¢

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

UCRL-CONF-202657

Feature Selection Iin Scientific
Applications

E. Cantu-Paz, S. Newsam, C. Kamath

March 2, 2004

International Conference on Knowledge Discovery and Data
Mining

Seattle, WA, United States

August 22, 2004 through August 25, 2004




Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.



Feature Selection in Scientific Applications

Erick Canti-Paz
Lawrence Livermore Natl. Lab.
7000 East Avenue, L-561
Livermore, CA 94550

cantupaz@linl.gov

ABSTRACT

Numerous applications of data mining to scientific data in-
volve the induction of a classification model. In many cases,
the collection of data is not performed with this task in
mind, and therefore, the data might contain irrelevant or
redundant features that affect negatively the accuracy of
the induction algorithms. The size and dimensionality of
typical scientific data make it difficult to use any available
domain information to identify features that discriminate
between the classes of interest. Similarly, exploratory data
analysis techniques have limitations on the amount and di-
mensionality of the data that can be effectively processed. In
this paper, we describe applications of efficient feature selec-
tion methods to data sets from astronomy, plasma physics,
and remote sensing. We use variations of recently proposed
filter methods as well as traditional wrapper approaches
where practical. We discuss the importance of these applica-
tions, the general challenges of feature selection in scientific
datasets, the strategies for success that were common among
our diverse applications, and the lessons learned in solving
these problems.

1. INTRODUCTION

Scientific data sets generated by computer simulations, ob-
servations, or experiments present challenges that are not
usually present in commercial data mining. For instance,
many scientific applications of data mining require the ex-
traction of features from low-level data, such as images or
mesh data from computer simulations. The data can be
noisy, especially data coming from experiments or sensors,
and removing the noise without affecting the signal is diffi-
cult. Also in contrast with commercial data, assigning labels
to scientific data usually requires a domain scientist to iden-
tify examples of the objects of interest. Besides being te-
dious, this subjective process is prone to errors and experts
often disagree on the labeling. Another difficulty is that
scientific data is sometimes obtained from different sources
and is captured at different resolutions or with different in-
struments, so data fusion becomes necessary to incorporate
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all the data into the analyses.

In this paper we are concerned with the problem of feature
selection. This problem has its origins in some of the difficul-
ties mentioned above. In particular, there are many methods
to extract features from low-level image or simulation data.
One could use simple statistics of the variables of interest or
more sophisticated features that describe shapes or textures.
It is likely that the collection of data was not performed with
a particular analysis in mind. Therefore, the data may con-
tain irrelevant or redundant features that affect the analysis
negatively. Domain information is very helpful in pruning
the data and to identify candidate variables, but in many
cases the size and dimensionality of typical scientific data
make it difficult to use any available domain information
to identify features that discriminate between the classes of
interest.

Regardless of these difficulties, data mining is gaining accep-
tance in many scientific fields. This paper describes applica-
tions of feature selection in three very different scientific data
sets. The number of features in these applications vary from
a few tens to a few hundreds. We describe the challenges
common to these applications, the strategies we followed to
face these challenges, and the general lessons we learned in
solving these problems.

The first application is a classical classification problem where
the goal is to build a predictor that will identify galaxies of

a particular type. The second application is to identify vari-

ables that might explain the presence of a desirable harmonic

oscillation on the edge of the plasma in fusion experiments.

The third problem we present is to identify human settle-

ments in satellite imagery. We explain the problems in more

detail in later sections.

The next section describes the feature selection algorithms
that we use. Section 3 describes the astronomical data, how
it was generated with input from the astronomers, why we
assumed that feature selection was necessary, and finally
we present the results using different automatic methods as
well as further reductions performed manually. Section 4
presents the problem with the fusion data, the approaches
we followed and the results. Section 5 discusses the data
used to detect human settlements in satellite imagery. These
data contain the highest number of features of the three
problems considered in the paper, and an effective feature
selection could save considerable computing resources used



in creating and storing these features. Finally, section 6
summarizes the approaches common to the diverse applica-
tions, the lessons learned in applying the feature selection
methods, and the conclusions of this paper.

2. FEATURE SELECTION ALGORITHMS

The feature selection problem has received considerable at-
tention from machine learning and statistics and numerous
feature selection algorithms have been proposed. Kohavi
and John [10] classify feature selection algorithms as wrap-
per and filter methods. Wrappers treat an induction algo-
rithm as a black box that is used to evaluate each candidate
feature subset. While usually giving good results in terms
of the accuracy of the final classifier, wrapper approaches
are computationally expensive and are impractical in many
scientific applications. Filter methods are independent of
the classifier and select features based on properties that
good feature sets are presumed to have, such as class sepa-
rability or high correlation with the target. Filter methods
are computationally efficient, but may produce disappoint-
ing results, because they ignore completely the induction
algorithm.

