M eta-Data Based M ediator Gener ation

T. Critchlow, M. Ganesh, R. Musick
Center for Applied Scientific Computing
LawrenceLivermore National Laboratory (LLNL)
{ critchlow | ganesh | rmusick} @IlInl.gov

Abstract

Mediators are a critical component of any data
warehouwse; they transform data from source formats to
the warehouse representation while resolving semarntic
and syntactic conflicts. The dose relationship between
mediators and databases requires a mediator to be
updaed whenever an associated schema is modified.
Failure to quickly perform these updates sgnificantly
reduces the reliability of the warehouse because queries
do ot have accessto the most current data. This may
result in incorrect or mideading responses, and reduce
user confidence in the warehowse. Unfortunaely, this
maintenance may be a dgnificant undertaking if a
warehouse integrates sveral dynamic data sources. This
paper describes a meta-data framework, and associated
software, desgned to auomate a significant portion of
the mediator generation task and thereby reduce the dfort
involved in adapting to schema charges. By allowing the
DBA to concentrate on identifying the modifications at a
high levd, instead of reprogramning the mediator,
turnaround time is reduced and warehouse reliability is
improved.

1. Introduction

One of the most formidable problems faced in
accesdng data from multiple heterogeneous urces is
resolving schema and data @nflicts. In evolving
scientific domains such as genetics, this problem is
compounded by frequent source schema cianges. The
DataFoundry projed at LLNL is aimed at supporting the
domain scientists who must rely on data from these
dynamic sources. DataFoundry uses a mediated data
warehouse achitedure, supported by a carefully designed
domain-spedfic ontology. This architedure is able to
rapidly adapt to source schema danges by automaticaly
generating mediators diredly from the meta-data defined
in the ontol ogy.

Mediators are criticd components of data
warehouses. They are responsible for transferring data

from the source databases' to the warehouse, and for
resolving all conflicts between the source and target
representations. In traditional data warehouses, mediators
regularly repopulate the warehouse and ensure that the
warehouse dataremains up to date. In a warehouse using
partially materialized views of distributed data, however,
the mediators are dso responsible for dynamicdly
providing access to non-materialized data This
additional responsibility makes high reliability imperative
since failures diredly affed the usability of the
warehouse. Unfortunately, whenever a schema canges,
the associated mediators need to be updated to refled the
modifications. Until these danges are incorporated,
warehouse usability is compromised; in the best case,
queries return incomplete or dightly out of date data; in
the worst, mideading a incorred results. It is criticd for
the long-term feasibility of the warehouse to ensure these
interruptions are as short as posshble and do not adversely
affed the perceived reiability. In domains where schema
changes are infrequent this is not a significant concern.
However, in highly dynamic scientific domains frequent
schema modifications are aredity that must be faced.

To evaluate the dfeds of different design dedsions,
DataFoundry has developed a prototype data warehouse
toaidin geneticsreseach. Geneticsisan ideal domain in
which to validate this reseach for two reasons. Firdt, it is
an evolving scientific domain in which the interactions of
the underlying data ae not yet fully understood. As
experimental techniques are developed, and
understanding o the data grows, the database schemata
adapt to reflea this new knowledge. Given the spedl of
discovery in this area, the corresponding rates of schema
change ae etremely high: based upon previous efforts,
we aticipate one schema modification every 2-4 weeks
onceall of the desired sources are integrated. Second, by
successfully providing a warehouse linking several
existing community databases, DataFoundry will provide
an invaluable resource to genetics reseachers. While
somewhat independent of computer science research, this
vali dation ensures the practicality of the approach.

! We use database to refer to any managed colledion of
data including, but not limited to, flat files, relational
databases and object-oriented databases.

