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Abstract� This paper discusses the numerical simulation of groundwater �ow through heterogeneous porous
media� The focus is on the performance of a parallel multigrid preconditioner for accelerating convergence of
conjugate gradients� which is used to compute the pressure head� The numerical investigation considers the
e�ects of boundary conditions� coarse grid solver strategy� increasing the grid resolution� enlarging the domain�
and varying the geostatistical parameters used to de�ne the subsurface realization� Scalability is also examined�
The results were obtained using the ParFlow groundwater �ow simulator on the CRAY T�D massively parallel
computer�
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�� Motivation� The numerical simulation of subsurface �uid �ow and chemical migration
plays an increasingly important role in several environmental applications� including ground�
water remediation studies and groundwater resource management� Although sophisticated
simulations have been used for decades in the petroleum industry with considerable success�
they have been less widely used in environmental applications� but they are gaining in popu�
larity as sites become larger and more complex� Computational environmental remediation is
particularly attractive for the design� evaluation� and management of engineered remediation
procedures ���	� especially for large industrial and government sites� Simulations can be used�
for instance� to choose the best cleanup strategy for a given site� and then� once a scheme is
chosen� to manage it in the most cost e
ective fashion� They also can be used to perform more
realistic risk assessment in support of key decision�making� as well as an aid in demonstrating
regulatory compliance�

Mathematically� the key to such simulations is the solution of the large� sparse system of
linear equations resulting from the discretization of a second order elliptic partial di
erential
equation with a widely varying coe�cient function� The solution of this system yields the sub�
surface �uid �ow velocities� which are then used to track groundwater �ow and contaminant
migration� In this paper� we introduce a multigrid preconditioned conjugate gradient algorithm
for solving these systems� and we investigate its performance on a variety of realistic problems�
Since we are interested in detailed simulations with millions of spatial zones� we employ mas�
sively parallel processing power� In particular� we will describe the parallel implementation and
performance of our algorithm on the CRAY T�D computer�

���� The need for improved modeling� Many of the computer codes in use today make
unrealistic assumptions about the nature of the subsurface medium and the associated �ow
behavior� For example� many codes assume that the subsurface is homogeneous in composition
and spatial distribution� and ignore altogether variations in the vertical dimension� As a result�
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these codes may fail to represent accurately many important processes� Consequently� the
conclusions drawn from simulations made with these codes are open to question� as are the
decisions based on these conclusions�

In reality� the subsurface is three�dimensional and heterogeneous� This means that some
regions of the subsurface are more permeable to water �ow than others� this is represented by
a spatially variable �ow parameter known as the hydraulic conductivity� The heterogeneous
nature of the subsurface gives rise to preferential �ow channels in the subsurface velocity 
eld�
which can have a dramatic impact on �uid �ow and contaminant transport ��� �	� For example�
these channels can lead to �ngering in contaminant migration� that is� nonuniform dispersion
over time� It is essential to resolve this behavior because it can drastically alter the conclusions
one makes about a given remediation procedure� For example� a homogeneous model may yield
simulations that predict that the procedure under study will meet regulatory requirements�
However� a more accurate heterogeneous model �with adequate resolution� may predict the
opposite� Regulatory agencies are now recognizing this and demanding the increased use of
detailed� three�dimensional modeling�

���� The role of high performance computing� Researchers have recognized the de�

ciencies of the simpli
ed homogeneous codes for some time� but have been unable to consider
running more realistic simulations until recently� Current simulations often lack su�cient spa�
tial resolution �to capture 
ngering� because of a paucity of subsurface data and the inability
to solve the resulting problems on even the largest of conventional vector supercomputers�

The size of the site to be modeled �typically several square kilometers� and the need to re�
solve these heterogeneities adequately �on the order of meters�� leads to computational domains
with upwards of one billion spatial zones� The use of adaptive gridding and local re
nement
can reduce the total number of zones needed by one or two orders of magnitude� but one is still
left with huge problems that quickly overwhelm all but the largest of conventional supercom�
puters� Moreover� we need to run hundreds of such simulations as we conduct time�dependent
studies� examine di
erent remediation or production strategies� or run the code in a Monte
Carlo fashion or within an optimization code� In light of these considerations� it is necessary
to employ massively parallel processing power� and toward this end� we are building a parallel
�ow simulator called ParFlow� It is designed to be portable and scalable across a variety of
distributed memory MIMD machines with message passing� ranging from workstation clusters
to large MPPs�

Massively parallel processing may be necessary for detailed simulations� but it is not suf�

cient� One also needs to employ high performance algorithms� that is� accurate and fast
numerical techniques that can be implemented e�ciently on these machines� As we will see�
simply changing the linear�equation solver can result in two orders of magnitude reduction in
CPU time� This is especially important in time�dependent simulations� where the right nu�
merical method can mean the di
erence between a ���hour run and a ���minute run on an
MPP�

���� Overview of paper� In this paper� we will investigate the performance of a parallel
multigrid preconditioner for accelerating convergence of conjugate gradients� which is used to
compute a pressure quantity� Our numerical investigation considers the e
ects of boundary
conditions� coarse grid solver strategy� increasing the grid resolution� enlarging the domain�
and varying the geostatistical parameters used to de
ne the subsurface realization� Scalability
is also examined� The results were obtained using the ParFlow groundwater �ow simulator
on the CRAY T�D massively parallel computer�

The paper is organized as follows� We present our mathematical model and numerical

�



discretization in x�� Our multigrid preconditioned conjugate gradient algorithm� MGCG� is
described in detail in x�� and its implementation is discussed in x�� The results of our numerical
investigation and parallel performance study are given in x��

�� Numerical simulation of groundwater �ow� We consider steady state saturated
�i�e�� single phase� �ow� which is of practical interest because contaminant transport is most
rapid in this region� It is essential that we be able to solve such problems quickly and accurately
because a similar elliptic problem will constitute the main computational cost of the multiphase�
time�dependent simulations in which we are ultimately interested� In particular� we need an
e�cient and scalable elliptic solver� which we have found in the MGCG algorithm described in
this paper�

Our mathematical model of groundwater �ow is based on Darcy�s law and conservation of
mass in a porous medium� which may be combined and rewritten as