We use four variable ranking filters, two classical wrapper
methods, and one hybrid filter-wrapper method. We use the
filters and the filter-wrapper hybrid to rank the features. We
evaluate the rankings by training a naive Bayes classifier on
increasingly larger subsets of the ranked features and report
the 10-fold crossvalidation estimate of the prediction error.
We also tried a decision tree classifier, but only report results
when they are better than the naive Bayes classifier.

The data may contain features that are irrelevant to the
classification. To detect these features in the rankings, we
introduce into each dataset a “sentinel” random noise fea-
ture. This feature is uniformly distributed in the interval
[0,1], and serves as in indicator to discard those variables
that ranked lower than the sentinel.

2.1 KL Class Separability Filter

The first filter that we consider in this paper uses a natural
measure of how well a feature separates the data into dif-
ferent classes. The filter calculates the class separability of
each feature using the Kullback-Leibler (KL) distance be-
tween histograms of feature values. For each feature, there
is one histogram for each class. Numeric features are dis-
cretized using +/|D|/2 equally-spaced bins, where |D| is the
size of the training data. The histograms are normalized
dividing each bin count by the total number of elements to
estimate the probability that the j-th feature takes a value in
the i-th bin of the histogram given a class n, p;(d = i|c = n).
For each feature j, we calculate the class separability as

Aj=3 Y §i(mm), (1)

m=1n=1

¢ is the number of classes and d;(m,n) is the KL distance
between histograms corresponding to classes m and n:
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where b is the number of bins in the histograms. Of course,
other metrics such as the Bhattacharya distance could be
used instead of KL distance.

The features are ranked simply by sorting them in descend-
ing order of the distances A; (larger distances mean better
separability).

2.2 Chi-Square Filter

This filter computes Chi-square statistics from contingency
tables for every feature. The contingency tables have one
row for every class label and the columns correspond to
possible values of the feature (see table 1, adapted from [9]).
Numeric features are represented by histograms, so the columns
of the contingency table are the histogram bins.

Table 1: A 2 x 3 contingency table of a fictitious at-
tribute A1 with observed and expected frequencies.
Expected frequencies are in parenthesis.

Class | Al=1 A1=2 A1=3 Total
0| 31(22.5) 20 (21) 11 (18.5) | 62
1]14(225) 22(21) 26 (18.5) | 62

Total | 45 42 37 124

The Chi-square statistic for feature j is

2
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where the sum is over all the cells in the r x ¢ contingency
table, where r is the number of rows and ¢ is the number of
columns; o; stands for the observed value (the count of the
items corresponding to the cell ¢ in the contingency table);
and e; is the expected frequency of items calculated as:

__ (column total) x (row total)
- grand total

The variables are ranked by sorting them in descending or-
der of their x? statistics.

2.3 Stump Filter

A stump is a decision tree that makes exactly one decision
(i.e., it is a simple if-then-else rule on one variable). Decision
trees split the data by examining each feature at a time
and finding the split that optimizes an impurity measure.
To search for the optimal split of a numeric feature x, the
feature is sorted (z1 < z2 < ... < z,) and all intermediate
values (z; + xi4+1)/2 are evaluated as possible splits using
a given impurity measure. The optimal impurity of each
feature is recorded, and the features are ranked according
to their optimal impurities.

Many measures of the impurity of a split have been pro-
posed, such as the information gain [15], the Gini index, or
the twoing rule [2]. In this paper we use the Gini index,

which is defined as:
Np Np ?
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where n is the total number of instances, n; is the number
of instances in branch b, and ny. is the number of instances
of class ¢ in branch b.

Essentially this filter performs one step in the construction
of a decision tree. Besides being efficient, it provides in-
formation on the optimal thresholds on the values of the
features, which may be of interest to the scientists.

2.4 PCAFilter

Principal component analysis (PCA) produces mutually or-
thogonal linear combinations of the variables in the original
data, such that the direction of the first principal component
(PC) corresponds to the direction of maximum variance in
the data, the direction of the second PC corresponds to the
direction of second largest variance in the data, and so on.
The data are standardized to have mean zero and variance
one before computing the PCs to avoid the dominance of
variables with large variances. The principal components
are the eigenvectors of the data covariance matrix, with the
first PC being the eigenvector corresponding to the largest
eigenvalue. In many cases, the first few PCs explain most of
the variability in the data and therefore provide a compact
representation of the important features in the data.