In many domains, warehouse maintenance ca be
addressed by straightforward techniques. Unfortunately,
these approaches result in an unacceptable amount of
down-time in scientific domains, due to the frequency of
schema modifications. DataFoundry makes extensive use
of a caefully designed APl and antology to overcome
this problem by automaticdly generating the mediators
diredly from the meta-data. Thus, when a schema
changes, the DBA nedls to update only the ontology, as
compared to diredly modifying the mediator code. This
has the additional benefits of improving code reuse,
providing a mnsistent API to wrappers, and providing a
useful knowledge base for other applications duch as a
high level interface to the warehouse and automatic
schema evolution.

This paper describes the DataFoundry meta-data
representation and how it is used to automaticaly
generate mediators, thereby reducing the effect of source
changes and improving access to heterogeneous data
sources. A comparison with other reseach efforts is
provided next in sedion 2, followed by a brief overview
of the DataFoundry architedure. Sedion 4 describes the
information represented in the ontology, and Sedion 5
outlines how it is used to generate the mediators. Finally,
we onclude with a summary of our approach and autline
future reseach diredions.

2. Related efforts

This sedion highlights a few of the many research
projeds in these aeas and, where appropriate, compares
them to DataFoundry.

Mediators [21] are software agents which act as
trandators for data encapsulating all the routine work of
converting data from one format to another. While, in
theory, these mnversions may be arbitrarily complex, in
practice they are often limited to trivia operations.
Mediators may also include the ability to identify the data
sources providing the requested information and
dynamically forward the request to them.

The TSIMMIS [3][7][8] projed at Stanford uses
mediators for transformation of data from several diverse
sources. TSIMMIS, like most mediated architedures
(including InfoSleuth [2], DIOM [14] and Disco [20]),
does not provide a global schema and delegates conflict
resolution to the end user. A serious problem with pure
mediated architedures is data source failure; when a
source is unavailable, incorred query results may be
returned. Disco [20] attempts to addressthis problem by
returning the uncompleted portion of the query, which can
be reevaluated later. DataFoundry takes a different
perspedive. A global schema is provided on the
asaumption that the end user will not be familiar enough
with the individual sources to resolve subtle nflicts.
Further, by utilizing the warehouse as a local cache, the

effeds of an unavailable source @n be significantly
reduced.

Ontologies [9][10] store knowledge about real-world
objeds and their relationships. They enable high-level
queries to be posed dredly against a database, instead of
embedding them in application programs. Cyc [13] isone
of the firgt, and best known, ontology-based projeds. It
defines a large base of common-sense knowledge that
works reasonably wel in many environments
Unfortunately, it lacks the spedalized vocabulary
required to be dfective in terminology-rich domains.
When ontologies are used in spedfic domains, such asthe
medical field, the chalenge is to conceptudly link
multiple information resources that use different
terminology [6]. The OBSERVER projed [15][16] is
aimed at providing a framework for interaction among
existing antologies in a global information infrastructure.
This project is aimed at bibliographical information and
uses a thesaurus to resolve terminological differences
among the ontologies. DataFoundry links biological
databases that do not provide significant ontological
information [6], and implements a global ontology as a
facilitator for information integration from disparate
sources. Other applicaions of ontologies have been in
linguisticsrelated fields to help naturd language
processng [17]. While DataFoundry intends to explore
using the ontology not only as aresourcefor generation of
mediators, but also to support the query processor and
guide schema evolution, appli cations such as NLP are not
currently being considered.

Materialized views [11][19] of source data have long
been used as a mechanism for fast accessto data To
maintain consistency a well-defined view update policy,
based on the number and importance of changes to the
source is required. In data warehouses, partialy
materialized views [1] have been proposed as a method to
reduce data communicaion between the sources and the
warehouse. DataFoundry will use partially materialized
views to improve query response time by caching the
most frequently accessed data Medanisms to
dynamically refresh warehouse data when it is not
available or isincons stent are also included.

