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Abstract - Data warehouses and data marts have been
successfully applied to a multitude of commercial
business applications. They have proven to be invaluable
tools by integrating information from distributed,
heterogeneous sources and summarizing this data for use
throughout the enterprise.  Although the need for
information dissemination is as vital in science as in
business, working warehouses in this community are
scarce because traditional warehousing techniques don’ t
transfer to scientific environments. There are two
primary reasons for this difficulty.  First, schema
integration is more difficult for scientific databases than
for business sources, because of the complexity of the
concepts and the associated relationships.  While this
difference has not yet been fully explored, it is an
important consideration when determining how to
integrate autonomous sources. Second, scientific data
sources have highly dynamic data representations
(schemata).  When a data source participating in a
warehouse changes its schema, both the mediator
transferring data to the warehouse and the warehouse
itself need to be updated to reflect these modifications.
The cost of repeatedly performing these updates in a
traditional warehouse, as is required in a dynamic
environment, is prohibitive. This paper discusses these
issues within the context of the DataFoundry project, an
ongoing research effort at LLNL.  DataFoundry utilizes a
unique integration strategy to identify corresponding
instances while maintaining differences between data
from different sources, and a novel architecture and an
extensive meta-data infrastructure, which reduce the cost
of maintaining a warehouse.

1. Introduction

Over the past several years, there has been an explosion
in the amount of information available to both business
and scientific enterprises.  Individuals and corporations
routinely use computers both to record proprietary
information and to distribute public information via the
WWW.   The challenge facing data managers today is
how to fully utilize this wealth of information without
overwhelming either the end user or the system
maintainers.  Because of the competitive advantage
provided by better data analysis, business information
processing has driven technological advances in data
warehousing and analytic processing. Within this
community, relational databases are accepted as
standards for transaction-based systems and SQL
provides a consistent, well-known data access and
manipulation language.  Several commercial tools, from
companies such as Red Brick, Cerebellum, Sugent,
Informatica, VIT, and many others, address the steps

involved in creating, maintaining, and analyzing a
warehouse.
Unfortunately, scientific applications face unique
problems that are not being addressed by those tools.
While part of the problem arises from the lack of
standardization in scientific domains – for example,
information sources do not share a common terminology,
data representation, or data management architecture –
the primary problems are the subtle but complex
relationships between data and the dynamic source
schemata. DataFoundry is an ongoing research effort at
LLNL focused on making data warehousing feasible for
scientific environments.  DataFoundry has concentrated
on bioinformatics both because these problems are
rampant in that domain, and because failure to unify the
publicly available data sources will hamper scientific
progress in that field; however, the solutions that we
propose are appropriate for most scientific domains.

One of the long-term goals of bioinformatics is
to enable advanced computer analysis for identifying
similarities (homologies) between DNA and protein
sequences and structures.  A specific and significant
application of this analysis would be in the area of
protein fold recognition and comparative modeling.
Research in this area is based on the hope that a better
understanding of sequence patterns, protein structures,
and the complex relationships between them will make
structure prediction feasible.  Because full-scale physics
modeling is currently impractical, this knowledge must
be obtained by careful examination of known protein
structures, folding properties and propensities, protein
and DNA sequences, and genetic organization and
expression data.  While much of this information is
available on the Web, it is spread across multiple
community databases, each using its own concepts,
semantics, data formats, and access methods.  Currently,
the burden falls on the scientist to resolve conflicts,
integrate the data, and interpret the results.  More often
than not, this barrier proves too difficult to overcome,
and data is under-exploited.
The goal of DataFoundry is to reduce the cost of creating
and maintaining a semantically consistent view of the
data from several dynamic, heterogeneous data sources.
To evaluate our approach, we have developed a
prototype data warehouse currently in use by structural
biologists at LLNL.  The prototype has three levels of
interface: web-based forms for the novice user; a
graphical query editor for intermediate level users; and
direct SQL access through C++ and Perl for the more
advanced user.  To date, Protein Data Bank (PDB) [5],
SWISS-PROT [1], SCoP [11], and dbEST [3] data have
been integrated into this framework.  Additional sources
will be incorporated, allowing us to support not only
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protein structure research, but also functional genomics.
DataFoundry is distinguishable from other efforts in the
bioinformatics community, and the commercial data
warehousing world, by three salient points:

1) A unique association strategy – By linking related
inter-database data, as opposed to integrating
them by defining a single, correct view, we
provide consistent views of instance data when
appropriate while still maintaining the
heterogeneity between the instances.