We adopted a method suggested by Mardia et al. [13] to
use the PCs to eliminate unimportant variables. Starting
with the eigenvector that corresponds to the smallest eigen-
value of the covariance matrix, we discarded the variable
with the largest coefficient (in absolute value) in that vec-
tor. This variable is considered the least important. We
then proceed to the eigenvector that corresponds to the sec-
ond largest eigenvalue and discarded the variable with the
largest coefficient, among the variables not discarded earlier.
We continued with this process until we had ranked all the
variables.

2.5 Sequential Forward Selection and Back-

ward Elimination

Sequential forward selection (SFS) and sequential backward
elimination (SBE) are two classic greedy wrappers. Forward
selection starts with an empty set of features. In the first
iteration, the algorithm considers all feature subsets with
only one feature. The feature subset with the highest ac-
curacy is used as the basis for the next iteration. In each
iteration, the algorithm tentatively adds to the basis each
feature not previously selected and retains the feature sub-
set that results in the highest estimated performance. The
search terminates after the accuracy of the current subset
cannot be improved by adding any other feature.

Backward elimination works in an analogous way, starting
from the full set of features and tentatively deleting each
feature not deleted previously.

In these algorithms, each feature subset is evaluated by es-
timating the accuracy of a classification algorithm using the
candidate subset of features. In this paper, we use 10-fold
crossvalidation to estimate the accuracy.

2.6 Boosting Filter-Wrapper Hybrid

This algorithm is a generalization of Das’ filter-wrapper hy-
brid algorithm [4]. The algorithm starts with an empty fea-
ture set and in each iteration greedily adds one feature, so it
is similar to SFS. The differences are in the way the feature
is selected and in how the algorithm terminates.

Using a (user-defined) filter, the algorithm ranks the features
that have not been selected so far and adds the highest-
ranking feature to the feature subset. Then, a classifier is
trained using the current subset and it is used to classify the
instances in the training set. The weights of the instances
are updated using the normal Ada Boost procedure (giving
more weight to instances misclassified by the classifier) and
the algorithm iterates.

The classifier used to re-weight the instances can be trained
on all the features selected so far, or only on the newly
selected feature. Training on only one feature means that
only simple uni-variate classifiers can be used. Das presents
versions of this algorithm that re-weight the instances in
the training set using boosted decision stumps as well as
decision trees trained on the unweighted training set using
all the features selected so far.

The algorithm can be stopped after an arbitrary number
of iterations or when the performance of a classifier trained
with all the selected features does not improve from the
previous iteration. Das argued that using the accuracy on
the training set was adequate for stopping the algorithm.
We performed experiments using crossvalidation estimates
of the accuracy, but confirmed that the results were not
different. Note that the classifier used to stop the algorithm
is not necessarily of the same type as the one used to re-
weight the training set.

The key idea of this algorithm is that the filter that ranks
the features in each iteration is using the boosted weights.
In this way, the filter is asked to identify the feature that
best discriminates the instances that are hard to classify
using the features selected previously.

For the experiments in this paper, we re-weight the training
set using a naive Bayes trained with the unweighted training
set using all the features selected so far. We also use a naive
Bayes to stop the algorithm. Preliminary tests did not show
large differences in the error rates of the final classifiers when
stumps were used to re-weight instances and trees were used
to stop the algorithm.

3. FIRST ASTRONOMICAL SURVEY

The first data set that we examine in this paper comes from
the Faint Images of the Radio Sky at Twenty-cm (FIRST)
survey [1]. This survey started in 1993 with the goal of pro-
ducing the radio equivalent of the Palomar Observatory Sky
Survey. Using the Very Large Array at the National Radio
Astronomy Observatory, FIRST is scheduled to cover more
than 10,000 square degrees of the northern and southern
galactic caps. At present, FIRST has covered about 8,000
square degrees, producing more than 32,000 two-million pixel
images. At a threshold of 1 mJy, there are approximately 90
radio-emitting galaxies, or radio sources, in a typical square
degree.



(a) (b)

. ®

'
B

(c) (d)

Figure 1: Example radio sources: (a)-(b) Bent-doubles, (c)-(d) Non-bent doubles.

Radio sources exhibit a wide range of morphological types
that provide clues to the source’s class, emission mechanism,
and properties of the surrounding medium. Sources with a
bent-double morphology are of particular interest as they
indicate the presence of clusters of galaxies, a key project
within the FIRST survey. FIRST scientists currently iden-
tify the bent-double galaxies by visual inspection, which—
besides being subjective, prone to error and tedious—is be-
coming increasingly infeasible as the survey grows.

Figure 1 has several examples of radio sources from the
FIRST survey. Note the similarity between the bent-double
in example (a) and the non-bent-double in example (c).