3. The DataFoundry architecture

The goal of DataFoundry is to provide integrated
accessto multiple, evolving, domain databases through a
consistent interface To facili tate this, we have dosen an
architedure that combines the advantages of tightly-
coupled federated databases [18] with those of data
warehouses [12]. Federated databases provide a global
schema for the underlying source databases, each of
which retain control and management of their data
Queries posed against the global schema ae trandated
into individual queries againg the source databases, and

Voo

Ontology

Applicaion User Interface

Mediator
Interfacel

wrapper wrapper
Source Source
Database A Database B

She—..
-

Warehouwse
Mediator
Mediator
Interface2
el] wrapper

Figure 1. The DataFoundry architecture

their results are mwmbined before being returned to the
user. This query mecdhanism is made possble by the
mappings between the information contained in the
source databases, maintained in the global query
processor. Traditional data warehouses, on the other
hand, materialize the summarized data in a local store
which permits fast accessto the warehouse data. Data
from different sources is merged together in a batch
operation and stored at the warehouse to provide
immediate responses to queries. This scheme requires
frequent refreshes to the local cache if the source data
changes often.

DataFoundry seeks to support scientists in evolving
reseach areas where the source data and schemata change
frequently — a god for which neither a federated database
nor a conventional data warehouse ae mpletey
satisfactory information architecures. To quickly adapt
to the changes in source database schemata DataFoundry
uses a mediated [21] data warehouse achitedure
supported by a domain-spedfic ontology. In this
architedure, only data that is frequently accessed is
materialized in the warehouse @che, thus providing fast
accessfor most queries. The overall dataflow architedure
in the DataFoundry is sown in Figure 1. The main
components in this architedure ae the ontology, the
mediator interfaceto the source databases, the applicaion
user interface, and the data warehouse. Although the
application user interface is not currently implemented,
the remainder of this sedion describes the architedure as
if it were completed.

To access data from the warehouse, an application
gueries the gplication user interface The interface
consults the ontology to determine whether the data is

available in the warehouse or if it needs to be dynamicdly
retrieved from the source databases. Access to data
sources is through the mediator interfaces which
transform the data from the source format to the
DataFoundry format and return the results to the
warehouse.

Figure 2 outlines the steps involved in loading the
warehouse: ohtaining data from the source transforming
it to the warehouse format, and entering it into the
warehouse. In practice these steps are not aways
digtinct. Often, a single program will parse the inpuit fil e,
and transform the data before storing it in an internal
spedfication. This internal representation can then be
entered into the warehouse, posshly after further
transformations. Intermingling o wrapper and mediator
is permitted because the mediator APl israrely defined.

A caefully designed API is critical to reduce the
maintenance requirements of the warehouse; it all ows the
ontology and warehouse to evolve without affecting the
wrapper. DataFoundry uses a well -defined API, based on
the ontology concepts, to provide a clea separation
between the mediator and wrapper functionality.
DataFoundry uses an objed-oriented modd for the
description of data items internaly, without placing any
restrictions on the data model used for data storage in the
warehouse or in the source databases. The wrappers are
responsible for the trandation between the underlying
data model and the global object modd.

Mediators in the DataFoundry are epeded to
transfer query requests to appropriate data sources and
manage the integration of information returned from the
different sites. In addition, they are dso designed to act
as managersfor deteding changesin source databases and

' Medigtor |
Data Source A Wareholse

i Input Output

— /7| > —
'| Class Class :
e |

Data Popuation
Wrapper Transformations Code

Figure 2. The integration process.

propagating updates in the materialized data to the
warehouse @ache.

4. The ontology

The DataFoundry ontology is a colledion of
Ontolingua® [9] classes and instances that define three
types of knowledge: formal definitions of databases,
mappings and methods, concrete instances of these
descriptions; and domain-spedfic abstractions
representing knowledge about a particular fild. The
formal definitions are provided for completeness and are
not discussed further — the interested reader is direded to
[5]. Ingtead, we focus on the domain spedfic abstractions
and three of the ncrete ingances. the database
descriptions; the mappings between the abstractions and
descriptions; and the transformations between different
abstraction representations. These four concepts provide
al of the meta-data necessary to generate mediators
automaticdly.

