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Parallel Computing Model

Parallel computing achieved by multiple processes
each with its own address space. A process can
work on data in its own address space indepen-
dently of the other processes. Processes exchange
data through communication.

This model most closely matches the architecture
of distributed memory machines where each pro-
cess can be thought to correspond to one of the
nodes of the machine. A node consists of one
(or more) processor(s) and some local memory.
Communication is by message passing using the
network connecting the nodes.

Efficient programs for shared memory architec-
tures may also correspond to this model where
a the local address space may correspond to pri-
vate data for a thread and and communication to
copying data or synchronization.



Domain Partitioning

For P processes, the grid €2 is partitioned into P
non-overlapping subgrids £2,. Each process is re-
sponsible for calculations that result in changes of
the approximate solution within its subgrid. To
perform these calculations, a processor may need
to receive values of the current approximate solu-
tion from other processes.
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Load Balancing: To equally divide the work, would
like each process to have nearly the same number
of grid points in its subgrid.



To avoid sending many small messages between
processes, its better to have each process store
not only data for its subgrid but also some small
portion of data (ghost layers) from its neighboring
processes.
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Jacobi relaxation:

For : from 1 to num_tterations
1) Each process g performs Jacobi
relaxation within €24.
2) Send messages to update ghost layers.



Grid h Grid 2h Grid 4h
Multigrid V(v1,vo) cycle

. Perform v1 smoothing steps on A"MUh = Fh,
. Set F2h = R2h(ph — AhUM).
. “Solve" A2hy2h = p2h py recursion.
. Correct UM «+— UM + Pl U2,

. Perform v5 smoothing steps on A"MUh = Fh,



MG parallelized by domain partitioning

Partition the fine grid, coarse grid partitions are
aligned with fine grid, i.e. the point ¢ € {25, be-
longs to processor g if the corresponding point in
2, does.

Grid h Grid 2h Grid 4h

Standard multigrid components, say, linear inter-
polation and full weighting for restriction.

Smoothing by Jacobi or multicolor Gauss-Seidel.

No changes to the algorithm. The parallel code
will produce the same numerical results as the se-
rial code and will produce the same numerical re-
sults no matter how many processors it runs on.



Red-Black Gauss-Seidel
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Parallel computing performance metrics

Let T(N, P) be the time to solve a problem with
N unknowns on a computer using P processors.

Speedup:

S(N,P) = T(N,1)/T(N, P), perfect utilization of
resources when S(N,P) = P.

Scaled Efficiency:

E(N,P)=T(N,1)/T(PN, P), perfect utilization of
resources when E(N,P) = 1.

A code is scalable if

E(P,N)> FE(N) >0, as P — oo.



Scalable linear solvers

Algorithm Scalability:

e Computational work (per iteration) is O(N).
(Jacobi, Gauss-Seidel, Multigrid, not Gaussian
elimination).

e Convergence factor per iterationis O(1). (Multi-
grid, Multilevel Domain Decomposition, not
Gauss-Seidel or Jacobi.)
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Scalable linear solvers (cont.)

Implementation Scalability:

e A single iteration is scalable on the parallel
computer. (Multigrid?).

Both algorithmic and implementation scalability
are required for a code to be scalable.
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Scalability Model

Time to communicate n doubles between proces-
SOrs is

Tcomm. = a + Bn,

here « is the latency or startup time and (3 is the
time to transfer a single double. The bandwidth
of a communication channel is 1/4.

Time to do n floating point operations is

Tcomp. = fn,
here 1/f is the Mflops achieved.

Approximate values for SP2 (Gropp 97)

a=>5x 10" °sec
B=1X 10~ %sec

f=18x 10" Isec
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Assume 2d problem of size (pN)? is distributed
to p2 processors so that each processors subgrid is
N2, Operator is 5-point. Model accounts for com-
munication and computation in relaxation only.
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__________________________________

___________________________________

Time for relaxation on finest grid (level 0):

Ty ~ 4+ 4ANB + 5N2f.

Time for relaxation on first coarse grid (level 1):

Ty ~ 4o+ 4(N/2)3 + 5(N/2)?f.

Time for relaxation on level [:

T} = 4a + 4(N/2Y8 + 5(N/2h)2f.
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For V-cycle

Ty

Q

> 2T,
[
2% [4a+4(N/2hB 4 5(N/2)f
[
S8a(l+1+1+4...)
SNB(1L+1/24+1/4+...)

10N?f(1+1/4+1/16+...)
8La + 16 NG + 40/3N2f.

Q
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Here L is the total number of multigrid levels: L =~
logo(pN).

Scalability: limp_,o Tv(N,1)/Ty(PN,P) = O(1/log(P)).
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Model Predictions for solution times and scaled
efficiencies. Problem size per processor 100 x 100,
200 x 200, 300 x 300, 400 x 400, and 500 x 500.

a=5x10"2sec,3=1x10"%sec, f =8 x 10 ?sec
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Model Predictions for solution times and scaled ef-
ficiencies. Latencies a = 5x10~2sec,5x 10 %sec, 5x
10— 3sec.

N =500 x 500,8=1x 10_6sec,f — 8 x 10 7sec
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Model Predictions for solution times and speedup.
Fixed problem size of 720 x 720.

a=5x10"2sec,3=1x 10"%sec, f =8 x 10 ?sec
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For W-cycle

Tw ~ > 2x 2T

[

~ 2% 2 [4a + 4(N/2HB + 5(N/2’)2f}
[

~ 8a(l+24+4+...)