Data from FIRST are available on the FIRST web site (sun-
dog.stsci.edu). There are two forms of data available: image
maps and a catalog. The images in figure 1 are close-ups of
galaxies. The catalog [17] was obtained by the astronomers
by fitting two-dimensional Gaussians to each radio source
on an image map. Each entry in the catalog corresponds
to a single Gaussian. The catalog entries include informa-
tion such as the right ascension (RA, analogous to longi-
tude) and declination (Dec, analogous to latitude) for the
center of the Gaussian, the major and minor axes of the
ellipse, the peak flux, and the position angle of the major
axis (degrees counterclockwise from North). Note that we
differentiate between catalog entries and radio sources, with
a radio source being composed of one or more catalog en-
tries. In this paper, we present results using radio sources
composed of three catalog entries based on the 2000 version
of the catalog.

We decided that, initially, we would identify the radio sources
and extract the features using only the catalog. The as-
tronomers expected that the catalog was a good approxima-
tion to all but the most complex of radio sources, and several
of the features they thought were important in identifying
bent-doubles were easily calculated from the catalog.

We identified candidate features for the bent-double problem
through extensive conversations with FIRST astronomers.
When they justified their decisions of identifying a radio
source as a bent-double, they placed great importance on
spatial features such as distances and angles. Frequently,
the astronomers would characterize a bent-double as a radio-
emitting “core” with one or more additional components at
various angles, which were usually wakes left by the core

as it moved relative to the Earth. We focused on features
that were scale, rotation and translation invariant. In total,
we extracted 99 non-housekeeping features. A full list is
described elsewhere [5].

Our training set is relatively small, containing 195 examples
for the galaxies described by three entries in the catalog.
Since the bent- and non-bent-doubles must be manually la-
beled by FIRST scientists, putting together an adequate
training set is non-trivial. Moreover, scientists are usually
subjective in their labeling of galaxies, and the astronomers
often disagree in the hard-to-classify cases. There is also no
ground truth we can use to verify our results. These issues
imply that the training set itself is not very accurate, and
there is a limit to the accuracy we can obtain.

‘We have analyzed these data with different techniques. Fodor
and Kamath [6] used exploratory data analysis and the PCA
filter explained in the previous section to select relevant fea-
tures. Before the exploratory data analysis, Fodor and Ka-
math pruned the feature set by eliminating features that
depend on the scale or were sensitive to small changes in
the data. However, even with extensive domain knowledge,
reducing the number of features in this problem was prob-
lematic. For example, in consultation with the astronomers,
we generated three different measures of symmetry and three
measures of “bentness.” These measures are clearly corre-
lated, but it is not obvious which one(s) should be preferred
to induce a classifier. After eliminating as many features as
possible, box-plots were used to identify features that dis-
criminate between bent and non-bent double galaxies.

In a different study, Canti-Paz and Kamath [3] applied sev-
eral combinations of evolutionary algorithms and neural net-
works. All the combinations they tried resulted in classifiers
with similar accuracy, except when they used an evolution-
ary algorithm for feature selection. This case resulted in
significantly higher accuracies.

Figure 2 presents 10-fold crossvalidation estimates of the er-
ror rates of a naive Bayes using increasingly large feature
subsets, as explained in the previous section. The figure
shows that the PCA filter and the stump filter find small fea-
ture subsets that result in the lowest accuracy (both reach
12.1%). Interestingly, as we test larger feature subsets iden-
tified by the PCA ranking, the error of the classifier becomes
the worst. The error of naive Bayes using all the features
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Figure 2: Error rates varying the number of features using FIRST data.
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The left graph shows results

considering all 99 features and the right graph shows results considering only the 20 triplet features. The
large dots represent the ranking of the random noise feature.

is 17.3%, so the observed improvements are significant (ac-
cording to a two-sided ¢-test at 0.05 level of significance).

This data is sufficiently small that SFS and SBE wrappers
are practical. SFS found a subset with four features that
resulted in an error rate of 12.63%, not significantly different
from the best result of the ranking methods. On the other
hand, SBE did not manage to eliminate any variables from
this data. Of the four features that SFS found, one is the
total area of the three Gaussians that represent the galaxy.
This feature is irrelevant to the identification of bent-double
galaxies (because the area depends on the proximity of the
galaxy to the Earth, not of any intrinsic property of the
galaxy) and can be eliminated.

Our previous experience with this data suggested that the
best accuracies are usually achieved using features extracted
considering triplets of catalog entries (as opposed to pairs or
single entries). There are only 20 of these features, and the
results are presented in the right panel of figure 2. In this
case the Chi-square and the KL distance filter found subsets
of 10 and 11 features that resulted in the lowest errors (8.9
and 10.5%, respectively). These errors are significantly dif-
ferent from the best results obtained using all the features.
SBE found a subset of three features (but again including
the total area), that resulted in an error of 10%. SBE failed
again to eliminate any feature.