2) A novel architecture – We have designed an
architecture that improves both reliability and
performance (when compared to a federated
architecture), while still providing full access to
the original data.

3) A meta-data based infrastructure – We have
defined a meta-data based mediator generator that
substantially reduces the cost of creating and
maintaining a warehouse.

This paper describes the challenges involved in
successfully performing schema and data integration in
highly dynamic environments, and presents
DataFoundry’s approach to addressing them.  While
there are several other important issues that must be
resolved in any information management venture, such
as data cleaning and consistency, we do not have
sufficient room to explore them here.  We begin with an
overview of related efforts in the next section.  Section 3
briefly discusses the problems associated with current
schema integration techniques before presenting our
approach. Section 4 describes the implications of
architecture choices on warehouse maintainability, and
finally, Section 5 briefly discusses our meta-data
infrastructure.

2. Background

Scientific applications face problems not being
addressed by commercial tools. In domains such as
genomics, information sources do not share a widely
accepted format for storage or access; some rely
exclusively on flat files while others utilize relational or
object-oriented databases.  Moreover, the types of
information provided by these sources, and the
corresponding data representations, are continuously
evolving.  Few existing tools allow the modeling and
management of the complex data encountered in
scientific applications.  In this section, we look at some
of the approaches to data management in bioinformatics
and compare them with DataFoundry.

The Object Protocol Model (OPM) [6],
developed at Lawrence Berkeley National Laboratory,
provides a set of tools for scientific data management.
Representing scientific experiments requires more
complex data models and modeling facilities than are
provided by commercial relational database management
systems (RDBMSs). Thus OPM uses an object-oriented
data model and includes a protocol class for modeling
experiments. The OPM toolset consists of a schema
editor for specifying and managing OPM schemata, a
graphical querying and browsing tool, and tools for
conversion between relational and OPM schema
definitions to work with existing scientific databases.

The OPM toolset has been extended with facilities for
querying a multi-database system linking several
databases. This toolset provides complimentary
functionality to DataFoundry, in that it addresses a
different set of bio-informatics challenges.

The CPL/Kleisli [13] project (U Penn) also
provides tools to manage the transformation of data
between databases, and to provide integrated access to
multiple data sources. The transformation and integrated
access is achieved through constraints and rules specified
in special purpose languages. Kleisli follows a multi-
database approach to integrated access across multiple
data sources. The multi-database approach does not
provide an integrated schema across the source
databases. Hence users are required to directly specify
the rules and constraints involved in queries for
integrated access to the databases.  While extremely
general, this approach prevents casual users, who are
unfamiliar with the details of the individual data sources,
from fully utilizing the resource.

The aim of The Stanford-IBM Manager of
Multiple Information Sources (TSIMMIS) [10] is to
provide tools for integrated access to multiple
information sources. TSIMMIS uses a self-describing
object model, called the Object Exchange Model (OEM),
and wrappers to translate between OEM and native
database languages/models.  Mediators are used as query
managers to locate the data sources containing the
requested information. The thrust of this project is to
provide access to diverse and dynamic information
sources which are often unstructured or semi-structured
such as the World Wide Web. The usefulness of this
approach in a scientific application will depend greatly
on how easily data in the particular domain can be
represented using OEM.

The EasyQuery program [15] from
CyberConnect provides graphical query access to
multiple databases in the biological domain. The query
editor has facilities to import and display the relational
schemas of geographically distant community databases.
Users can then pose queries on these schemata, which
will be executed at the corresponding sites. Meta-data is
maintained about the participating databases. This is
used to provide information to users on correct ways of
combining information across databases using join
queries. This approach requires the use of hard coded
information on relationships between participating
databases: adding new databases requires updating inter-
database relationships.

There are many other approaches to interacting
with scientific data – for example, web based forms –
however, these approaches significantly limit the user’s
ability to interact with the data and are not considered
further.

3. Integrating Heterogeneous Data Source
Schemata

DataFoundry uses a global schema to present a
coherent view of the data from several sources.  Defining
such a schema involves identifying related concepts in
different data sources, then mapping them to a common
format, while resolving the syntactic and semantic
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differences that occur between the individual
representations. Traditionally, a global schema is created
by conceptually overlaying the source schemata, with
similar concepts and attributes superimposed.  Once the
global schema has been identified, translation functions,
or mediators, are created to map source concepts to the
global representation.  While this approach provides a
consistent view of the data to the users, it defines an
implicit relationship between attributes from different
data sources.  This relationship may produce unintended
results either because of difficulty identifying
corresponding instances between the databases (the
object identity problem) [9][12] or difficulty
understanding how to merge data assumed to be identical
but that actually contains minor differences [1].