+ 8NB(L4+1+1+4...)

+ 10N?2f(141/241/44..)

~ 82+ _ 1)a + 8LN3 + 20N?¥.

Here again L is the total number of multigrid lev-
els: L ~l1og>(pN).
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Model Predictions for solution times and scaled
efficiencies for V and W cycles. Problem size per
processor 500 x 500.

a=5x10"2sec,3=1x10"%sec, f =8 x 10 ?sec

14

12

10

Cycle Time

o g L o

o \ \ \ \
0 100 200 300 400 500 600 700 800 900
Processors (Problem Size)

Solution Times

o m M~ ey oy R T
0 100 200 300 400 500 600 700 800 900
Processors (Problem Size)

Scaled Efficiencies

DN



Numerical Results for SMG

Multigrid code using Schaffer's algorithm. De-
signed for 3D diffusion problems with anisotropic
and/or discontinuous coefficients.

e Semicoarsening

e Plane relaxation

e Operator induced interpolation

D) Fine Point @D Coarse Point

Parallelization by domain partitioning.

Written in C with MPI for message passing.
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Scalability model for SMG

Recall previous result:

Ty ~ 8La + 16 N3 + 40/3N?f.

For SMG:

Tsaya ~ 4L(1 4+ 2L(L + 1))a + 20N?L3 + 48N3F.

SMG has more communication due to the plane
solves (accomplished by 2D multigrid using line
solves accomplished by cyclic reduction).
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Implementation scalability for SMG

Scalability study of SMG V(1,0) cycle, performed
on the IBM SP at LLNL.

Each processor has an nxnxn subgrid. The global
problem is pn X pn X pn and is solved on p X p X p
ProCcessors.

Poisson problem discretized by finite differences
yielding a 7-point operator.
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Scaled Efficiency
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Scalability for SMG

Scalability study of SMG V(1,0) cycle, performed
on the Intel TeraFlop machine at Sandia.

Each processor has an nxnxn subgrid. The global
problem is pn X pn X pn and is solved on p X p X p
Processors.

Anisotropic diffusion problem discretized by finite
differences vyielding a 7-point operator.
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Iterations
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Iterations
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Further topics
Adgglomeration of coarsest grids

For most applications N > P on the fine grid.
However, on the very coarsest grids when N =~ P
multigrid may not be efficient. Recall the scala-
bility results for small N. It can be argued from
the scalability model (and is often seen in practice)
that this inefficiency on the coarsest grids has neg-
ligible effect on overall efficiency as most time is
spent of finer grids. But this result depends on the
fine grid problem size, number of processors, and
the relative speeds of communication and compu-
tation.
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On the coarsest grids, multigrid may be faster us-
ing fewer processors than the number used on fine
grids. In agglomeration the coarse grid partitions
are no longer aligned with the finer grid partitions.
More communication in grid transfer, less in coarse
grid solve.

3 : I_,4
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P P
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2 h £2 2h

Example: Moulton, Thur. 8:00.
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Further topics
Multiple coarse grids

Using multiple coarse grids produces more work
on coarser levels. This means more processors
can be kept busy. Perhaps more importantly, it
can improve the convergence rate of the multigrid
cycle.
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Multiple coarse grids used in Parallel Superconver-
gent Multigrid to create useful coarse grid work
for processors that would otherwise be idle. Used
in frequency decomposition multigrid to improve
convergence for anisotropic problems.

Example: Frederickson, Wed 11:00.
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Further topics

Extended overlap

Increasing the size of the ghost layers can reduce
the number of communication steps in the v-cycle.
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In Full Domain Partition method, the overlap re-
gion is increased but it is at a coarser resolu-
tion. Resulting algorithm is not equivalent to serial
multigrid, but one communication per v-cycle can
be enough for acceptable performance.

Example: Mitchell, Wed 11:50.
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Further topics
Adaptive refinement and additive multigrid

The scalability model and numerical results show
that domain partitioning parallelization of stan-
dard multigrid can be efficient. However, this is
partly because most work is spent at fine grid lev-
els where N > P.

With adaptive refinement, this may not be the
case.

Additive variants of multigrid allow simultaneous
processing on different levels. Standard (multi-
plicative) multigrid is twice as fast to converge
(per iteration), but in some applications the addi-
tive method may result in faster run time.

Example: Zumbusch, Thur. 11:00 - Keyes, Fri.
11:25.
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Further topics

Reduce communications on coarsest grids by
using fewer processors. Agglomeration of coars-
est grids - Moulton, Thur. 8:00.

Increase computational work on coarser grids
by introducing additional grids. Parallel Su-
perconvergent Multigrid - Frederickson, Wed
11:00.

Reduce communications per v-cycle by adding
larger overlap regions but at coarser resolution.
Full Domain Partition - Mitchell, Wed. 11:50.

Simultaneous processing on different levels. Ad-
ditive multigrid - Zumbusch, Thur. 11:00 -
Keyes, Fri. 11:25.

Parallel multigrid with adaptive refinement -
Zumbusch, Thur. 11:00 - Mitchell, Wed. 11:50.
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Further topics

e Parallel multigrid for unstructured problems.
Parallel Algebraic Multigrid - many!

e Parallel space-time multigrid to eliminate se-
quential time stepping for parabolic problems.
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