The remainder of this sedion uses the eamples
shown in Figue 3 and Figue 4, to describe these
components in detail. First, however, we offer a brief
introduction to the genomic terminology used in these
examples. Proteins are produces by genes to perform a
spedfic function. They are generally represented as a
linea sequence of amino acids, but are actually complex
3-D structures uniquely determined by these sequences.
There ae 20 amino acids, each of which iscomprised of a
colledion of atoms (primarily carbon chains) and may be
represented by either a 1-character or 3-character
abbreviation. For a given sequence, each atom has a
unique primary position in 3-D space athough some
atoms may occur in aternative positions with a given

2 Ontolingua represents knowledge in a generaized
format so it cen be edly transferred to multiple
knowl edge reasoning systems.

probability (this is cdled the postion’s temperature).
Figure 3 shows a mapping between the atomic positions
in the warehouse and the arresponding abstraction.
Figure 4 presents the methods used to trandate between
the diff erent amino acid representations.

4.1. Domain-specific abstractions

Abstractions are the re of the domain spedfic
knowledge represented by the ontology. Conceptualy, an
abstraction encapsulates the different components and
views of a paticular domain-spedfic concept.
Practically, an abstraction is the aggregation of al of a
concept’s associated attributes and representations, as
presented by the participating databases. As auch, the
abstractions contain a superset of the information
contained in any individual database.

Each abstraction is an Ontilingua dassthat inherits,
diredly or indiredly, from a distinguished abstraction
class The abstraction’s attributes are grouped into
characteristics that combine related attributes and
dternative representations of the same atribute. The
genome abstraction shown in Figure 3 presents the
characteristics and attributes associated with the atoms
abstraction. Notice that while the id, flexibility, element
and alternative_podtion characteristics have only one
attribute associated with them, the position characterigtic
has three which combined represent a position in 3D
gpace using Cartesian coordinates. |If there were multiple
representations of the same characteristic (e.g. a long
element name) there would also be multiple attributes in
the same dharacterigtic. Whil e this grouping has no affea
on the mediator, it provides a mechanism to document the
conceptual relationship between these dtributes.

This example a so highlights two interesting features
of the attribute representation. Firg, it demonstrates that
complex attributes can be defined, encouraging a natural
description of the domain spedfic concepts. Consider the
alts attribute; instead of being a primitive data type (i.e.

atom atoms
“T ype and paition of AAatomsin id
3-D space’ [dw_key int
sdlf int key position
model_res int f_key modd _» X float 1
X float //P y float 1
y float ———] z float 1
z float — | Tflexbility
temp float p temp float
element (string 4 — element
short_ nm (string 4
alts alternative pos
“ Alternative position d atom” dts SET(X float
atom int f_key atom y float
X float z float
y float / temp float
z float prob float) N
flexibility float _
probability float gtom X alts => aoms
Warehouse Description Mappings Genome Abstractions

Figure 3. Example of ontology data.

integer, character, string, float, double), it is defined as a
data structure representing the Cartesian coardinates and
flexibility of the dternative position, as well as the
probability of the atom being there. It is also possble to
define an attribute to be a pointer to an instance of another
class Semnd, each attribute has an arity associated with
it, representing the number of values it can or must have.
The possble values are;

» Kkey: the attribute is single values, required and
unique

o f_key class the attribute is sSnge valued and
optional, but if it exists, it must also accur in the
key member of class

e 0: the atribute is optional and single valued.
Thisisthe default valueif no arity is gedfied.