Although the goal of this project was to produce a predictor
to classify galaxies as accurately as possible, it is important
to examine the composition of the feature subsets selected.
As we have noted above, SBE produces impressively small
feature subsets that always include one obviously irrelevant
feature. This is possible since the naive Bayes is insensitive
to truly irrelevant features, but stochastic errors of the cross-
validation estimates may make an irrelevant feature appear
as giving a small advantage.

Except for PCA, the filters rank highly features related to
symmetries and angles, which are features the astronomers

and us expected. PCA selects features that, although unex-
pected, appear to have good discriminatory power, which we
confirmed by a simple exploratory data analysis observing
box-plots and histograms.

4. FUSION DATA

Sometimes the goal in a scientific application is not to build
a predictor, but to discover a set of features that may pro-
vide scientists leads into the problem that interests them.
For example, Guyon and Elisseeff [7] mention an applica-
tion of variable ranking to identify genes from microarray
data that discriminate between healthy and sick patients.
The goal was not to build a classifier to distinguish between
the patients, but to identify genes that code for proteins that
may be used to develop drugs. We present an application
on fusion physics data that has a similar flavor: We do not
intend to build a classifier to identify an “interesting” state
of the plasma, we only intend to identify which candidate
variables are related with the interesting state.

Fusion is a nuclear reaction where lighter elements com-
bine to form a heavier element. This reaction releases large
amounts of energy that, if harnessed and controlled, repre-
sent a sustainable and environmentally sound energy source.
To achieve nuclear fusion, the particles must be hot enough,
in sufficient number and well contained for a sufficiently long
time.

The most successful and promising fusion confinement de-
vice is known as a tokamak. High-confinement mode (H-
mode) is the choice for next generation tokamak devices as
it offers superior energy confinement, but it comes at a sig-
nificant cost due to effects of edge localized modes (ELMs).
ELMs cause rapid erosion of some components in tokamaks
and giant ELMs can destroy other critical components. Re-
cently, a “quiescent H-mode” of operation has been observed
in the DIII-D tokamak operated by General Atomics. Qui-
escent operation is important because there are no ELMs.
The scientists have detected that the presence of an edge
harmonic oscillation (EHO) is associated with the QH-mode.



EHOs appear to provide an enhanced particle transport at
the edge of the plasma that is rapid enough to provide the
needed density control.

Currently, EHOs are identified mostly by visual means using
the Fourier spectrum of the data from a magnetic probe. If
an experiment seems to contain EHOs, data from other sen-
sors (plasma velocity and the distance between the plasma
edge and the tokamak wall) are consulted to verify the ex-
istence of the EHO. A program was developed at General
Atomics that implements the rules that the scientists have
derived from their visual observations to identify EHOs. The
program uses a sliding time window to analyze the data and
assigns an “EHOness” value to each time window. The pro-
gram seems to identify EHOs satisfactorily, but it does not
ezplain the presence of EHOs.

Scientists are interested in knowing which variables are re-
lated to the appearance of EHOs. The underlying hypothe-
sis is that there is something in the data that will be useful
to formulate a theory to explain EHOs. Our approach to
this problem is to identify which of the candidate variables
are relevant to create models that predict the EHOness of
the experimental data.

During experiments with the tokamak, numerous sensors
record vast amounts of data. Each experiment in DIII-D
lasts for approximately six seconds and data from numer-
ous sensors is recorded and stored in a database. We have
extracted features that describe approximately 700 exper-
iments that have been analyzed (visually) by our collabo-
rator. We are using 37 variables that were identified by a
domain scientist as candidates to be involved in the iden-
tification of EHOs. Each time window in the data receives
a label output from the program that detects EHOs. We
restrict the problem to a binary classification using labels
that correspond to high/low levels of EHOness.

The data needs some preprocessing before being input to
the feature selection algorithms. In our case, one of the
major difficulties is that the data from multiple sensors is
not sampled at the same rate or may start or end at different
points in time. This is a typical problem with scientific data
and requires that the data be registered. For a variety of
reasons, some sensors may not have been activated for an
experiment, and in consultation with our collaborator, we
decided to discard the time windows that contain at least
one missing value for a candidate variable.

The size and dimensionality of the data still allows for a
meaningful exploratory data analysis. Visual examination
of box-plots and histograms revealed that the data seemed
to contain many outliers. As an attempt to deal with out-
liers, we use the median value of each variable in each time
window. While this eliminated some outliers, many still re-
mained, and we decided to eliminate the time windows that
contained at least one variable in the top or bottom per-
centile of its range.

