
An Unstrutured Multigrid Method Based onGeometri Smoothness�Edmond ChowyAbstratFor non-M-matries, this paper proposes an unstrutured multigrid method that onlyattempts to interpolate in the diretions of geometrial smoothness. These diretions aredetermined by analyzing samples of algebraially smooth error, e. Neighboring grid points iand j are alled smoothly oupled if ei and ej are onsistently nearby in value. In addition,these di�erenes may be used to de�ne interpolation weights. These new ideas may beinorporated into the algebrai multigrid method. Test results show that the new methodan have muh lower grid and operator omplexities ompared to AMG, leading to lowersolve timings.1 IntrodutionIn the algebrai multigrid (AMG) method, algebraially smooth error is the error that remainsafter the smoother has been applied and that must be redued at the next level. AMG de�nesthe strong ouplings between a grid point and its neighboring grid points, and depends on beingable to interpolate the algebraially smooth error along these strong ouplings. Strong ouplingsare generally de�ned to be the large negative matrix entries, i.e., the oupling between pointsi and j is strong when the matrix entry aij is large and negative. For symmetri M-matriesand matries where the positive o�-diagonal entries are small (\essentially positive-type") [2℄,the algebraially smooth error varies slowly along strong ouplings and is relatively easy tointerpolate.When the positive o�-diagonal entries are large but the matrix is (weakly) diagonally domi-nant, algebraially smooth error still varies slowly along strong ouplings [9℄. Along large positiveouplings, the algebraially smooth error is osillatory [11℄ suh that the absolute value of thesmooth error is slowly-varying. This makes it possible to interpolate algebraially smooth butgeometrially osillating error for these problems.When the matrix is not diagonally dominant and there exist large positive o�-diagonalentries, algebraially smooth error no longer varies slowly along strong ouplings in general.Further, it is not lear that it is possible to interpolate geometrially non-smooth error forthese problems. Matries of this sort arise ommonly, for example, in linear quadrilateral orhexahedral �nite element disretizations for anisotropi ellipti problems, but traditional AMGmethods have diÆulty with them. This paper proposes a multigrid method for these problemsby diretly identifying the diretions of slowly-varying algebraially smooth error, and onlyinterpolating in these diretions.�Submitted to Numerial Linear Algebra with Appliations. This work was performed under the auspies of theU.S. Department of Energy by University of California Lawrene Livermore National Laboratory under ontratNo. W-7405-Eng-48.yCenter for Applied Sienti� Computing, Lawrene Livermore National Laboratory, L-560, Box 808, Liver-more, CA 94551 (ehow�llnl.gov). 1



-1.0 1.9 -1.0-3.9 8.0 -3.9-1.0 1.9 -1.0Figure 1: Stenil for Poisson's equation using elements with 1/10 aspet ratio.For referene, we state AMG's de�nition of a strong oupling, also alled strong onnetionor strong dependene [6℄, for interpolating grid point i. Point i is strongly oupled to j if�aij � �maxk 6=i f�aikg (1)where 0 < � � 1 is alled the strength threshold. We additionally say that for � = 0, point i isstrongly oupled to j if aij < 0.As a motivational example, onsider solving Poisson's equation in a retangular domain(0; 1)�(0; 10) with Dirihlet boundary onditions using linear quadrilateral elements on a 20�20element mesh. Eah element has aspet ratio 1/10. The AMG method by Ruge and St�uben[10℄ with 2-levels (2 symmetri Gauss-Seidel pre-smoothing steps, diret solve on the oarselevel) using a strength threshold of 0.25 (the value suggested in the literature) requires 32yles to redue the residual by six orders of magnitude. The stenil, shown in Figure 1, showsthat this hoie of strength threshold de�nes all onnetions exept the positive onnetionsas strong. However, the smooth error varies slowly only in the east-west diretion in thisproblem; the smooth errors in the grid lines above and below the given point are unrelated,and interpolation using points in these grid lines is erroneous. A