For example, consider the protein representations
shown in Figure 1(a) and (b).  They both include name
and sequence information.  However, the first also
contains the protein’s function, while the second includes
the tissue that the protein was found in.  If these concepts
are overlaid, the resulting composite representation is
shown in Figure 1(c).  While this is a reasonable
representation of the concept, serious problems may arise
in practice because of the implicit relationship between
the attributes from different data sources.  Consider a
protein in database (a) that is carcinogenic, and its
corresponding entry in (b) which states that it occurs in
the breast.  While these instances may share same name,
they could have slightly different sequences.  This type
of mismatch is common in both business and scientific
domains.  The important distinction is that while in
business there is a single, correct value, this is not always
the case in scientific domains.

When these databases are combined, the mediator
must decide whether these instances represent the same
protein.  If the decision is that they do, they will be
combined in the resulting global view; otherwise they
will remain distinct.  Neither choice is entirely
acceptable.  If the instances are combined, the mediator
must select one of the original sequences to represent the
resulting instance.  As a result, some of the heterogeneity
information is lost.  Conversely, if the instances are not
combined, the association between the function of the
protein and the corresponding tissue is not identified.
Thus, queries such as return the sequence of all cancer
related proteins found in the breast will not produce the
expected results.  This simple example suggests

resolving the conflict by adding a second sequence
attribute to the global definition, and mapping each of
the original sequences to exactly one of these global
attributes.  While this initially appears to be a reasonable
solution, the complexity of the resulting queries and data
structures quickly becomes too complex to manage in the
face of multiple data sources. To reduce the potential for
misunderstanding, we have taken a different approach
which is described in the remainder of this section.

3.1. Natural Keys

Instead of overlaying complex concepts, such
as proteins, primitive concepts likely to be represented
within multiple data sources are identified.  Inter-
database relationships are permitted only between these
concepts.  These base concepts form natural keys
between databases, and represent fundamental real world
concepts that are intrinsically sharable and have
precisely defined semantics. Identifying natural keys
requires careful examination of each data source as well
as an expert understanding of the underlying concepts.  If
overly simplistic concepts are chosen (e.g. residues), it is
extremely difficult to identify and represent interesting
inter-database relationships.  On the other hand, if
complex concepts are chosen, implicit relationships may
be created resulting in the problem previously described.
We have found that natural keys are usually a single
characteristic associated with all definitions of a more
complex concept.  While each definition may use
different semantics and data formats to represent these
characteristics, the semantics will be closely related and
easily generalized to a single, inclusive definition.  For
example, when integrating PDB and SWISS-PROT, we
identified a protein sequence as a natural key: protein
sequences are a basic concept found in several data
sources, with obvious mappings between the various
representations.

3.2. Inter-Database Correspondences

We have identified three categories of inter-
database relations1 based on natural keys: traditional
relationships, identity, and similarity.  Traditional
relationships between natural keys, for example person A
wrote article B, are represented as normal relationships
within the global schema, and are instantiated on the
local data store.  Since we treat these relationships in the
traditional way, they are not discussed further.

The identity relationship relates those instances
of natural keys in different databases that appear to
represent the same object.  This relationship explicitly
defines the association between natural keys which is
implicitly defined in the overlay approach.  By making
the relationship between corresponding instances
explicit, we are able to preserve data heterogeneity while
maintaining the connection between all attributes
associated with a given concept.  Consider again the two

                                                                
1 Relationships that occur solely within a single
database are trivially included within the global
schema when the enclosing source schema is
integrated
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Figure 1  Simple Schema Integration
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structures represented in Figure 1(a) and (b); in our
approach the global schema would contain both original
structures related through this relationship on the
sequence attribute (shown by the dotted line). The
heterogeneity present in the sources remains, but the
correspondence between the tissue and the function is
also identified. Sometimes it is useful to have a less
stringent association between natural keys; for example,
sequences that are homologous but not identical.  For
these cases, the similarity relation is used.  Similarity
identifies an association between attributes that are
probably not the same, yet are weakly related through
some statistical equality operation. As a more concrete
example, consider the protein sequences that are used as
natural keys for PDB and SWISS-PROT.  Sequence
homology is used to identify both identical proteins,
based on exceptionally high homology scores, and
similar proteins, based on significant but lower scores.
Because we allow minor variation in sequences to be
counted as identical proteins, we can provide users with
all of the information related to a specific protein while
still maintaining the heterogeneity found in the sources.
The similarity relation allows us to identify closely
related proteins, such as those in the same family.