As we saw in the previous example with the FIRST data,
depending on manual labeling of the data means that the
training sets available are small. However, the fusion data
does not suffer from the typical lack of labeled data, because
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Figure 3: Error rates varying the number of features
using the fusion data. The large dots represent the
rankings of the random noise feature.

the labeling is performed by the program that implements
the heuristics used by the scientists to find EHOs. After the
preprocessing, our training set consists of 41818 instances,
each described by a numeric vector of the 37 candidate fea-
tures and some housekeeping features (experiment ID, time
ID, etc.) that are ignored in the analyses.

Figure 3 presents the error rates of a naive Bayes trained
on increasingly large feature subsets. As with the FIRST
data, the PCA filter produced a compact feature subset that
results in the lowest classification error of 17.3%. Although
this error is not notably smaller than the error obtained with
all the features (20.9%), the fact that very few features are
necessary to explain the presence of EHOs is interesting.

There is significant overlap between the top ten features
ranked by the different methods, except for the PCA filter
that selects features that the other methods rank lower. Six
of the features were ranked in the top ten by four filters,
and an additional two were ranked in the top ten by three
filters.

The SF'S and SBE wrappers found feature subsets with three
and four features, respectively, and both subsets resulted in
accuracies of 16.2%. There was only one common feature
in these subsets, and it was a feature that appeared consis-
tently in the top ten rankings with the filters (except in the
PCA).

Interpretation of the physical significance of these results is
beyond of our abilities. The goal of this project was to iden-
tify variables that the scientists can use as leads to explain
the presence of EHOs. While these results might provide
useful leads, this is an ongoing project where we are explor-
ing other feature selection methods as well as summarization
of the results in novel ways.

5. REMOTE SENSING DATA

The automated production of maps of human settlements
from satellite imagery is essential to studies of urbanization,
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Figure 4: Example of a region in satellite imagery illustrating the ground truth. The image on the left shows
the inhabited tiles while the image on the right shows the uninhabited tiles. Original satellite image by Space

Imaging.

population movement, etc. While the spatial resolution of
such imagery is high enough to make the identification of
settlements feasible through visual means, it also implies
that the size of the data is so large that such visual identi-
fication is infeasible for all but small regions of the world.
Further, human populations tend to change over time as
cities grow and shrink, making it necessary to update these
maps periodically. In this application, we consider the use
of data mining techniques to automate the production of
these maps of human settlements. We used satellite imagery
from IKONOS [16], which is available both as 4-band (near-
infrared, red, green, and blue) multi-spectral images at 4m
ground sample distance (GSD) and single-band panchro-
matic images at Im GSD. Our initial focus is on multi-
spectral imagery. Given its lower resolution, we can work
with smaller amounts of data, while exploiting the addi-
tional information available in the four bands. Our previous
work [14] has shown that the use of all four bands results in
features that better represent the data than a combination
of the bands into a single band.

Our approach to the identification of human settlements is
as follows. We considered two satellite images—one from a
region in Nebraska and the other from northern Mexico. We
first divided each image into non-overlapping tiles, each of
size 64 x 64 pixels. Next, we extracted four different sets of
image texture features from each of the four spectral bands
in the tiles. We also manually labeled each tile, through vi-
sual inspection, as either being inhabited—i.e., having human
settlements—or as being uninhabited. Figure 4 shows exam-
ples of both types of tiles. A tile was considered inhabited
if it was predominantly composed of man-made structures
such as buildings. We currently restrict ourselves to a binary
classification, though it is possible to handle partially inhab-
ited tiles by considering additional classes. We also removed
tiles that were of uniform intensity. The texture features,
along with the class assignment, form a training set that is
input to a classifier. For our images this resulted in 7419
instances. This classifier is then used to classify unseen tiles
as inhabited or uninhabited.

Image texture can be considered as the spatial dependence
of the pixel values in digital images. While a number of
texture features have been proposed over the last several

Table 2: Number of components in the texture fea-
ture vectors for single-band and four-band images.

GLCM PS wavelet Gabor total

single-band 20 20 24 60 124
four-band 80 80 96 240 496

decades, none has proven superior for all applications, so
deciding on the appropriate features remains a challenge.
This challenge is compounded in the analysis of multi-band
imagery, such as multi-spectral remote sensed images, since
it is also not clear which band(s) should be used to compute
the texture features.