strength threshold of 0.26 orhigher orretly lassi�es the ouplings and AMG requires only 7 yles for onvergene with thishoie. (When the anisotropy is stronger, the detrimental e�et of the wrong strength thresholdis even stronger.) For unstrutured problems, the size of moderately negative entries does notlearly indiate whether smooth error is slowly-varying. To retify this problem, it is possible toinrease the strength threshold so that only the most negative onnetions are onsidered strongonnetions, erring on the side of mislassifying some strong diretions. However, this strategyentails using large oarse grids (i.e., requiring more levels) and may degrade interpolation.This paper suggests the use of geometrially smooth ouplings instead of strong ouplingsfor problems that are not (weakly) diagonally dominant suh as the above. The proposedmethod expliitly identi�es geometrially smooth ouplings by using di�erenes in samples ofalgebraially smooth error. Interpolation only uses these smooth ouplings. Thus we do notattempt to interpolate aross jumps in PDE oeÆients, for example, sine we assume that wedo not know how to interpolate aross these jumps. The method is idential to AMG exept thatit rede�nes strong ouplings and that it uses geometrially-based interpolation. The oarseningalgorithm, onstruting the oarse grid matrix, and smoothers remain the same.Other multigrid tehniques have been proposed for problems with matries with large positiveo�-diagonal entries. St�uben [12℄ suggests eliminating the o�-diagonal positive entries in a stenil(or row) by substituting stenils orresponding to the positive entries. The resulting stenil anbe used to determine whih ouplings are strong. It may be diÆult, however, to interpretthe resulting stenil, espeially if not all positive entries an be eliminated. Another multigridmethod is alled AMGe, an algebrai multigrid method for �nite element problems [5℄. AMGeagglomerates elements to form oarse grid matries, and utilizes a measure of interpolationquality to de�ne interpolation for these problems.This paper is organized as follows. A method for identifying geometrially smooth ou-plings is desribed in Setion 2. Interpolation along ouplings that are geometrially smooth isdesribed in Setion 3. Setion 4 shows the results of numerial investigations and Setion 5onludes this paper. 2
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(b) Strethed elementsFigure 2: Samples of algebraially smooth error for two �nite element disretizations.2 Identifying geometri smoothness2.1 Smoothness matrixGiven a oeÆient matrix A at a given grid level, a sample of algebraially smooth error may begenerated as the result of applying the smoother (to be used in the multigrid solution proess)to the homogeneous equations Ae = 0 (2)with a random initial guess for e. This relaxed vetor e is representative of the atual errorsremaining after smoothing that are generated in the multigrid solution proess. As we will see,however, many samples of algebraially smooth error will be needed to fully haraterize thiserror. Relaxed vetors produed this way have been used in other algorithms, for example,Bootstrap AMG [4℄.Figure 2 shows samples of algebraially smooth error for two linear quadrilateral �nite ele-ment disretizations of Poisson's equation on a segment of an annulus. The smoother was twosteps of symmetri Gauss-Seidel (SGS). The �gure shows that when the grid is strethed, thesmooth error is only geometrially smooth in the radial diretion; there is no relation in theerror omponents that an be diserned in the angular diretion.To try to quantitatively haraterize geometrially smooth error, we proeed as follows. Letn be the dimension of a sample of algebraially smooth error e. De�ne an n-by-n sparse matrixM that spei�es a sparsity pattern that does not inlude the diagonal, and de�ne dist(i; j) asthe graph distane between grid points i and j. We then de�ne the \di�erene matrix" as afuntion of e Dij(e) = ( 1kek2 jei�ej jdist(i;j) if Mij 6= 0unde�ned otherwise (3)whose entries an be interpreted as the diretional derivatives of e. Large values of Dij indiategeometri non-smoothness in the grid; small values of Dij do not imply smoothness unlessthe same entries are small for many samples of algebraially smooth error. We thus de�ne the\smoothness matrix" using the average of R di�erene matries (using R samples of algebraially3