* # theattribute has exactly the number of values
spedfied by the integer value of # (i.e. the x, y,
and z attributes must contain exactly 1 attribute)

* N: theattributeisoptional and multi-valued

* 1 N: theattributeis multi-valued but must have
at least 1 asciated value

To ensure that abstractions remain a superset of the
component databases, incorporating a new database
requires updating them in two ways. First, any previousy
unknown concepts represented by the new data source
must be incorporated into the dass hierarchy. Second,
any new representations or components of an exiging
abstraction must be added to its attribute list.

4.2. Database descriptions

Database descriptions are language independent
definitions of the information contained within a single
database. These definitions are used to identify the
trandations that must be performed when transferring
data between a spedfic data source and target. They can
also be used as hints for automatically creating a new
database description after a schema modification, such as
those used by [4].

As the warehouse description in Figure 3 shows, the
ontology representation of a database dosely mirrors the
physical layout of a relationa database. In this example,
the table (clasg name, atom, is followed by a comment
and a lig of aswociated attributes. There ae two
advantages to using this independent representation of the
data. First, the database attributes have the same
functional expresshility as the abstraction attributes
described above. As a result, they are able to represent
non-relational data sources, including dbject-oriented
databases and flat files; a aucial capability when dealing
with a heterogeneous environment. Seaond, the ahility to
comment the database descriptions improves warehouse
maintainability by reducing the potential for future
confusion. Class comments may be used to clarify the
interactions with other classes, define or refine the
concept associated with atable, etc.. These mammentsare
complimented by attribute comments (not shown) that,
whil e infrequently used for abstraction attributes, provide

(define-instance genome-transformati ons (abstracti on-enhancement)

:def (= genome-transformations

'("/home/critchl o/ data-warehouse/ontol ogy/li b/genome.lib"

(amino_acid
(trand ation-methods

(full_to_one char)
(full _to_three char)
(one_char_to_full)
(three char_to_full))

(classmethods (three char_to one char

(classdata

("one_char" character)))
((name_conversion_table
(("one_char" character)
("three char" (string 3))
("full_name" (string 40))) 28)

({ { IIAII, IIALAII, ”Alanine”}, {IIRII, ”ARG”, "Al’glnlne"},
(IINII, ”ASN”, "ASpal'aglne"} , {IIDII, IIASPI, "ASpal'tIC aCIdll} ,

1))

Figure 4. Transformation definitions.

additional meta-data eout the attribute’'s purpose and
representation.

As databases are integrated into the warehouse, their
descriptions must be eitered into the ontology.
Furthermore, as their schemata dange the database
descriptions and mappings contained within the ontology
must adapt appropriately. These modifications are
currently made by the DBA, but we plan to investigate
automating this process Beause of the similarity
between the ontology and relational formats, it is posshle
to automaticdly generate most of the ontology description
direaly from the meta-data aswociated with most
commercial DBMSs; obviousy the DBA must il
explicitly enter any comments they wish to provide.
However, because most flat fil e databases do not maintain
any meta-data, the ontology description must be manually
defined.

4.3. Mappings

Mappings identify the @rrespondence between
database descriptions and abstractions at bath the dass
and attribute levels. In particular, several source dasses
are mapped onto a single target classto completely define
an instance of the target class When the participating
database is a data source, its classes comprise the posshble
source dasses and the abstraction classs are the possble
targets. The reverse mapping is used for the warehouse.
Because abstractions are a aggregation of the individual
databases, there is aways a dired mapping between
database ad abstraction attributes. Due to
representational differences, however, an abstraction may
be split across svera database dasss and a single
database dass may be related to several abstractions.

Thisensuresthat we ae able to define mmplete ingances
of thetarget class

Figure 3 demonstrates how the warehouse atom and
alts tables are mapped to the atoms abstraction. By
default, the alts and atom classs are joined on the key /
f_key relationships identified in the database description.
Because alts is an optional attribute of atoms, an outer
join is used to assciate the dternative positions with the
appropriate aom; if it was required, a natura join would
have been used instead. Ambiguity about which
attributes should participate in the join may arise if there
are multiple foreign key referencesin asingle table. This
ambiguity is resolved by explicitly identifying the join
conditi ons in the mapping definition.