�r � �Kr�h� z��� Q � ������

where h is the pressure head� K is the hydraulic conductivity �i�e�� problem speci
cation�� and
Q is a source term �used to represent pumping wells� for example�� At present� the problem
domain is assumed to be a parallelepiped� the boundary conditions may be Dirichlet or �ux�

The hydraulic conductivity realization is central to the problem de
nition� it is embodied
in the K function in equation ������ Of course� one never has enough data �i�e�� direct measure�
ments� to characterize a given site completely �i�e�� to completely specify K�� To develop the
detailed subsurface characterization needed for the type of simulation described above� hydro�
geologists typically employ geostatistical techniques to create statistically accurate realizations

of key subsurface properties� particularly the hydraulic conductivity ���	� Monte Carlo and op�
timization techniques can be used to quantify the inherent uncertainty and enable site managers
to perform more realistic risk assessments� Although these realizations cannot give the precise
value of the hydraulic conductivity at an �x� y� z� coordinate� they do reproduce the statistical
patterns of heterogeneity observed in real systems� and can be used to evaluate various reme�
diation strategies� say� determining the optimal pumping con
guration in a pump�and�treat
scheme�

We use Tompson�s turning bands algorithm ���	 to generate K� This is a technique for
computing a spectral random 
eld with given statistical properties� Speci
cally� one speci
es a
geometric mean � for the K 
eld� a variance �� for the ln�K� 
eld� and correlation lengths �x�
�y � and �z� See ���	 for a description of the turning bands algorithm� and see ��	 for a discussion
of its parallel implementation�

The heterogeneous nature of the subsurface manifests itself in the variability ofK� that is� in
the variability of the coe�cient function for the elliptic PDE� In practice� this coe�cient function
may vary by as many as ten orders of magnitude� and so the function is e
ectively discontinuous�
This results in an ill�conditioned linear system� In designing our multigrid algorithm� we must
be careful to consider the discontinuous nature of the function when de
ning the interpolation
and restriction operators� as well as the coarse grid operator�

���� Discrete solution approach� We employ a standard ��point 
nite volume spatial
discretization on a uniform mesh� After discretization� we obtain a large system of linear
equations� Ah � f � The coe�cient matrix A is symmetric positive de
nite and has the usual
seven stripe pattern� The matrix has order N � nx � ny � nz � where the ni are the number
of grid points in the x� y� and z directions� respectively� For problems of interest� N is in
the millions� the large number is dictated by the size of the physical site and the need to
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resolve heterogeneities adequately� Once the pressure head is computed� the velocity 
eld can
be calculated easily using a simple di
erencing scheme� This 
eld is then passed to a transport
code to simulate contaminant migration�

The solution of the large linear system is computationally intensive and must be done
e�ciently and accurately� Since we are interested in detailed simulations �i�e�� high resolution��
we must use an iterative scheme� Within the hydrology community� the most commonly used
methods are SIP and SSOR� Recently� however� the more powerful conjugate gradient method
of Hestenes and Stiefel �CGHS� ���	� and its preconditioned version �PCG� ��	� have been used
with great success� For example� polynomial preconditioned conjugate gradients was shown ���	
to be an order of magnitude faster than SIP and SSOR on groundwater problems�

Multigrid algorithms also are attractive for these types of problems� These techniques
are among the fastest currently available for the solution of linear systems arising from the
discretization of elliptic partial di
erential equations� Unlike most other iterative methods� a
good multigrid solver�s rate of convergence is independent of problem size� meaning that the
number of iterations remains fairly constant� Hence� both the multigrid algorithm and its
parallel implementation are highly scalable �see x����� On the other hand� multigrid algorithms
tend to be problem speci
c and less robust than Krylov iterative methods such as conjugate
gradients� Fortunately� it is easy to combine the best features of multigrid and conjugate
gradients into one algorithm� multigrid preconditioned conjugate gradients� The resulting
algorithm is robust� e�cient� and scalable� Another advantage of this approach is that one can
quickly implement a simple multigrid algorithm that is extremely e
ective as a preconditioner�
but perhaps less e
ective as a stand�alone solver� This is especially valuable when the underlying
PDE has a nearly discontinuous coe�cient function� as in our case�

In this paper� we present results for multigrid and ��step Jacobi preconditionings� Our
emphasis will be on the multigrid preconditioner� MG� described in the next section� The ��
step Jacobi preconditioner is implemented via an inner iteration consisting of two steps of the
basic Jacobi method� see� e�g�� ���� pages �������	 for details�

�� The MGCG algorithm� In this section� we de
ne our multigrid preconditioned con�
jugate gradient algorithm� MGCG� We 
rst describe our multigrid preconditioner� MG� the key
components of which are discussed in each of the following sections� These include� the coars�
ening strategy� the prolongation and restriction operators� P and R� the coarse grid operator�
Ac� the smoother� S� and the coarsest grid solver�

The ��level MG algorithm is de
ned as follows�

for i � �� �� � � � until convergence�

h� � S�hi� A� f�m�����a�

rc � R�f � Ah������b�

ec � �Ac���rc����c�

h� � h� � Pec����d�

hi�� � S�h�� A� f�m�����e�

end for

In ����a� we perform m smoothing steps on the 
ne system of equations �we choose m � �
in this paper�� We then restrict the residual to the coarse grid in ����b�� In step ����c� we
solve the coarse system of equations� yielding a coarse grid approximation to the 
ne grid
error� This coarse grid error is then prolonged �i�e�� interpolated� to the 
ne grid� and added
to the current 
ne grid solution approximation in step ����d�� Finally� in ����e�� we carry out
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m more smoothing steps on the 
ne system of equations� Steps ����b������d� together are
called the correction step� and the above algorithm describes a ��level multigrid V�cycle� The
full multilevel algorithm is de
ned by recursively applying the ��level method to the system of
equations in ����c�� In other words� instead of solving ����c� exactly� we obtain an approximate
solution by applying one V�cycle of the ��level algorithm� This yields a new� coarser system
of equations� which we may also solve approximately by applying the ��level algorithm� This
process is continued until we reach some coarsest system of equations� which is then solved to
complete the V�cycle�

Before we continue� we need to introduce some notation� The 
ne grid matrix A has the
following stencil structure�

A �
h
�aLi�j�k

i
�
������

�aNi�j�k

�aWi�j�k aCi�j�k �aEi�j�k

�aSi�j�k

�
������
h
�aUi�j�k

i
�����

where W � E� S� N � L� U � and C are used mnemonically to stand for west� east� south� north�
lower� upper� and center� respectively� Now� split A such that

A � T � B�����

where

T �
h
�
i
�
������

�

�aWi�j�k ti�j�k �aEi�j�k

�

�
������
h
�
i

�����

B �
h
�aLi�j�k

i
�
������

�aNi�j�k

� bi�j�k �

�aSi�j�k

�
������
h
�aUi�j�k

i
�����

and where

ti�j�k � aCi�j�k � bi�j�k

bi�j�k � aSi�j�k � aNi�j�k � aLi�j�k � aUi�j�k�

Note thatA is split in the x direction� T contains the o
�diagonal coe�cients of A corresponding
to the x direction and B describes the coupling in the y and z directions� We similarly split A
in the y and z directions� but for clarity� we will use only the above x splitting in the discourse
that follows� Note that since A is diagonally dominant� we have that

ti�j�k � aWi�j�k � aEi�j�k������

with strict equality holding away from Dirichlet boundaries�
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Fig� ���� Semi�coarsening in the x direction�

���� Heuristic semi�coarsening strategy� Because the ground subsurface is generally
strati
ed in nature� our computational grids typically have skewed cell aspect ratios� This
produces anisotropy in the problem which causes �standard� multigrid algorithms to converge
slowly� To ameliorate this problem� we employ a semi�coarsening strategy in which the grid is
coarsened in one spatial direction at a time� Semi�coarsening in the x direction is illustrated in
Figure ���� the coarse grid is de
ned by taking every other yz plane�

To determine the direction of semi�coarsening� we use a heuristic based on the grid spac�
ing� The algorithm chooses a direction with smallest spacing �i�e�� strongest coupling�� If this
minimum spacing occurs in one or more directions� the algorithm attempts to coarsen 
rst in
x� then in y� and 
nally in z� One important issue in this scheme is determining how and when
to terminate the coarsening algorithm� As we will see in x�� this issue can have a dramatic
impact on the performance of multigrid� The results presented there indicate that� in our MG
algorithm� semi�coarsening down to a ����� grid is optimal for typical groundwater problems�

In our numerical experiments� we show that this semi�coarsening strategy e
ectively ame�
liorates anisotropies due to large grid cell aspect ratios� However� it does not take into account
anisotropies in the rock matrix �i�e�� the permeability tensor�� We are currently investigating
this issue� especially the relevant work discussed in ���� ��� ��� ��	�

���� Operator�induced prolongation and restriction� One of the keys to a successful
multigrid algorithm is the de
nition of the prolongation operator� P � which de
nes how vectors
on a coarse grid are mapped onto the next 
ner grid� In the case of constant coe�cient elliptic
PDEs� P is usually de
ned via a simple interpolation scheme� However� when the coe�cient
function varies greatly� as in our problem� this is inadequate� Instead� one should use operator�

induced prolongation� meaning that P is de
ned in terms of the coe�cients of the 
ne grid
matrix� Our prolongation operator is similar to those described in ��� ��� ��	�

To elucidate� consider the prolongation of an error vector� ec� from the coarse grid� Gc� to
the 
ne grid� G� For the sake of discussion� let us assume that Gc is obtained by coarsening G
in the x direction� as in Figure ���� �To be precise� we actually have prolongation operators Px�
Py � and Pz � corresponding to each of the directions of semi�coarsening� but we will drop the
subscripts for clarity below�� Prolongation is then de
ned by

Pec �

�
pWi�j�ke

c
i���j�k � pEi�j�ke

c
i���j�k � xi�j�k � G n Gc

eci�j�k � xi�j�k � Gc
�����

where

pWi�j�k � aWi�j�k�ti�j�k

pEi�j�k � aEi�j�k�ti�j�k �

In other words� at points on the 
ne grid that are not also on the coarse grid� the value
of the prolonged error vector is de
ned as a weighted average of x�adjacent coarse grid error
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components� At points on the 
ne grid that are also on the coarse grid� the value of the prolonged
error vector is the same as the corresponding coarse grid error component� Prolongation in y
and z is de
ned analogously�

The restriction operator� R� is used to project from a 
ne grid to a coarse grid� As is
commonly done� we de
ne R � PT �

���� De�nition of coarse grid operator� Another important issue in multigrid is the
de
nition of the coarse grid operator� Ac� In the literature� this matrix is often taken to be
the Galerkin matrix� PTAP � This choice for Ac is optimal in the sense that the quantity
ke�PeckA� the norm of the error after a multigrid correction step� is minimized over all coarse
grid vectors ec� In particular� if the error before correction is in the range of prolongation� then
the correction step yields the exact solution� The drawback of this coarse grid operator is that
it has a ���point stencil� which requires additional storage and does not allow us to de
ne the
multi�level algorithm by recursively applying the ��level algorithm�

Another way to de
ne Ac is to re�discretize the di
erential equation on the coarse grid�
This has the bene
t of yielding a ��point stencil structure� which requires less storage than the
���point stencil� and allows recursive de
nition of a multi�level algorithm� On the other hand�
this operator lacks the minimization property of the Galerkin operator�

In our algorithm� we attempt to combine the best of both approaches by algebraically
de
ning Ac as �again assuming semi�coarsening in the x direction�

Ac � T c � Bc�����

where

T c � PTTP �
h
�
i
�
������

�

�a
c�W

i�j�k tci�j�k �a
c�E

i�j�k

�

�
������
h
�
i

�����

ac�Wi�j�k � aWi�j�kp
W
i���j�k

ac�Ei�j�k � aEi�j�kp
E
i���j�k

tci�j�k � ti�j�k � aWi�j�kp
E
i���j�k � aEi�j�kp

W
i���j�k

and

Bc �
h
�ac�Li�j�k

i
�
�������

�ac�Ni�j�k

� bci�j�k �

�ac�Si�j�k

�
�������
h
�ac�Ui�j�k

i
������

ac�Si�j�k � aSi�j�k � �
�a

S
i���j�k � �

�a
S
i���j�k

ac�Ni�j�k � aNi�j�k �
�
�a

N
i���j�k �

�
�a

N
i���j�k

ac�Li�j�k � aLi�j�k � �
�a

L
i���j�k � �

�a
L
i���j�k

ac�Ui�j�k � aUi�j�k �
�
�a

U
i���j�k �

�
�a

U
i���j�k

bci�j�k � ac�Si�j�k � ac�Ni�j�k � ac�Li�j�k � ac�Ui�j�k �
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Fig� ���� De�nition of the coarse grid operator ���d illustration with x semi�coarsening��

In other words� Ac is a Galerkin operator in x �the direction of semi�coarsening� plus a weighted
sum of y and z stencil coe�cients� The coe�cients in ������ describe the connections in y and
z of the coarse grid variables� and our reason for choosing these particular weights is illustrated
below� Note that Ac is diagonally dominant and an inequality analogous to ����� holds�

Away from the domain boundaries� the algebraic de
nition of Ac in ������������ also may be
interpreted geometrically as the result of a 
nite volume discretization of ����� on the coarse grid
Gc� Consider the grid point marked ��� in Figure ��� �where we illustrate only two dimensions
for simplicity�� The 
nite volume discretization requires hydraulic conductivity values on the
cell faces about this grid point� To generate the matrix coe�cients� these values are 
rst
multiplied by the area of the cell face� then divided by the grid spacing in the perpendicular
direction� So� if grid point ��� in Figure ��� has index �i� j� k�� then on the 
ne grid we have

aWi�j�k �
�y�z

�x
Ki�����j�k������

aEi�j�k �
�y�z

�x
Ki�����j�k

aSi�j�k �
�x�z

�y
Ki�j�����k

aNi�j�k �
�x�z

�y
Ki�j�����k�

Now� consider the 
nite volume discretization on the coarse grid� We 
rst compute hydraulic
conductivity values on coarse�grid cell faces as in Figure ���� for vertical faces� we take a
harmonic average of values on adjacent 
ne�grid cell faces� and for horizontal cell faces� we take
an arithmetic average of values on corresponding 
ne�grid cell faces� Since the x grid spacing
on Gc is twice that on G� we have that

ac�Wi�j�k �
�y�z

��x

	
�Ki�����j�kKi�����j�k

Ki�����j�k �Ki�����j�k



������

ac�E
i�j�k

�
�y�z

��x

	
�Ki�����j�kKi�����j�k

Ki�����j�k �Ki�����j�k




ac�Si�j�k �
��x�z

�y

�
�
�Ki�j�����k �

�
�Ki���j�����k �

�
�Ki���j�����k

�

ac�Ni�j�k �
��x�z

�y

�
�
�Ki�j�����k � �

�Ki���j�����k � �
�Ki���j�����k

�
�
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Using ������ in ������� and noting that equality holds in ����� in the interior of the domain� it
is easy to see that the coe�cients produced by this 
nite volume discretization on the coarse
grid are the same as those given in �������������

��	� Smoothers� The smoother is another important part of a multigrid algorithm� A
�good� smoother complements the correction step by damping modes that the correction step
does not� However� as is often the case with numerical algorithms� the smoother that does the
best job of damping these errors is typically the most computationally expensive� For example�
line and plane methods are generally better than are pointwise methods at damping high fre�
quency error components� but they are computationally more expensive and less parallelizable�

We use simple pointwise damped Jacobi �with weighting factor ���� and red black Gauss�
Seidel �GS� smoothers in our MG algorithm� Although these smoothers are easy to implement
scalably in parallel� the resulting MG algorithm lacks robustness� However� as we will see �x�����
we regain robustness by using MG as a preconditioner within a conjugate gradient algorithm!
without the additional coding complexity �and possibly greater overhead� of a line or plane
smoothing�

��
� Coarsest grid solvers� To complete the multigrid algorithm� we must decide when
to stop the coarsening procedure� and how to solve the coarsest system of equations� For
example� should we solve the coarsest system of equations exactly� or just do a few smoothing
steps to obtain an approximate solution" In x���� we run several experiments in this regard�
and we conclude that coarsening down to a � � � � � grid is optimal for our algorithm and
for this application� The �� � � � �system� is solved exactly via one sweep of red�black GS�
�We employ CGHS and red black GS as our coarse grid solvers� One could also consider a
direct solution of the coarsest grid system via Gaussian elimination� but the iterative solvers
are adequate for our purposes��

���� Stand�alone multigrid versus multigrid as a preconditioner� Although multi�
grid algorithms are extremely fast� they tend to be problem�speci
c and less robust than Krylov
iterative methods such as conjugate gradients� Fortunately� it is easy to combine the best fea�
tures of multigrid and conjugate gradients into a multigrid preconditioned conjugate gradient
algorithm that is robust� e�cient� and scalable� The main advantage of this approach is that
one can quickly implement a simple multigrid algorithm that is extremely e
ective as a precon�
ditioner� but perhaps less e
ective as a stand�alone solver�

The well�known PCG method �Orthomin implementation� ��� �	 is given by

p� � s� � Cr������a�

for i � �� �� � � � until convergence�

�i �
hri� sii

hApi� pii
�����b�

xi�� � xi � �ipi�����c�

ri�� � ri � �iApi�����d�

si�� � Cri�������e�

	i �
hri��� si��i

hri� sii
�����f�

pi�� � si�� � 	ipi�����g�

end for

In the MGCG algorithm� the preconditioning operator� C� is never explicitly formed� Instead�
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�����e� is e
ected by applying the MG algorithm ����� to the residual system of equations�
Ae � r� using an initial guess of e� � 
�� The resulting approximate solution is si���

When designing a preconditioner for PCG� one needs to insure that the preconditioning
matrix is symmetric� and preferably positive de
nite� For multigrid preconditioning� this con�
dition is satis
ed by doing an equal number of symmetric smoothing steps both before and
after each coarse grid correction� �The smoothing step is symmetric if the iteration matrix of
the associated method is symmetric�� However� this is not necessarily required �see� e�g�� ���	��
Multigrid algorithms also can be applied to nonsymmetric problems �e�g�� ���	� and to problems
with irregular meshes �e�g�� ���	��

Our current implementation of MGCG is simple but e
ective� The MG preconditioning step
consists of a single V�cycle �as de
ned above� with a choice of weighted Jacobi or symmetric
red black GS smoothing� We use an equal number� m� of smoothing steps before and after
correction� �In this paper� m � ���

	� Parallel implementation� The MGCG algorithm described above has been imple�
mented in ParFlow� a portable and scalable parallel �ow simulator� The algorithms in
ParFlow all employ a straightforward data decomposition approach to parallelism� Speci
�
cally� problem data is distributed across a logical three�dimensional process grid topology con�
sisting of P � p� q � r processes� The data within a process is viewed as a three�dimensional
subgrid of grid points �as de
ned by the discretization of equation ������� Vector data owned by
a process is called a subvector� and each element of a subvector is associated with a grid point
in the process� subgrid� Similarly� matrix data owned by a process forms a submatrix� The
rows of this submatrix are viewed as stencils� and each stencil is associated with a grid point
in the process� subgrid� Note that although we distribute the problem data by decomposing
the problem domain� we are not doing domain decomposition in the algorithmic sense� We are
solving the full problem rather than independent subproblems�

Computations in ParFlow proceed in an owner computes fashion� That is� processes
only do computations associated with their local subgrid� taking care to exchange data with
neighboring processes when needed� For example� consider the matrix�vector multiplication
�matvec�� y � Ax� a key operation in the MGCG solver� To compute the matvec result at a
given grid point �i� j� k�� we �apply� the stencil to the grid� For each neighboring grid point
speci
ed by the stencil� we multiply the vector value at that point by the corresponding stencil
coe�cient� and then sum these products� �This is equivalent to multiplying a row of the
matrix A by the vector x�� However� at subgrid boundary points� some stencil coe�cients may
reach outside of the process� subgrid� At these points� we must 
rst communicate data from
neighboring processes� In general� these communications patterns can be quite complicated�
Take� for example� pointwise red black GS� Before a process can do a red sweep� it must
exchange black boundary data with neighboring processes� Likewise� red boundary data must
be exchanged before a black sweep can be completed� In order to simplify coding and speed
application development� subvectors and submatrices have an additional layer of space set aside
for storing this communicated boundary data� The grid points associated with this layer are
called ghost points�

When possible� the communications and computations in ParFlow are scheduled so that
they overlap� For example� in our matvec operation!for which the matrix A has a standard
��point stencil!the computations away from subgrid boundaries can be done independently
of the boundary data communications� If the parallel machine has the appropriate hardware
support� we can do these computations and communications simultaneously� On most machines�
and for most large problems� the communications will 
nish before the internal computations
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have completed� e
ectively masking the communications costs� Unfortunately� the CRAY T�D
does not provide this support�

We remark that ParFlow was designed to be parallel from its inception� In particular�
computations are organized so as to avoid explicit data redistribution� thereby improving the
code�s e�ciency and parallel performance� The choice of process grid topology P can have
a signi
cant impact on performance� largely due to cache issues ��	� Thus� in choosing the
topology P � one must weigh the competing needs of various portions of the code and determine
the best overall topology� One should not choose di
erent topologies for di
erent stages of the
calculations and redistribute data within the simulation�

	��� Scalability� One of the attractive features of multigrid is that it can be a scalable
algorithm� meaning that the number of iterations required for convergence remains roughly
constant as the grid is re
ned� This is true for both stand�alone multigrid and multigrid pre�
conditioned conjugate gradients� The emphasis on �can be� is meant to stress the importance of
properly de
ning the various key ingredients� especially the prolongation restriction operators
and the coarse grid operator� However� having a scalable algorithm is only half the equation�
one also must have a scalable parallel implementation� Since we semi�coarsen to a ����� prob�
lem� it is impossible for us to have a truly scalable parallel implementation since the number
of semi�coarsenings increases with the size of the problem �in a logarithmic fashion�� Although
the amount of work and the amount of communicated data per processor remains the same� the
number of communication calls increases as the problem size increases �since communications
are needed at each grid level in the V�cycle�� This increased communication overhead is the only
impediment to perfect scalability of the MG algorithm� For all practical purposes� however�
both our algorithm �number of iterations� and its implementation �CPU time� are scalable� as
we will show in x��

Since we semi�coarsen the 
ne grid to a �� �� � problem� a rather severe load imbalance
results from the infamous �idle processor problem�� However� this is not as serious as it might
at 
rst seem� In simulating groundwater �ow through heterogeneous porous media for large
sites� one must use a large number of spatial zones!often in the tens of millions� For such large
problems� comparatively little work is being done while processes are idle �usually processes
are idle at only a few of the coarsest grid levels�� Hence� the e
ects of this ine�cient use of
resources is usually negligible� See� for example� ��� �	�

Finally� we comment that the conjugate gradient part of the MGCG algorithm also is not
perfectly scalable� This is because process data must be globally summed in order to compute
the inner products needed in the algorithm� The communications required to do this grow
logarithmically with the number of processes� but the e
ects of this increased communications
is negligible �x�����

	��� Portability via message�passing� We have successfully run ParFlow �in various
incarnations� on the following platforms� a single Sparcstation� a cluster of Sparcstations� a
multiprocessor SGI Onyx� an nCUBE �� an IBM SP��� and the CRAY T�D� Portability is
realized via message�passing� All message�passing primitives are localized within a machine�
dependent library called AMPS� which has been layered on top of several message�passing
systems� including the Reactive Kernel� PVM� Chameleon� and CRAY SHMEM calls� An MPI
implementation is under way�


� Numerical Results� In this section� we will investigate the performance of our multi�
grid algorithm in several contexts� In particular� we will study the e
ect of the following on
the rate of convergence� �i� choice of boundary conditions� coarsest grid size� and coarsest grid







solver� �ii� increasing the resolution �
xed domain size�� �iii� enlarging the domain size �
xed
grid spacing�� and �iv� increasing the degree of subsurface heterogeneity� We also will describe
the algorithm�s parallel performance on the CRAY T�D massively parallel computer�

All of the experiments in this section are of the following form� The domain� # � Lx �
Ly �Lz � is a parallelepiped� where Lx� Ly � and Lz represent the domain lengths �in meters� in
the x� y� and z directions� respectively� The grid is Cartesian with N � nx � ny � nz points
and � � �x � �y � �z spacing� The subsurface is assumed to be a single� heterogeneous
hydrostratigraphic unit with variable hydraulic conductivity K� To generate K� we use a
turning bands algorithm ���	 with geostatistical parameters �� �� �x� �y� and �z � Here ln� and
� represent the mean and standard deviation of the lnK 
eld �� also may be thought of as the
geometric mean of K�� and �x� �y� and �z represent the correlation lengths in the x� y� and
z directions� respectively� Unless otherwise stated� we impose Dirichlet boundary conditions
�hydraulic head� H � h � z� equal �� on the four vertical sides of the domain� and no �ow
conditions on the top and bottom�

We consider three multigrid algorithms for solving the symmetric positive de
nite system of
linear equations that results from the discretization of the elliptic pressure equation� Speci
cally�
we compare the following� MG with symmetric pointwise red black GS smoothing� MGCGwith
symmetric pointwise red black GS smoothing� and MGCG with damped Jacobi smoothing
�MJCG�� The preconditioning step in both MGCG and MJCG consists of a single MG V�
cycle� As discussed in the previous section� the smoothing operation should be implemented
in a symmetric fashion when multigrid is used as a preconditioner for PCG� For comparison�
we also consider PCG with ��step Jacobi preconditioning �J�CG�� Each of the algorithms was
halted once the ��norm of the relative residual was less than ����� Unless otherwise noted� we
used P � ����� processors of the CRAY T�D� �Some of the larger problems required a larger
number of processors because of their memory needs�� All times are wall�clock times� and they
are given in seconds� Although the test problems are contrived� they serve to illustrate the
performance of the MGCG algorithm�


��� E�ect of coarsest grid solver strategy� In this section we study the e
ect on
convergence rate of the choice of coarsest grid solver strategy with respect to the type of
boundary conditions� The experiment details are as follows�

# � ����� ����� ����
N � ��� ��� ��� � � ��� ��� ���
� � �� � � ���� �x � ��� �y � ��� �z � ���

The results are shown in Tables ��� and ��� for four variants of the basic MG and MGCG
algorithms� In variant �� we coarsen to a � � � � � coarsest grid and then do one step of
red black GS� In variant �� we again coarsen to a �� �� � coarsest grid� but solve the coarsest
system �exactly� via CGHS� In variant �� we coarsen as in variant �� except that we stop at a
� � � � � coarsest grid� In variant �� we coarsen to one equation in one unknown and solve it
exactly via one step of red black GS� To simplify the discussion below� we will refer to these
variants of MG as MG�� MG�� MG�� and MG�� The MGCG variants will be named similarly�

Let us consider 
rst the results in Table ���� In these experiments� we employ our �stan�
dard� boundary conditions� no �ow on the top and bottom faces� and constant head �H � ��
on the remaining vertical faces� Let us also focus 
rst on the issues related to multigrid� From
the table� we see that convergence of MG� is considerably better than that of MG�� The rea�
son for this is that the system of equations on the �� �� � coarsest grid is �almost singular�
because of the strong coupling in the direction of a �ux boundary condition �i�e�� the z direc�
tion�� Consequently� errors with �smooth� z components are not damped well by one step of
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Table ���

Coarse grid solution strategy� no�	ow boundary conditions on the top and bottom
 Dirichlet �H � 
� condi�
tions on the four vertical faces�

MG MGCG
Variant Coarse Grid Solver iters time iters time

� � step of RB on �� �� � ��� ���� �� ���
� CGHS on �� �� � �� ���� �� ���
� CGHS on �� �� � �� ��� �� ���
� � step of RB on �� �� � �� ��� �� ���

Table ���

Coarse grid solution strategy� Dirichlet �H � 
� boundary conditions on all faces�

MG MGCG
Variant Coarse Grid Solver iters time iters time

� � step of RB on �� �� � �� ��� � ���
� CGHS on �� �� � �� ��� � ���
� CGHS on �� �� � �� ��� � ���
� � step of RB on �� �� � �� ��� �� ���

GS smoothing� Note that the CGHS coarsest grid solver of MG� converged to machine toler�
ance in three iterations� We see further signi
cant improvement in convergence with algorithm
MG�� To explain this� consider coarsening the � � � � � grid 
rst in x� and then in y� to a
� � � � � grid �as in algorithm MG��� In each of these coarsening steps� we are coarsening in
a direction orthogonal to the direction with strongest coupling �i�e�� the z direction�� These
non�optimal coarsening steps actually slow convergence� Note that here the CGHS coarsest
grid solver took ����� iterations to solve the coarsest grid problems to the speci
ed tolerance
�relative residual less than ������ Algorithm MG� is the best method for this problem� Here�
the heuristic semi�coarsening strategy coarsens in z in the �optimal� way until the z direction
is eliminated altogether �thereby eliminating anisotropy in the z direction�� This results in
a coarse grid operator that looks like a �D Laplacian� The remainder of the V�cycle �which
involves coarsening only in the x and y directions� gives a good approximation to the solution
of this system� Hence� this multigrid algorithm performs quite well�

The MGCG algorithms perform similarly� except that they are much faster� Note that
there is only a slight di
erence in iteration count between MGCG� and MGCG�� unlike for
the corresponding MG algorithms� This is an indication that algorithm MG� is having trouble
with just a few of the modes� which the conjugate gradient part of MGCG� easily eliminates�

Now consider the results in Table ���� Here� we repeat the above experiments with constant
head �H � �� on all six faces� The results are entirely di
erent� First� we observe much faster
convergence in this set of all�Dirichlet experiments� This is largely due to the near�singularity
of the coarse grid matrices in the previous table� as discussed earlier� For the all�Dirichlet
problems� it can be shown that both red black GS and CGHS will solve the ����� coarse grid
problem in just one iteration� Since red black GS is cheaper than CGHS� it is faster� as observed
in the table� It also can be shown that CGHS will solve the ����� coarse grid problems in just
nine iterations� Although algorithm MG� takes a bit longer to solve the coarsest grid problems�
there is less semi�coarsening than in MG� and MG�� and the overall algorithm is competitive�
Second� we notice that the variant � algorithms produce the worst results in Table ��� and the
best results in Table ���� Since our 
nite volume discretization is vertex�centered� the boundary
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Table ���

Increasing the spatial resolution� the domain size is �xed while the number of grid points is increased�

Problem Size J�CG MJCG MGCG MG
nx ny nz iters time iters time iters time iters time

�� �� � ��� ��� �� ��� � ��� �� ���
�� �� �� ��� ��� �� ��� �� ��� �� ���
�� �� �� ���� ���� �� ��� �� ��� �� ���
��� ��� �� ���� ����� �� ���� �� ���� �� ����
��� ��� ��� ���� $������ NA �� $���� �� $����

�These times are for ��� processors �P � �� 	� 	


condition equations are not coupled to the other matrix equations� This� combined with our
algebraic de
nition of the prolongation operator� results in prolongation coe�cients that are
zero at grid points near Dirichlet boundaries� Hence� the nx � ny � � coarse grid obtains no
e
ective correction from the coarser nx � ny � � grid� which slows convergence of the variant �
algorithms�

We remark that the mixed boundary conditions used in the experiments of Table ��� are
more likely to arise in practice� and so we prefer the coarsening strategy of the variant �
algorithms�


��� Increasing the Spatial Resolution� In this section we study the e
ect on con�
vergence rate of increasing the spatial resolution� Speci
cally� we increase the number of grid
points used to resolve each correlation length� but keep the problem domain 
xed� �We start
with two grid points per correlation length and increase to �� grid points per correlation length��
The experiment details are as follows�

# � ����� ����� ����
� � ��������nx� ��� ��������ny � ��� ������nz � ��
� � �� � � ���� �x � ���� �y � ���� �z � ���

The results are shown in Table ����
We see that increasing the spatial resolution has a signi
cant e
ect on the convergence

rate of J�CG �as expected�� but has little e
ect on the MG�based algorithms� Speci
cally�
the J�CG iteration count doubles when the resolution doubles �i�e� problem size increases by
���� but MGCG converges in about ten iterations independent of resolution� As the resolution
increases� J�CG becomes increasingly impractical� and one must use a multigrid approach� For
example� in the ��� � ��� � ��� case� J�CG takes about ��� times longer to converge than
MGCG� and this multiplier would grow if we increased the problem size further� Note also�
that although MJCG takes more iterations to converge than MGCG� it converges a little faster�
This is due to two things� �i� Jacobi has less communication overhead and� in general� runs at a
higher MFLOP rate than red black GS� and �ii� in MJCG we do two smoothings per grid level�
but in MGCG� we do three smoothings because of an extra half sweep that is done to insure
symmetry� Note that the stand�alone MG algorithm is not as e
ective as MGCG because of
problems with a few extraneous modes �as explained earlier��

We remark that if we did not semi�coarsen to a grid with only � grid point in the z direction�
the iteration counts in the 
rst few rows of the table would be higher� This is because the 
rst
semi�coarsening in an x or y direction would occur not because the coupling in these directions
was strongest ��optimal� coarsening strategy�� but as a result of having too few z points�


�



Table ���

Enlarging the domain size� the grid spacing is �xed while the number of grid points is increased�

Problem Size J�CG MJCG MGCG MG
nx ny nz iters time iters time iters time iters time

�� �� � ��� ��� �� ��� � ��� �� ���
�� �� �� ��� ��� �� ��� �� ��� �� ���
�� �� �� ���� ���� �� ��� �� ��� �� ���
��� ��� �� ���� ����� �� ���� �� ���� �� ����
��� ��� ��� ���� $������ NA �� $���� �� $����

�These times are for ��� processors �P � �� 	� 	


As discussed in x���� this would have an adverse e
ect on convergence which would be more
pronounced for the smaller problem sizes� See ��	 for related experiments�

Remark� The overall slow convergence of J�CG results partly from anisotropy in the prob�
lem due to the skewed grid cell aspect ratio� This is a consequence of how the eigenvalues of A
are distributed� When the grid cell aspect ratio is near ������ the eigenvalues are more tightly
clustered in the middle of the spectrum� and the e
ective condition number is less than the
true condition number� �Recall that the rate of convergence for conjugate gradient methods is
governed by the e
ective condition number� not the true condition number� because conjugate
gradients is able to damp outlying eigenvalues quickly�� When the grid cells are skewed� the
eigenvalues cluster near the endpoints of the spectrum� and the e
ective and true condition
numbers are nearly identical� Moreover� the �ux boundary conditions on the z faces result
in a larger e
ective condition number than would Dirichlet conditions� reducing further the
e
ectiveness of J�CG on this problem�


��� Enlarging the size of the domain� In this section we study the e
ect on conver�
gence rate of growing the domain size� In some remediation studies� one wishes to enlarge the
initial site to encompass neighboring property� This might be necessary� for instance� if a con�
taminant were discovered to have migrated o
�site� In such a scenario� the engineer might wish
to use the same geostatistics and grid spacing� but enlarge the domain by increasing the number
of spatial zones� In our experiments� we maintain a constant two grid points per correlation
length� The experiment details are as follows�

# � �nx � ���x � �ny � ���y � �nz � ���z

� � �� �� ���
� � �� � � ���� �x � �� �y � �� �z � ���

The results are shown in Table ����
The results here are qualitatively and quantitatively similar to the results in Table ���� The

minor di
erences in the two tables are due to the di
ering subsurface realizations �produced by
turning bands� in the two experiments�


�	� Increasing Degree of Heterogeneity� In this section we study the e
ect on con�
vergence rate of increasing the degree of heterogeneity� This heterogeneity is represented by
the parameter � described earlier� The experiment details are as follows�

# � ����� ����� ����
N � ���� ���� ��� � � �� �� ���
� � �� �x � ��� �y � ��� �z � ���


	



Table ���

Varying the degree of heterogeneity�

Heterogeneity J�CG MGCG MG
� ��K iters time iters time iters time

��� �� ��� ���� ����� � ���� �� ����
��� �� ��� ���� ����� � ���� �� ����
��� �� ��� ���� ����� � ���� �� ����
��� �� ��� ���� ����� �� ���� �� ����
��� �� ��� ���� ����� �� ���� diverged
��� �� ��	 ���� ������ �� ���� diverged
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Fig� ���� Convergence plots for J�CG and MGCG for several values of � �as in Table ����� As � increases�
the subsurface realization becomes more heterogeneous� and the underlying matrix problem becomes more di
cult�

The results are shown in Table ����
When � � ���� the subsurface medium is homogeneous� in which case the coe�cient function

K is constant� and so the matrix A is Laplacian�like� As � increases� so does the degree of
heterogeneity� Speci
cally� the variance� ��K � of the lognormally distributed conductivity 
eld
K increases exponentially� This variability in K causes the coe�cient matrix A to becomes
increasingly ill�conditioned� The e
ect on MG of this increasing heterogeneity is signi
cant�
and we see that for two of the runs� it actually diverges� However� when MG is used as a
preconditioner for PCG �MGCG�� convergence is obtained in each case� Note that the iterations
for MGCG grow like the order of the variance� The convergence of J�CG is poor� as expected�

Convergence plots for J�CG and MGCG are given in Figure ��� for each of the values of
� in Table ���� Notice that the MGCG convergence curves are nearly linear and quite steep
in comparison to J�CG� indicating that MGCG is making rapid and steady progress toward
the solution� �The log of the ��norm of the relative residual is plotted against the number of
iterations required for convergence��


�
� Parallel performance on the CRAY T�D� In earlier experiments ��	� we exam�
ined the parallel performance of the ParFlow simulator and its component routines� In this
section� we reprise those experiments with respect to the multigrid algorithm� Speci
cally�
we will examine the scalability of the MGCG algorithm on the CRAY T�D massively parallel
computer system� The results given here di
er from those in ��	 for several reasons� including
compiler upgrades� algorithm enhancements� and coding improvements�

In Figures �������� we present scaled speedups for the matvec� MG preconditioning� and
MGCG routines on the CRAY T�D� Our machine has ��� nodes� each consisting of a ���MHz
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Fig� ���� Scaled speedup of the ParFlow matvec and MG preconditioning routines on the CRAY T�D�
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Fig� ���� Scaled speedup of the ParFlow MGCG routine on the CRAY T�D� The �gure on the left shows
the scalability of the MGCG implementation �via MFLOP rates�
 the �gure on right shows the scalability of the
MGCG implementation and algorithm �via timings that include the e�ects of di�ering iteration counts��

DEC Alpha processor and ��MB of memory� our AMPS message�passing library is layered on
top of Cray�s SHMEM library� In our experiments� each processor is given a �� � �� � ��
subgrid� so that the total problem size on P � p� q � r processors is NP � ��p� ��q � ��r�
In other words� we allow the total problem size to grow with P � Moreover� the shape of the
problem domain is determined by the process grid topology p� q � r� The point of this study
is to see how well the routines make use of additional processors� Our goal is to obtain nearly
�at curves �good scalability� that are near one �good scaled e�ciency��

The 
rst three graphs in Figures ������� illustrate the scalability of our implementations
of the matvec� MG� and MGCG routines in terms of MFLOPs� Speci
cally� we de
ne scaled
speedup to be MP ��PM��� where MP is the MFLOPs achieved by the operation in question on
P processes� The scaled speedup graphs are all fairly �at� indicating good scalability� The MG
and MGCG routines have nearly identical performance �about ��% scaled e�ciency� because
MGCG spends most of its time in the MG preconditioning routine� The matvec routine has
lower scaled e�ciency �about ��%� because it has a much higher MFLOP rate than the other
routines� and so communication costs are relatively higher� �The matvec� MG� and MGCG
routines averaged ����� ����� and ���� GFLOPs� respectively� on ��� processors�� Thus� all
three routines are scalable� meaning� for example� that the time per MGCG iteration remains
constant as we increase the problem size and number of processes in tandem�

In the last graph �Figure ����� we present scaled speedup for MGCG in terms of CPU time�
That is� we de
ne scaled speedup to be T��TP � where TP is the time required to execute the
MGCG algorithm �to convergence� on P processes� Since the number of iterations required for
convergence �uctuates with P � this graph illustrates the combined scalability of the algorithm
itself and our implementation of it� We also plot MGCG iteration count� which varies between
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�� and �� iterations �using the C�norm stopping criterion�� Notice the inverted relationship
between scaled speedup and iteration count �as one would expect��

Remark� One might expect the number of MGCG iterations to increase monotonically
with the size of the problem �which grows with the number of processors�� but this is not the
case� Recall that in our de
nition of scaled speedup� the computational domain is growing
with P!and changing shape as we move from one process grid topology to the next� This
means that the eigenstructures of the underlying matrices change from one run to the next�
which accounts for the up�and�down iteration counts� We could largely eliminate this e
ect by
keeping the domain 
xed and increasing the resolution as we grow the problem size� but this
would require varying the topology of the subgrid assigned to each processor� As discussed in
��	� this can have a dramatic impact on node performance� causing another set of problems� �In
our experiments� we used the following process grid topologies� �� �� �� �� �� �� �� �� ��
�� �� �� �� �� �� �� �� �� �� �� �� �� �� ��� �� �� ����

�� Summary� This paper focuses on the numerical simulation of groundwater �ow through
heterogeneous porous media� The key computational challenge is the solution of a large� sparse
system of linear equations for the pressure head� The size of the sites to be modeled �on the
order of kilometers�� and the need to resolve subsurface heterogeneities �to within a few me�
ters�� necessitates the use of e�cient numerical methods and the power of massively parallel
processing� In this paper� we introduce a parallel multigrid preconditioned conjugate gradient
algorithm for solving these linear systems�

After de
ning the various components of the multigrid algorithm� and discussing its par�
allel implementation� we investigated its performance in a variety of numerical experiments�
We considered the e
ects of boundary conditions� coarse grid solver strategy� increasing the
grid resolution� enlarging the domain� and varying the geostatistical parameters used to de
ne
the subsurface realization� Our multigrid preconditioned conjugate gradient solver performed
extremely well� For example� we were able to solve a problem with more than �M spatial zones
in under �� seconds on a ����processor CRAY T�D� We also demonstrated the scalability of
both the algorithm and its implementation� This solver has been incorporated in the ParFlow
simulator and is being used to enable detailed modeling of large sites�
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