smooth error) Sij = 8<: h 1R PRk=1Dij(e(k))i�1 if Mij 6= 00 otherwise : (4)Note the reiproal used in (4); now large values of Sij indiate geometri smoothness and smallvalues of Sij indiate geometri non-smoothness.Finally, we de�ne a \smooth oupling" as a oupling between points i and j suh that Sij � � ,where � is a threshold to be disussed in Setion 2.2. A thresholded version of S may be passedto AMG to use as its \strength matrix" whih is used to de�ne the oarse grid and interpolation.A few notes about these de�nitions are in order.� D is an approximation to a derivative in a graph sense rather than a geometri sense. Thisis reasonable beause oarsening is de�ned in terms of graph neighbors rather than pointsin a geometri neighborhood.� The matrixM is used to make sure that di�erenes are only omputed between nearby gridpoints. Most often, the pattern ofM will be taken to be the pattern of the matrix A less thediagonal. This de�nition of M implies that a grid point will at most be interpolated usingits nearest graph neighbors. An expanded pattern for M (e.g., the pattern of A2 less thediagonal) may be useful for non-grid-aligned problems or to generate very oarse grids, butinterpolation using farther graph neighbors is required. In AMG, strength of onnetionis only de�ned for the nearest graph neighbors of a node, but the above tehnique an beused to identify smooth ouplings that are not these nearest graph neighbors.� The saling by kek2 in (3) makes the di�erene matrix independent of how muh the errorwas redued by the smoother. Loalized salings may be appropriate in some ases, andwill be disussed in Setion (2.3).� Instead of de�ning the smoothness matrix using an average of di�erene matries, it ispossible to de�ne it using a omponent-wise maximum of di�erene matries. However,we did not �nd the latter to give signi�antly di�erent results.� The matrix S is symmetri, i.e., Sij = Sji, whih is suited for symmetri problems. Weplan to investigate how to extend the above ideas to nonsymmetri problems.The alulation of the smoothness matrix is adapted to the smoother being used in themultigrid solution proess. In a parallel proessing example, if a non-overlapping blok Jaobismoother is used, then the smoothness matrix will automatially prevent interpolation arossproessor boundaries. Another tehnique, alled ompatible relaxation [3℄ uses the smoother tohelp selet the oarse grid, and is similar in that it is also adapted to the smoother hosen forthe solution proess.2.2 Smoothness thresholdA smoothness threshold � disriminates between geometrially smooth and non-smooth ou-plings. It is not lear that a �xed value of � is appropriate for all problems. Further, di�erentsmoothness thresholds may be required on di�erent oarse grid levels.The following proedure for automatially hoosing the smoothness threshold at eah levelis surprisingly e�etive. We assume that the smoother generates algebraially smooth errorsuh that every grid point should have at least one smooth oupling. Then, given a smoothnessmatrix S, we hoose � = mini maxj Sij :Now, points i and j are alled smoothly oupled if Sij is greater than or equal to � .4



2.3 Loal saling of the smoothness matrixThe saling by kek2 in (3) is required to make the di�erene matrix independent of how muhthe error was redued by the smoother and independent of the saling of the initial guess for (2).For some problems, it is possible that the error is redued at di�erent rates in di�erent parts ofthe grid, and loal salings of the relaxed vetors may be appropriate. For a relaxed vetor e,an obvious loal saling is to sale ei by maxMij 6=0(ej).We use a simpler approah, whih is to sale the smoothness matrix suh that Sij is saledby maxk Sik. When only one relaxed vetor is used, this is idential to saling this relaxed vetoras desribed above. Our loal saling is also similar to to the way strong onnetions are de�nedin AMG; see (1).A smoothness threshold, 0 � � � 1, is also used to lassify smooth and non-smooth ouplingswhen loal saling is