4.4, Transformations and other user extensions

Transformations describe which attributes contain the
same data, but in different formats, and identify the
methods that can be used to trandate between them. The
ontology does not define these methods explicitly, instead
it records just their names and locations. DataFoundry
uses a naming convention to identify the atributes
manipulated with a particular method. An alternative,
more verbase, approach would be to explicitly associate
the participating attributes with each method. In either
case, these methods are restricted to gperating only on
class member variables and, as such, do not require any
parameters. To provide the maximum flexibility,
DataFoundry all ows two types of other extensions to be
associated with an abstraction, and thus shared with al its
instances: classmethods and classdata

Figure 4 presents the extensions for the amino_acid
abstraction. A dmple naming convention of
source attribute _to target attribute permits the

Database
Description

Data
Mappings

Transformation
Descriptions

Abstractions

Method
Description
Data
Definition

sQL

Interface

Mediator
Interface

Translation Code

User-defined
methods

Data Access
Methods

Figure 5. Using the ontology to generate the mediator classes.

attributes aswociated with each method to be easily
identified. It is important to note that a sequence of
method invocations may be required to oltain the desired
representation. For example, the @nversion from
three char to one char takes two steps; first converting
from three_char to full, then from full to one_char. The
class method three char_to one char returns the
corresponding one_char value for a given three char
value;, however, since it cen be invoked without an
assciated amino_acid instance it may not modify the
instance attributes as the sequence of transformation
method invocations would. This method would be used
in another class that requires the ability to convert
between representations, but does not reguire a instance
of this class For example, the sequence class may nead
to convert a string representing an amino acid list in 1-
character format to an equivalent string using 3-character
format. Creating amino acid instances for each element
of the sequencewould be useful, so this method would be
useful. Class data is useful for providing information
such as a trandation table that does not vary between
instances of the dass

There ae two benefits to identifying these methods
in the ontology. First, and most obvious, it provides the
ontology with the final piece of knowledge required to
generate the mediators. However, a subtler benefit is the
combination of the transformation methods into a single
library. By explicitly identifying these methods, and
defining them in a dngle location, code re-use is
encouraged and maintenance @sts reduced.

5. Automatic mediator generation

Once the ontology has been defined, an ontology
engine (OE) is used to generate the C++ classes and
methods that comprise the mediator. Figure 5 outlines
how the ontology concepts discussed in the previous
sedion relate to various components of the mediator. For
example, the atoms abstraction is mapped into a dass in
the trandation library that includes al of its attributes,
methods to access these atributes, and any asciated
transformation methods or other user-defined extensions.

As down, the mediator functionality is decomposed
into a trandation library and a set of mediator classes.

The trandation library represents the dasses and methods
asciated with the ontology abstractions, while the
mediator classes are responsible for performing the data
transformations. The APl available to the wrapper is a
combination of the mediator classand trandation library
APIs. The process of obtaining these mwmponents from
the ontology is reatively straightforward, and is therefore
only discussd briefly bel ow.

The trandation library encapsulates the dass
definitions and methods assciated with the domain-
spedfic abstractions. The OE defines a distingushed
abstraction class and one dass for each ontology
abstraction. The inheritance hierarchy is the same as the
ontology abstraction hierarchy, except that the base
classsinherit from abstraction. This provides al classes
with a minimal amount of functionality, including access
to bdah the source and target databases. The data
members associated with a dass correspond to the
abstraction attributes; static data members are used to
represent the classdata extensions. Abstractions used as
multi-valued attributes have an additional data member,
next_ptr, which is used to create alinked-lig. Classes are
also defined for complex data types, which are named
based on the @rresponding attribute name. For each
attribute, the OE defines two data access methods: one to
read it, the other to write it. The appropriate user defined
extensions are also included in the dass APl as static
methods.