In this work, we extracted texture features based on 1) gray
level co-occurrence matrices (GLCMs), 2) the Fourier power
spectrum, 3) wavelets, and 4) Gabor filters. The GLCM tex-
ture features summarize the spatial co-occurrence of pixel
values at different spatial offsets [8][14]. The following five
features were extracted at four offsets: angular second mo-
ment, contrast, inverse difference moment, entropy, and cor-
relation. The power spectrum texture features consist of the
average of the Fourier power spectrum computed over dif-
ferent regions in the two-dimensional frequency space [14].
The wavelet texture features are the mean and standard
deviations of the energy of the frequency bands in a three-
level multi-resolution discrete wavelet decomposition of an
image [11][14]. The Gabor texture features are the mean
and standard deviations of the outputs of a bank of scale
and orientation selective Gabor filters [12][14].

There are several ways in which the textures from the four
different bands can be combined. Based on our prior work,
we extracted the texture features separately for each of the
four bands, and concatenated them to form a feature vec-
tor of length 496, with 124 features contributed by each
band. With such a long feature vector, it is important that
we use feature selection techniques to keep only the rele-
vant features. Table 2 shows the number of components per
texture feature vector for both single-band and four-band
images. The complete composite texture feature vector for
the satellite image thus contains a total of 496 components.

For the remote sensing data, we performed two sets of exper-



iments. First, we considered the four sets of texture features
independently, and then we combined all the features. Our
goal was to understand the performance of the feature selec-
tion algorithms, identify if any of the features performed bet-
ter than the rest, and see if combinations of features worked
better than each set considered independently. Tables 3 and
4 summarize the minimum error rates for each feature selec-
tion method using each of the four sets of texture features
in isolation and in combination with the naive Bayes and
decision tree classifiers, respectively.

For this problem, we found that decision trees gave better
results than the naive Bayes classifier, often by more than
1% error rate. When the combination of the four sets of
texture features was used without any feature selection, the
naive Bayes classifier had an error rate of 41.8% compared
to the decision tree error rate of 25.6%. This is to be ex-
pected as the naive Bayes classifier is known not to perform
well in the presence of many features and the decision tree
can be considered to have in-built feature selection. Thus,
the explicit use of feature selection benefits the naive Bayes
classifier more than the decision tree classifier. Similarly,
we observe that when we consider only the Gabor features,
which are more numerous than the other features, the error
rate is higher for the naive Bayes classifier (33.2%) than the
decision trees (25.8%).

The PCA filter performed very differently from the other
techniques. It selected texture features that were rarely se-
lected by other methods (e.g. power spectrum features). It
also selected features in the red and blue bands which were
rarely selected by other techniques. Further, it ranked the
noise feature quite highly (often within the top 10% of the
features in the order selected), even though the feature was
irrelevant. We believe this poor performance is the result of
the PCA filter ignoring the class of each instance.

We also found that there was not much difference in perfor-
mance among the remainder of the feature selection tech-
niques, though with the naive Bayes classifier, the PCA fil-
ter and the Stump filter selected features that performed
slightly worse than other techniques.

From a domain standpoint, we also made several interesting
observations about the top ten features that were selected.
These observations were consistent across the two sets of
experiments.

The features corresponding to the green and NIR bands were
selected more often than those corresponding to the blue
and red bands. This may indicate that we could reduce the
computation time as well as storage by focusing on only two
of the four bands.

A majority of the top ten features are from the GLCM cat-
egory, while the wavelet and Gabor features are selected
less frequently. Power spectrum features are rarely selected.
This agrees with our prior experience with texture features
in an information retrieval application [14].

The GLCM features selected in the top ten features are en-
tropy and inverse difference moment. The contrast and cor-
relation features were rarely selected, while the angular sec-

ond moment was selected occasionally. This indicates that
we may be able to reduce the number of GLCM features to
two or three.

The wavelet and Gabor features selected correspond to the
higher frequencies. While we considered three levels in the
wavelet decomposition, only the first two were ever selected
in the top ten features. Similarly, for the Gabor features,
only the two highest of five scales were selected. Further,
for the Gabor and wavelet features, it was mainly the en-
ergy feature that was selected in the top ten; the standard
deviation was rarely selected. These observations can again
be used to reduce substantially both the computation time
for calculation of the features as well as the storage require-
ments.

We also observed that combining all the four sets of texture
features did not provide any benefit. The GLCM features
performed the best, with the Gabor and wavelet features a
close second. In contrast, the power spectrum features typ-
ically had an error rate 1% higher than the other methods.

Table 3: Comparison of the minimum error rate us-
ing the naive Bayes classifier for the different feature
selection methods with the texture features consid-
ered independently and in combination.