used. However, we do not have an automati proedure for hoosing thesmoothness threshold in this ase.2.4 Grid and operator omplexityThe following de�nitions, from [6℄, are useful to quantify the storage and work required by amultigrid V-yle. Grid omplexity is the total number of grid points, on all grids, divided bythe number of grid points on the �nest grid. Operator omplexity is the total number of nonzeroentries, in all oarse and �ne grid matries, divided by the number of nonzero entries in the�ne grid matrix. Operator omplexity is an indiation of the work per V-yle of the multigridproess.It turns out (see Setion 4) that the oarsening proedure based on smooth ouplings hoosesfewer oarse grid points (C-points) than oarsening based on approximately the same number ofAMG strong ouplings. This leads to smaller-dimension oarse grids, fewer levels, and smalleroperator and grid omplexities. To try to understand why these oarsenings behave di�erently,we examine the number of smooth or strong ouplings at eah grid point. Figure 3 plots thehistograms of the number of strong or smooth ouplings at eah grid point on the �nest grid forthree methods. The �gure shows that the AMG rule for strong ouplings limits the maximumnumber of strong ouplings at a grid point. This is due to its use of loal saling, whih assumesthat not all ouplings at a grid point an be strong. Loal saling of the smoothness matrix hasthe same diÆulty (although it is not as evident from this �gure) but it is not as severe.2.5 Number of samples of algebraially smooth errorUsing more samples of algebraially smooth error gives more aurate disrimination of thesmooth ouplings, but obviously inurs greater ost. Figure 4 plots the sorted entries in thesmoothness matrix for an anisotropi di�usion problem on a 20-by-20 grid, as a funtion of thenumber of samples of algebraially smooth error. In this example, the smooth ouplings areknown, and the optimal threshold is at the knee near 40. The knee develops after averagingabout ten samples, but there is no knee in general.The plot gives an idea of the values in the smoothness matrix, but not neessarily the numberof ouplings that are lassi�ed orretly. The number of sample vetors will be investigatedfurther in Setion 4.3 with respet to onvergene rate and solution time.2.6 Implementation detailsAlgorithm 1 shows the alulation of the entries of the smoothness matrix S (without loalsaling). These entries will typially be stored using a sparse data struture, and it is moreeÆient to ompletely ompute eah entry or eah olumn of S before beginning to ompute5
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(b) Smooth ouplings using loal saling, �=0.25,64953 ouplings (1736 C-points, 6 levels).
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() AMG strong ouplings, �=0.25, 64457 ou-plings (2480 C-points, 11 levels).Figure 3: Histograms of the number of strong or smooth ouplings at eah grid point. (They-axis shows the number of grid points with the number of strong or smooth ouplings on thex-axis.) These results are for the test matrix UU-2, desribed in Setion 4.1. Eah row of thetest matrix typially has 27 nonzeros per row. The grid points with zero ouplings are gridpoints speifying Dirihlet boundary onditions.
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Figure 4: Plots of the entries in the smoothness matries for 1 to 20 samples of algebraiallysmooth error (size of entries in smoothness matrix is sorted along the x-axis). The entries for20 samples has the most developed knee.the next entry or olumn. It is also more eÆient to smooth a blok a vetors than to smoothvetors individually (although this optimization is not used in the tests in this paper). If theomputation is organized this way, then the number of samples R of algebraially smooth errormust be known beforehand. In addition, sine S is symmetri, only its upper or lower triangularportion needs to be omputed.2.7 ExamplesFinite elements with strethed quadrilateralsFigure 5 shows typial entries in the smoothness matrix for the stenil in Figure 1. The smootherwas 2 steps of SGS. Larger entries indiate smoother ouplings. In the �gure, it is now learthat the ouplings to the points in the grid lines above and below the given point are equallynon-smooth. 