Mediator class generation is only dightly more

difficult than generating the trandation library. For each
defined source — warehouse pair, a mediator class is
generated to perform the data transformations and enter
the data into the warehouse. Different classs are used
because the transformations vary depending on the source
format, and using a pure data-driven approach to
dynamically identify the appropriate transformations
would be too slow. The alternative of defining multiple
methods for a single class was deaned aesthetically
unappeding, athough it is a functionaly equivalent
approach. For each class a single method takes the top-
level abstractions, converts them to the warehouse format,
and transfers the data to the warehouse.
The set of required transformations is obtained by
comparing the attributes provided by the data source to
the ones required by the warehouse. If a warehouse
attribute is not diredly avail able from the source the OE
searches for a sequence of transformation methods that
will generate the desired attribute. If there is no such
sequence and the attribute is not required, its value is st
toNULL. If theattributeisrequired an error is generated,
notifying the DBA that another transformation method is
required. Because of their complexity, the OE will not
attempt to invoke any of the dass methods. Once dl the
warehouse attributes are defined, the OE uses its SQL
interfaceto generate commands to perform the transfer.

As databases evolve and additional data sources are
integrated, new database descriptions and mappings are
defined. These may, in turn, require adding new
abstractions, extending the attribute set asociated with an
existing abstraction, and defining new trandation
methods. Incorporating a new data source requires the
DBA to describe it, map the source attributes to
corresponding abstraction attributes, ensure that all
applicable transformation methods are defined, and crege
the wrapper. The OE creaes the new mediator class and
expands the APl as nealed. Once adatabase has been
integrated, adapting to schema canges often requires
only modifying the wrapper to read the new format.
Significant changesin the data representation may require
the ontology to e modified and a new mediator created.

6. Conclusion

DataFoundry is an ongoing research projed at LLNL
investigating warehousing tedniques in dynamic
scientific domains. In these domains, the high rate of
schemata cthange makes it impractical to maintain a
warehouse integrating several autonomous data sources
using traditional methods. Ensuring the mnsistency and
availability of a data warehouse requires the ability to
quickly modify mediators to refled these schema
modifications. This paper presents DataFoundry’s meta-
data based approach to mediator generation, which is
designed to significantly reduce the time and effort
necessary to manage these changes. We eped to have a
functional prototype of the OE in place shortly, after
which we will begin exploring daher uses for the
ontology. We anticipate pursuing research in the areas of
automatic schema evolution, automatic schema
integration, and relationa wrapper generation. Whileit is
likely that the content of the ontology will expand as these
new diredions are addresed, we believe the arrent
concepts will remain relatively unchanged.

References

[1] L. Baekgaard, and N. Roussopoulos. Efficient
Refreshment of Data Waehouse Views. UMIACS-
TR-96-33, University of Maryland. May, 19%.

[2] R.J. Bayardo Jr., W. Bohrer, R. Brice A. Cichocki,
J. Fowler, A. Hdal, V. Kashyp, T. Ksiezyk, G.
Martin, M. Nodine, M. Rashid, M. Rusinkiewicz, R.
Sheg C. Unnikrishnan, A. Unruh, and D. Wodlk.
InforSleuth: Agent-Based Semantic Integration of
Information in Open and Dynamic Environments. In
Procealings of the 1997 ACM SGMOD
International Conference on Management of Data.
May 1997

(3]

[4]

(5]

6]

[7]

(8]

(9]

(10

[11]

S. Chawathe, H. GarciaMoalina, J. Hammer, K.
Ireland, Y. Papokongtatinou, J. Ullman, J. Widom.
The TSIMMIS Roject: Integration of
Heterogeneous Information Sources. In Proceedings
of the ISPJ Conference. 1994

T. Critchlow. Schema Coercion: Using Database
Meta-Information to Facilitate Data Transfer. Ph.D.
Disrtation. University of Utah Technicd Report.
June. 1997.