Method Pow. Sp GLCM Wavelet Gabor All

No filter 29.0 27.5 28.8 33.2 41.8
PCA 28.0 27.1 28.2 27.8 28.8
KL 27.1 26.0 26.7 26.1 26.0
X2 27.0 26.0 26.5 26.1 26.0
Stump 28.2 26.6 27.8 26.6 26.9

Table 4: Comparison of the minimum error rate
using the decision tree classifier for the different
feature selection methods with the texture features
considered independently and in combination.

Method Pow. Sp GLCM Wavelet Gabor All

No filter 26.5 25.1 24.6 25.8 25.6
PCA 25.9 24.3 24.3 25.4 24.8
KL 25.9 24.5 24.6 25.5 25.1
X2 25.7 24.7 24.6 25.6 24.9
Stump 25.4 24.3 24.4 25.4 24.8

There are several different ways in which this work can be
extended. First, we would like to consider remote sensing
imagery from various parts of the world to better understand
how well our feature selection techniques perform. Second,
we want to expand the ground truth to include tiles which
are a mix of inhabited and uninhabited regions; we expect
that having more than 2 classes will improve the accuracy of
the classifier. Finally, we want to investigate if the observa-
tions made about the importance of various features carry
over to images from other regions in the world.



6. DISCUSSION

The three diverse examples of scientific applications that we
presented in this paper illustrate the difficulties of perform-
ing feature selection in scientific data.

One of the problems faced frequently is that labeling of
examples to form a training set may contain errors. In
FIRST and the human settlements problems the labeling
was performed manually. This limits the size of the training
set, which together with the subjective nature of the label-
ing, restricts the accuracy we can expect from classification
methods. In the fusion data, the labeling is automated, but
it may also contain mistakes, as the program implements
heuristics that may not be valid in all cases.

The three applications demonstrated that preprocessing is
crucial for the success of these projects. Preprocessing is also
crucial in mining commercial data, but the nature of the
preprocessing is different. In scientific data we frequently
generate features from low-level data that may be noisy and
large (we are approaching petabyte ranges in astronomical
surveys and high resolution computer simulations). In the
FIRST data the noisy images were processed into a cata-
log (by the astronomers) creating fairly noiseless processed
data that we used to create high-level features; in the fu-
sion data we smoothed the observations using the medians
of time windows and, since we had enough data, we dealt
with outliers simply by removing them; in the remote sens-
ing data the texture features were processed to ensure that
orientation independent.

Feature selection is an important task in scientific applica-
tions for different reasons. Removing redundant or irrele-
vant features is likely to improve the accuracy of classifiers.
Optimizing the accuracy was the goal in FIRST and the
human settlements applications. Identifying which features
are related to the classification can also provide insights into
the underlying phenomena, which is of interest to the scien-
tists. In some cases, providing these insights is the goal of
the project, as in the fusion data problem.

Generating features is expensive computationally, and us-
ing feature selection to identify which features are worth
generating saves resources that can be used for analyses or
other purposes. In particular, extracting features such as
texture from images or simulation data is very expensive.
Our results with the remote sensing data, for example, indi-
cate that we can save considerable resources by calculating
features from only two out of four bands and wavelet and
Gabor features corresponding only to high frequencies.

Domain knowledge and exploratory data analysis (EDA) are
alternatives to the methods presented here. However, these
alternatives are not always effective. Domain knowledge
helps to identify candidate variables as in the FIRST and
fusion problems, but pruning the candidates is not straight-
forward. For example, we found that it is not obvious which
variables of a highly correlated group should be kept, and
including highly correlated variables into the analysis might
be useful (because of the potential discovery that one fea-
ture presents an advantage in classification accuracy or is
less expensive to generate, or perhaps because both highly
correlated variables are needed).

EDA does not work when the data is massively large or
when each instance is described by many features. In the
case of the remote sensing data, for example, having close to
500 features precludes an effective EDA. Visually examining
500 pairs of box-plots or histograms is too tedious and prone
to mistakes as important features might be overlooked.

Wrappers are very effective feature selection methods when
they can be applied. However, the evaluation of each feature
subset may be computationally expensive and these meth-
ods are impractical for large data sets. We experienced this
when trying to reduce the entire set of features in the remote
sensing data.

On the other hand, filter methods are very efficient. Some
filter methods (like the KL distance filter and the Chi-Square
filter used in this paper) require only one sequential pass
through the data. This efficiency makes it practical to exe-
cute several algorithms and identify highly relevant features
that are ranked highly by several methods. This approach
suggests future algorithms that use ensembles of ranking al-
gorithms.

Our experience suggests that simple methods work well in
many cases. While using non-linear classifiers and more so-
phisticated feature selection methods might result in higher
classification accuracies, the results obtained with simpler
techniques, such as the ones presented in this paper, are
adequate to identify relevant features in many applications.
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