22.7 20.8 21.851.7 54.815.5 15.4 15.9Figure 5: Entries in the smoothness matrix for the stenil in Figure 1.Figure 6 plots the weighted graph of the smoothness matrix for an anisotropi di�usionproblem using strethed elements on a segment of an annulus. The edges of the graph are oloredaording to the entries in the smoothness matrix. As expeted for this problem, geometriallysmooth onnetions are in the radial diretion. Some nearly horizontal onnetions an also belassi�ed as smooth due to the anisotropy preferring the x diretion. The boundary regions areshown to be less smooth sine error at the boundaries is removed fastest.Domain deompositionAs mentioned, the smoothness matrix is adapted to the smoother being used. Consider a non-overlapping blok Jaobi smoother (using SGS for approximate solves within the bloks) for adi�usion problem partitioned for two proessors. Figure 7 shows that the smoothness matrixdetets the geometri non-smoothness aross the proessor boundary in the algebraially smootherror. The illustration is similar for problems with jumps in PDE oeÆients.7



Algorithm 1 Calulate smoothness matrix S (without loal saling)1: De�ne the number of samples R2: Initialize the sparse data struture for S, given the hosen sparsity pattern of M3: Construt R samples of algebraially smooth error e(k), k = 1; : : : ; R by relaxing Ae = 0with random initial guesses4: Sale ~e(k) = e(k)=ke(k)k25: for all (i; j) suh that i < j and (i; j) is in the pattern of M do6: d = 1dist(i;j)�R PRk=1 j~e(k)i � ~e(k)j j7: fd an be zero if there are expliit zeros in the matrix Ag8: if d 6= 0 then9: Sij = 1=d10: else11: Sij = 012: end if13: Sji = Sij14: end for
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Figure 6: Weighted graph of the smoothness matrix for an anisotropi di�usion problem (oef-�ients kx = 10, ky = 1) using strethed elements on a segment of an annulus. The edges of thegraph are olored aording to the entries in the smoothness matrix.
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(b) Graph of smoothness matrix.Figure 7: Smooth error and graph of smoothness matrix for a problem partitioned for parallelomputing. (This �gure should be viewed in olor.)Rotated anisotropi di�usionThe smoothness matrix an identify smooth ouplings that are not immediate ouplings in thegraph of the matrix. For problems where strong anisotropy is not aligned with the grid points,these ouplings may provide better interpolation. Figure 8 illustrates a rotated anisotropi dif-fusion problem, where the diretion of anisotropy is in the horizontal diretion. The smoothnessmatrix was omputed using the sparsity pattern of A2 less the diagonal. The graph orrespond-ing to the largest entries in this smoothness matrix is plotted (the other entries ompliate thegraph). In passing, we note that geometri smoothness in the algebraially smooth error is notperfetly aligned with the anisotropy unless many smoothing steps are used.3 InterpolationIn this very short setion, we desribe a few alternatives for hoosing the interpolation matrixwhen the important ouplings for a grid point are the geometrially smooth ouplings de�nedabove. These interpolation shemes are geometri. The ommon interpolations de�ned for AMGwould not work, or would work poorly, beause they would lead to many negative interpolationweights.3.1 Linear interpolationGiven that points i and j are smoothly oupled, point j ontributes to the value of point iproportionally to the reiproal of its geometri distane from point i. If only ouplings to oarsepoints are used, this is alled linear interpolation using diret ouplings only. The interpolationweights are saled suh that the onstant vetor is interpolated perfetly.If j is not a oarse grid point, then point an j ontribute to the value at point i indiretlyusing the oarse points that are smoothly oupled to point j. This is alled linear interpolationwith both diret and indiret ouplings, and is similar to the way grid points are interpolatedindiretly in AMG. Again, the weights are saled to interpolate the onstant vetor perfetly.9
