56 174.53 | 11.43

P_Top 49.08 | 16.94 97.32 | 13.96 165.69 | 11.65
P_HypTest 47.59 | 17.07 | 130.94 | 12.67 314.46 8.87
P_SURE 44.94 | 17.32 90.52 | 14.28 127.64 | 12.79
P_Adapt 4499 | 17.31 90.52 | 14.28 128.40 | 12.76
P_Bayes 45.11 17.30 93.13 | 14.15 128.69 | 12.75

S_Universal 94.53 | 14.09 | 149.81 | 12.09 188.33 | 11.10
S_MinFDR 87.34 | 14.43 | 301.29 | 9.06 651.03 5.71

S_Top 88.21 | 14.39 || 325.86 | 8.71 723.60 5.25
S HypTest 86.03 | 14.50 || 351.46 | 8.39 830.43 4.65
S_SURE 83.85 | 14.61 || 279.32 | 9.38 596.00 6.09
S_Adapt 83.85 | 14.61 || 279.32 | 9.38 596.00 6.09
Hard S_Bayes 100.77 | 13.81 || 280.50 | 9.37 368.38 8.18

P_Universal 84.82 | 14.56 || 137.08 | 12.48 175.42 11.40
P_MinFDR 87.15 | 14.44 || 300.94 | 9.06 649.21 5.72

P_Top 78.06 | 14.92 || 274.85 | 9.45 600.92 6.06
P_HypTest 88.80 | 14.36 || 361.97 | 8.26 846.92 4.57
P_SURE 83.89 | 14.61 | 279.24 | 9.39 595.36 6.09
P_Adapt 72.18 | 15.26 || 224.20 | 10.34 314.83 8.86
P_Bayes 74.36 | 15.13 || 142.91 | 12.29 207.20 | 10.68

S_Universal || 111.59 | 13.37 | 167.53 | 11.60 202.29 | 10.79
S_MinFDR, 52.18 | 16.67 || 139.04 | 12.41 263.96 9.63

S_Top 52.59 | 16.64 || 158.31 | 11.85 || 326.55 8.71
S_HypTest 51.66 | 16.71 | 188.93 | 11.08 || 488.59 6.96
Garrote S_Bayes 70.22 | 15.38 || 127.12 | 12.80 158.40 | 11.85

P_Universal || 100.25 | 13.83 || 1563.13 | 11.99 188.66 | 11.09
P_MinFDR 52.20 | 16.67 | 138.88 | 12.41 263.02 9.64

P_Top 48.98 | 16.94 || 129.12 | 12.74 2564.25 9.79
P_HypTest 52.65 | 16.63 || 207.30 | 10.68 534.80 6.56
P_Bayes 51.25 | 16.75 || 102.52 | 13.74 144.00 | 12.26
SemiSoft S_Top 58.54 | 16.17 || 118.52 | 13.11 231.63 | 10.20

P_Top 70.02 | 15.39 || 229.87 | 10.23 494.38 6.90




TABLE XIX

‘WAVELET-BASED RESULTS FOR THE EINSTEIN IMAGE, THE SYMMLET8 WAVELET, FOUR MULTIRESOLUTION LEVELS AND PERIODIC BOUNDARY TREATMENT.

a=10 a=20 o =30
Method MSE | SNR MSE | SNR || MSE | SNR
Noisy image | 100.28 | 10.10 | 398.09 | 4.11 || 901.14 | 0.56
S_Universal 100.31 | 10.10 147.30 8.43 181.90 7.51
S_MinFDR 42.74 13.80 87.72 10.68 145.92 8.47
S_Top 42.45 13.83 96.20 10.28 176.93 7.63
S_HypTest 43.34 13.74 108.46 9.76 264.03 5.89
S_SURE 42.32 13.84 82.45 10.95 116.18 9.46
S_Adapt 42.32 13.84 82.45 10.95 116.18 9.46
Soft S_Bayes 50.27 13.10 90.53 10.54 116.79 9.43
P _Universal 88.87 10.62 129.52 8.99 160.83 8.05
P_MinFDR 45.06 13.57 88.07 10.66 146.51 8.45
P_Top 39.64 14.13 82.00 10.97 || 147.77 | 8.41
P_HypTest 40.45 14.04 117.25 9.42 296.07 | 5.39
P_SURE 38.30 14.28 69.16 11.71 93.60 10.40
P_Adapt 38.56 14.25 69.18 11.71 94.01 10.38
P _Bayes 38.94 14.20 70.98 11.60 94.15 10.37
S_Universal 71.74 11.55 110.79 9.66 142.97 | 8.56
S_MinFDR 84.33 10.85 || 292.30 5.45 634.00 2.09
S_Top 85.78 10.78 || 321.56 5.04 717.79 1.55
S_HypTest 82.18 10.96 || 344.88 4.73 823.34 0.95
S_SURE 80.28 11.06 || 269.02 5.81 573.50 2.52
S_Adapt 80.28 11.06 || 269.02 5.81 573.50 2.52
Hard S_Bayes 100.00 | 10.11 303.97 5.28 406.30 | 4.02
P _Universal 65.37 11.96 98.92 10.16 126.95 9.07
P_MinFDR 84.41 10.85 || 290.59 5.48 630.32 2.11
P_Top 75.03 11.36 || 270.07 5.79 595.70 3.36
P _HypTest 85.19 10.81 356.26 4.59 842.30 0.85
P_SURE 80.27 11.06 || 268.52 5.82 573.46 2.52
P_Adapt 68.32 11.76 || 212.98 6.82 167.58 7.87
P_Bayes 66.52 11.88 112.52 9.60 156.29 8.17
S_Universal 83.57 10.89 127.36 9.06 161.85 8.02
S_MinFDR 47.11 13.38 123.55 9.19 238.41 6.34
S_Top 48.01 13.30 148.45 8.38 311.43 5.18
S HypTest 45.99 13.48 176.76 7.63 471.39 3.38
Garrote S_Bayes 72.89 11.48 132.64 8.88 137.73 8.72
P _Universal 74.58 11.38 111.58 9.63 141.83 8.59
P_MinFDR 47.68 13.33 122.52 9.23 236.24 6.38
P_Top 43.28 13.75 119.52 9.33 243.89 6.24
P HypTest 47.433 | 13.35 196.95 7.17 521.11 2.94
P_Bayes 4411 13.66 79.76 11.09 105.08 9.89
SemiSoft S_Top 47.27 13.36 100.39 | 10.09 || 203.10 7.03
P_Top 66.21 11.90 || 222.70 6.63 485.43 3.25
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TABLE XX