Because natural keys are fundamental
concepts, their representation is unlikely to change
significantly, even if the source schema is modified.  By
limiting inter-database correspondences to these
concepts, the effects of a schema change can be isolated
to the small portion of the global schema corresponding
to the data source.  At the same time, the association
between identical concepts provides a rich environment
within which experienced users can ask complex queries
over all the data.  Creating explicit relationships between
these concepts significantly reduces the effort required to
adapt to schema modification, while permitting all of the
information about an instance to be easily identified and
retrieved.

4. The DataFoundry Architecture

Traditionally, three approaches have been used
to access data from multiple external, heterogeneous data
sources: multi-databases, federated databases, and data
warehouses.  Multi-databases [1] provide a simple
connection between systems, permitting the user to
create queries across multiple databases at the same time.
Unfortunately, because this approach does not provide a
consistent view of the data, users are expected to
formulate extremely complex queries.  In particular, for
each query, a user must understand the internal
representation of each relevant source, manually resolve
syntactic and semantic conflicts, and construct queries
using the sources’  native query language.  Unless every
potential user is intimately familiar with the detailed
workings of each connected data source, this is not a
desirable approach.

When providing a resource to a broad
community, it is critical to provide a consistent interface
to the data.  To this end, federated databases [14] define
an integrated schema over the subset of available data
that is interesting to the federation as a whole.  This
global schema represents a virtual database, combining

data from each participating source to form a single,
consistent representation.  Queries posed over a
federated database are sent to the applicable data
sources, after being translated into the native query
language, and the results are combined before being
passed on to the user.  There are three drawbacks to this
approach.  First, in order to process queries in an
efficient way, sources participating in a federation may
be required to contribute resources (e.g. query
capabilities, storage facilities) to the federation.  Second,
because data is not represented locally, this approach is
susceptible to long delays when answering queries.
Third, misleading or incorrect results may be returned
when a data source is unavailable, even temporarily.

To reduce the amount of network traffic and
improve query results, data can be combined in a single
database – resulting in the traditional, monolithic data
warehouse.  This approach introduces two new
problems: first is the tremendous amount of storage
required to keep all of the data (in some cases several
terabytes) within a single database. To avoid this
problem, warehouses typically contain only summary
and aggregate data.  Obviously, warehouses using this
summarized data provide very different types of
information than the original data sources, and may be of
limited use in a scientific environment.  Second is the
difficulty keeping the data current and the warehouse
fully functional.  In business domains, such as
accounting, the source schemata are quite stable (e.g. the
notion of an account rarely changes).  In dynamic
scientific areas such as genetics, existing entries may
change based on new information, and source schemata
are rapidly evolving with our understanding of the
underlying biology.

DataFoundry combines many of the advantages of
the systems described above to form a unique approach
to database integration.  It provides a consistent view of
integrated data to the users.  It uses a local data cache to
reduce network traffic and improve performance and
reliability.  DataFoundry is based on a mediated data
warehouse architecture [10], shown in Figure 2, which is
a combination of the monolithic warehouse and
federated database approaches. This architecture
provides a global schema containing a subset of the
information in the data sources, similar to a federated
database.  However, the DataFoundry schema is
expanded to include some summary and aggregation
information.  A local data store contains both this
additional data, and the most important and most
frequently accessed source data.  The result is a
consistent view of the data and greatly improved query
performance, with the ability to pose ad hoc queries
against the original domain data.

The subset of data cached locally is initially
identified when the source is first integrated, but may be
refined over time.  Queries involving data not
represented in the local store require accessing a remote
site, as in a federated database.  For this data, access
methods are provided to obtain the information on
demand – automatically converting the data from the
source semantics and format to the corresponding global
representation.  Other than the time delay in accessing
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remote data the user is unaware of which data is locally
cached, and which is remotely accessed.

This architecture improves both base approaches in
important ways.  It improves the federated approach by
increasing reliability and decreasing the cost of
participating in a federation.  By providing a single
collection point for warehouse resources, the local store
transfers the participation cost from the data sources to
the warehouse.  This is critical in an environment where
individual data sources may not have resources to
contribute to a federation.  The consolidation into a
single location also reduces network traffic when the
amount of data returned is large, when there are joins in
the query, or when the network connection slow.
Finally, by acting as a cache for the data sources,
DataFoundry can provide correct results when data
sources are over-burdened or unavailable.  This approach
also improves upon traditional warehouses by
maintaining access to detailed information while
reducing storage costs by not duplicating non-critical
data.  If the identification of “critical”  data is done
properly, this approach ensures the warehouse remains
useful to research scientists while reducing the impact of
source schema changes.  These benefits improve the
overall system performance and decrease the investment
required to create and maintain the warehouse.