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(a) Smooth error (oeÆients kx = 10, ky = 0.1). (b) Smoothness graph.Figure 8: Algebraially smooth error.3.2 Interpolation using the geometri smoothness matrixThe entries in the smoothness matrix S may be used diretly to de�ne the interpolation weights.Large entries in S indiate geometri smoothness and provide better interpolation, while smallerentries in S should be less relied upon in interpolation. In our version, if a �ne grid pointis smoothly oupled to another �ne grid point, indiret interpolation is used. This is alledGS-weighted interpolation. Again, the weights are saled to interpolate the onstant vetorperfetly. GS-weighted interpolation may be appropriate for problems that have multiple degreesof freedom at eah grid point.4 Numerial investigationsGeometrially smooth ouplings may be used instead of AMG's strong ouplings, and linear orGS-weighted interpolation may replae the interpolation in AMG to de�ne a new unstruturedmultigrid method. We all this method GSMG (Geometri Smoothness Multigrid). When weneed to refer to the spei� variant of GSMG that uses loal saling of the smoothness matrix,we all it GSMG-L.GSMG has been implemented by adding modules to BoomerAMG [8℄, an AMG ode basedon algorithms by Ruge and St�uben [10℄. In this setion, we �rst desribe our test problems, thenshow results for AMG (using BoomerAMG), GSMG, GSMG-L, and GSMG using di�erent typesof interpolation. The tests were run on an 850 MHz Pentium III omputer with 256 kbytes ofahe memory and 256 Mbytes of main memory.4.1 Test problemsOur test problems arise from preonditioning the iterative solution of the �nite element equationsKu = f for a 3-D elastiity problem. When K is ordered suh that the x-, y-, and z-diretiondisplaements are grouped among themselves, K has the blok strutureK = 264 Kxx Kxy KxzKyx Kyy KyzKzx Kzy Kzz 375 :10



Figure 9: Gridding of an otant of three onentri spherial shells with (s1, s2, a1) = (2, 5, 10).The blok diagonal matrix blokdiag(Kxx, Kyy, Kzz) is spetrally equivalent to K with respetto the meshsize parameter [1℄ and forms a good preonditioner if solves with the diagonal bloksare eÆient. These bloks orrespond to anisotropi seond order operators, with the strengthof the anisotropy depending on the material Poisson ratio. Our test problems are the diagonalbloks Kxx from di�erent �nite element disretizations of the same physial problem.The physial problem of interest is three onentri spherial shells; two steel shells surrounda third shell omposed of luite. Thus there are material oeÆient disontinuities in thisproblem. An otant of the physial problem is disretized using linear hexahedral �nite elementson a blok-strutured grid. The steel shells are 0.5 units thik, the luite shell is 2.0 units thik,and the outer radius of the outer shell is 20.5 units. In the disretization, the steel shells ares1 elements thik, the luite shell is s2 elements thik, and a1 elements are used in the angulardiretion along the side of an otant. Figure 9 shows a gridding of the problem with (s1, s2, a1)= (2, 5, 10). As is typial for these test problems, the elements have poor aspet ratios.Table 1 desribes the three test problems used in the following numerial investigations. Theseond and third problems are more diÆult sine they have poorer element aspet ratios. Thethird problem is a saled-up version of the seond problem, and allows a omparison of resultson large and small problems. s1 s2 a1 aspet ratio n nnzUU-1 3 10 40 1/4.8 21437 538069UU-2 3 10 20 1/9.7 5627 136759UU-3 6 20 40 1/9.7 41613 1065157Table 1: Test problems: the Kxx matries for three griddings of the spherial shells problem,showing the gridding parameters, the worst element aspet ratio, and the number of equationsn and number of nonzeros nnz in the matries.One-point integration for the �nite elements is used, ombined with hourglass damping [7℄ toeliminate spurious zero modes. We have found experimentally that this integration and dampingproedure leads to matries whose algebraially smooth error is very geometrially non-smoothunless very many smoothing steps are used. When only 1 or 2 smoothing steps are used, as istypial, AMG and GSMG onverge very slowly. For this reason, in our tests below, we will use11