‘WAVELET-BASED RESULTS FOR THE EINSTEIN IMAGE, THE SYMMLET8 WAVELET, THREE MULTIRESOLUTION LEVELS AND PERIODIC BOUNDARY TREATMENT.

=10 a=20 o =30
Method MSE | SNR MSE | SNR MSE SNR
Noisy image | | 100.28 | 10.10 || 398.09 | 4.11 || 901.14 | 0.56
S_Universal 87.43 10.69 119.78 9.32 142.20 8.58
S_MinFDR 41.38 13.94 86.10 10.76 145.16 8.49
S_Top 41.08 13.97 95.76 10.30 179.11 7.58
S_HypTest 41.82 13.89 107.91 9.78 266.07 5.86
S_.SURE 41.22 13.96 78.88 11.14 109.88 9.70
S_Adapt 41.22 13.96 78.88 11.14 109.88 9.70
Soft S_Bayes 42.94 13.78 78.85 11.14 113.55 9.56
P_Universal 80.63 11.04 111.75 9.63 135.26 8.80
P_MinFDR 41.92 13.88 86.01 10.76 145.25 8.49
P_Top 39.10 14.19 81.77 10.98 148.27 8.40
P_HypTest 39.74 14.12 117.44 9.41 298.16 5.36
P_SURE 37.78 14.34 69.39 11.69 95.85 10.29
P_Adapt 38.03 14.31 69.41 11.69 96.26 10.27
P _Bayes 38.38 14.27 71.01 11.60 96.03 10.28
S_Universal 67.77 11.80 101.25 | 10.05 128.79 9.01
S_MinFDR 83.45 10.89 || 292.10 5.45 632.16 2.10
S_Top 85.44 10.79 || 322.29 5.03 719.95 1.53
S HypTest 81.47 11.00 || 344.22 4.74 822.80 0.95
S_SURE 79.56 11.10 || 267.89 5.83 572.95 2.52
S_Adapt 79.56 11.10 || 267.89 5.83 572.95 2.52
Hard S_Bayes 94.71 10.34 || 214.14 6.80 196.69 717
P_Universal 63.08 12.11 93.80 10.39 119.92 9.32
P_MinFDR 83.44 10.89 || 289.74 5.49 629.922 2.11
P_Top 74.38 11.39 || 269.42 5.80 595.17 2.36
P_HypTest 84.53 10.84 || 355.59 4.60 841.72 0.86
P_SURE 79.55 11.10 || 267.67 | 5.83 572.93 2.53
P_Adapt 67.60 11.81 212.13 6.84 167.04 7.88
P_Bayes 65.87 11.92 111.87 | 9.62 155.77 8.18
S_Universal 76.96 11.25 111.06 9.65 136.41 8.76
S_MinFDR 46.33 13.45 123.72 9.18 239.10 6.32
S_Top 47.65 13.33 149.88 8.35 316.07 5.11
S HypTest 45.29 13.55 176.77 | 7.63 472.88 3.36
Garrote S_Bayes 59.07 12.40 88.78 10.63 109.37 9.72
P_Universal 70.74 11.61 102.46 | 10.00 128.15 9.03
P_MinFDR 46.46 13.44 122.18 9.24 237.65 6.35
P_Top 42.65 13.81 118.91 9.36 243.4 6.24
P_HypTest 46.86 13.40 196.71 7.17 521.58 2.94
P_Bayes 43.48 13.72 79.27 11.89 105.38 9.88
SemiSoft S_Top 45.76 13.50 107.26 9.80 217.90 6.73
P_Top 65.29 11.96 || 222.71 6.63 487.15 3.23
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