Because data is cached locally, it must be regularly
updated to reflect changes in the source.  Currently, we
are using simple batch processing techniques to
automatically download and integrate the new data from
each data source nightly.  This technique, while
primitive, is effective in an environment such as
genomics where data is monotonically increasing and
changes to existing data are rare.  When modifications to
either the schema or previously entered data are
identified, the appropriate updates are explicitly made by
the administrator.

5. Data Integration

Once a global schema has been identified, the
data from the various sources needs to be converted into
it.  The traditional approach to data integration has been

to write a complex wrapper that parses data from the
source, converts it into the target representation and
passes it to the warehouse.  Unfortunately, when the data
source changes its representation, this large and complex
program needs to be modified to properly interpret the
new format. In addition, when a new source is added to
the warehouse, a new program must be generated.
Reducing the time required to modify and create the
appropriate mediators and wrappers is crucial to the
long-term feasibility of the warehouse.  DataFoundry
makes extensive use of meta-data to decrease the effort
required to adapt to these changes by automatically
generating an API and mediator.  We have written a
“compiler”  (called the mediator generator, or MG) that
translates declarative, highly-structured, meta-data into
C++ classes.

 The most important question regarding this
meta-data is “What is the exact set of information needed
to generate the mediators and API?”   In order to answer
this question, we need to look at what tasks the MG must
perform in generating the mediator.  Most of the
mediator generation is straightforward parsing and code
creation; however, the MG also needs to be able to
resolve the type, format, structural, and semantic
conflicts that arise between the data sources and the
warehouse.  In order to resolve type and format conflicts,
the MG needs information about the various data
concepts, their characteristics and data formats,
(abstractions) and ways to convert between them
(transformations).  Resolving structural conflicts
requires mapping information describing how the
abstractions relate to the database schema. Finally, in
order to resolve semantic conflicts, the MG uses
information about the abstractions, database schemata,
mappings, and legal transformations.  Since this is all of
the functionality required by the mediators, these four
types of meta-data are sufficient for the MG to perform
its task.

The MG uses the meta-data to define
mediators that accept data from a wrapper through an
API, transform the data appropriately, and enter it
directly into the warehouse.  To incorporate a new data
source into the warehouse, the administrator first extends
the abstraction definitions where appropriate, ensuring
the required transformation methods are defined, then
uses the MG to create the API and mediator.  The
administrator must also write a wrapper to read the data
from the source and pass it through the API to the
mediator.  Because the wrapper is external to the MG,
tools such as Lex/Yacc may be used to generate it.  For
example, when we integrated the SCoP taxonomy
database, we defined warehouse tables to represent
taxonomy information; extended the abstractions to
include information about taxonomies; updated the
mappings to the warehouse; generated a new mediator;
and wrote a parser that reads the flat file representation
of SCoP and passes the data to the mediator.

The use of meta-data to create the mediators
will significantly reduce the effort required to maintain
the warehouse in a dynamic environment – we have
already demonstrated a significant reduction in the time
required to integrate new sources into our prototype.

wrapper

Source
Database A

wrapper

Source
Database B

wrapper

Source
Database C

API

Data
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Figure 2  DataFoundry Architecture
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Adapting to minor schema changes often requires only
modifying the parser to read the new format.  Significant
changes may require the meta-data to be modified and a
new mediator created. Additional information about the
meta-data and the MG can be found in [7][8].

6. Conclusions

The inability to fully utilize the wealth of
publicly available information is a significant problem,
not only for bioinformatics, but for scientific domains in
general.  While commercial products are currently
available, they are focused on business applications and
do not meet the unique needs of scientific domains.  In
particular, they do not address either the subtle data
integration issues resulting from the complex
relationships between scientific data, or the more
obvious schema integration issues resulting from the
dynamic nature of the sources.

DataFoundry addresses these problems by
utilizing a mediated warehouse architecture to provide a
consistent interface to scientific data.  This architecture
reduces the overall storage requirements of the
warehouse, while maintaining access to all available
data.  Furthermore, our unique view of inter-database
correspondences and extensive use of meta-data
differentiate this approach from others while providing a
significant reduction in maintenance costs. While
DataFoundry has focused on the genomics domain, it
presents a general-purpose approach to managing
scientific data, allowing scientists to better utilize the
data they have worked so hard to produce.
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