T. Critchlow, M. Ganesh, R. Musick. Automatic
Generation of Warehouse Mediators Using an
Ontology Engine. In Proceedings of the 5"
International Workshop on Knowedge
Representation meets Databases (KRDB’98). May
1998

N. Fridman and C. D. Hafner. Ontological
Foundations for Biology Knowledge Models. In 4™

Int'l Conference On Intdligent Systems for
Molecular Biology, pp 78-87, 19%.
H. GarciaMoalina, J. Hammer, K. Ireland, Y.

Papakonstantinou, J. Ullman, and Jennifer Widom.
Integrating and Accessng Heterogeneous
Information Sources in TSIMMIS. In Proceedings
of the AAAI Sympasium on Information Gathering,
pp. 61-64, Stanford, California, March 1995,

H. Garcia-Moalina, Y. Papakonstantinou, D. Quass
A. Rajaraman, Y. Sagiv, J. Ullman, V. Vasslos, and
J. Widom. The TSIMMIS Approach to Mediation:
Data Models and Languages. In Journal of
Intelligent Information Systems, 1997.

T. Gruber. Ontolinguee A Mechanism to Support
Portable Ontologies. Stanford. Knowledge Systems
Laboratory. Tedh Report KSL-91-66. November
1992

T. Gruber. Towards Principles for Design of
Ontologies Used for Knowledge Sharing. Stanford
Knowledge Systems Laboratory. Tech Report KSL-
93-04. 1993.

A. Gupta ad |I. S. Mumick. Maintenance of
Materiadlized Views. Probems Tedniques, and
Applications. In Data Engineering Bulletin, June,
1995

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

W. H. Inmon. Building the Data Waehouse. Wil ey-
QED, 19.

D. B. Lenat and R. V. Guha. Building Large
Knowledge-Based Systems. Representation and
Inference in the Cyc Project. Addison-Wesley,
Reading MA, 1990.

L. Liu, C. Pu Y. Lee An Adaptive Approach to
Query Mediation across Heterogeneous |nformation
Sources. In Proceedings of 1% Int'| Conference on
Cooperative Information Systems (CooplS '96),
Brussls, Belgium, June 1996.

E. Mena, V. Kashyap, A. Sheth, and A.
lllarramendi. OBSERVER: An Approach for Query
Procesdng in Global Information Systems based on
Interoperation across Pre-existing Ontologies. In
Proceadings of 1% Int'| Conference on Cooperative
Information Systems (CoopS '96), Brussls,
Belgium, June 1996.

E. Mena, V. Kashyap, A. Sheth, and A.
lllarramendi. Domain Spedfic Ontologies for
Semantic Information Brokering on the Globd
Information Infrastructure. to appea In Proceedings
of the First International Conference on Formal
Ontologies in Information Systems. Trento, Italy.
June 1998

N. F. Noy and C. D. Hafner. The State of Art in
Ontology Design: A Survey and Comparative
Review. Al Magazine, Fall 1997, pp 53-74.

A. P. Sheth and J. A. Larson. Federated database
systems for managing dstributed heterogeneous and
autonomous databases. ACM Cormputing Suveys,
22(3):183-236, September 1990.

M. Stonebraker, A. Jingran, J. Goh, and S.
Potamianos. On rules, Procedures, Caching and
Views in Data Base Systems. In Proceddings of
ACM-S GMOD, Atlantic City, NJ, May 1990

A. Tomasic, L. Raschid, and P. Valduriez. Scaling
Heterogeneous Databases and the Design of Disco.
In Proceedings of the International Conference on
Distributed Computer Systems. 1996.

G. Weiderhold. Mediators in the achitedure of
future information systems. |EEE Computer, 25:38
49,1992

Work performed under the auspices of the U.S. DOE by LLNL under contract No. W-7405-ENG-48