up to 20 steps for the SGS smoother. Both pre- and post-smoothing are used.The results tabulated in the setions below show the number of V-yles for onvergene(assumed when the initial residual (with a zero initial guess) is redued by six orders of magni-tude), the onvergene rate on the �nal step (not the average onvergene rate), the setup andsolve timings, and the grid and operator omplexities. Further, the tables show the number ofsmooth or strong ouplings (S-ouplings) found on the �nest grid, the number of oarse points(C-points) found on the �nest grid, and the number of levels.4.2 AMG resultsTables 2{4 show sample results for AMG (many other strength thresholds � were tested). Thebest onvergene rates are ahieved for � from about 0.75 to 1, whih is muh higher than thenominal value of 0.25 suggested in the literature. Higher values of � are required to ensure thatthe strong ouplings are indeed good ouplings to use for interpolation. The best timings areahieved for � of 0.95 (not shown) for UU-1 and 0.99 (not shown) or 1.00 for the other twoproblems. This is beause the grid and operator omplexities an be extremely large, and thebest timings are ahieved when these omplexities are small. AMG is not salable for theselarge values of � (based on omparing UU-2 and UU-3 results); AMG is salable for � where thebest onvergene rate is ahieved. In summary, better onvergene rates and omplexities arelimited for these problems due to poor hoies of strong ouplings.20 step smoother� S-ouplings C-points levels yles onv. time (s) omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 347954 12023 6 13 0.433 37.11 144.08 1.72 5.570.25 245480 10678 12 15 0.481 11.38 424.59 2.16 14.490.50 125917 9998 14 25 0.657 4.85 494.85 2.21 10.310.75 54094 10075 12 8 0.304 1.49 66.83 2.12 4.241.00 20782 9661 11 17 0.587 0.47 63.93 1.82 1.8010 step smoother� S-ouplings C-points levels yles onv. time (s) omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 347954 12023 6 18 0.542 37.14 100.13 1.72 5.570.25 245480 10678 12 20 0.581 11.46 278.44 2.16 14.490.50 125917 9998 14 30 0.709 4.90 302.76 2.21 10.310.75 54094 10075 12 9 0.354 1.49 37.73 2.12 4.241.00 20782 9661 11 22 0.664 0.50 40.43 1.82 1.805 step smoother� S-ouplings C-points levels yles onv. time (s) omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 347954 12023 6 25 0.643 36.89 71.88 1.72 5.570.25 245480 10678 12 29 0.679 11.45 210.50 2.16 14.490.50 125917 9998 14 38 0.753 4.86 195.20 2.21 10.310.75 54094 10075 12 12 0.406 1.49 26.78 2.12 4.241.00 20782 9661 11 29 0.737 0.49 29.54 1.82 1.80Table 2: AMG results for UU-1 as a funtion of the strength threshold �.
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20 step smoother� S-ouplings C-points levels yles onv. time (s) omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 83456 2480 6 39 0.769 3.01 72.88 1.59 4.120.25 64457 2480 11 30 0.720 1.83 132.21 2.06 9.640.50 30350 2480 12 43 0.784 0.66 119.46 2.19 6.470.75 14441 2480 11 11 0.397 0.21 11.87 1.95 2.611.00 5271 2477 9 12 0.455 0.11 8.57 1.80 1.6610 step smoother� S-ouplings C-points levels yles onv. time (s) omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 83456 2480 6 58 0.851 3.02 58.36 1.59 4.120.25 64457 2480 11 45 0.808 1.82 100.95 2.06 9.640.50 30350 2480 12 53 0.822 0.65 76.68 2.19 6.470.75 14441 2480 11 19 0.589 0.21 10.67 1.95 2.611.00 5271 2477 9 14 0.515 0.10 5.44 1.80 1.665 step smoother� S-ouplings C-points levels yles onv. time (s) omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 83456 2480 6 91 0.902 3.00 45.27 1.59 4.120.25 64457 2480 11 66 0.858 1.83 77.14 2.06 9.640.50 30350 2480 12 65 0.852 0.66 49.95 2.19 6.470.75 14441 2480 11 34 0.743 0.22 10.18 1.95 2.611.00 5271 2477 9 19 0.586 0.11 3.88 1.80 1.66Table 3: AMG results for UU-2 as a funtion of the strength threshold �.20 step smoother� S-ouplings C-points levels yles onv. time (s) omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 679552 19520 7 38 0.777 188.09 872.36 1.62 5.690.250.500.75 115709 20776 14 11 0.407 2.45 150.53 2.07 3.421.00 40272 19332 11 22 0.671 0.93 163.85 1.83 1.7610 step smoother� S-ouplings C-points levels yles onv. time (s) omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 679552 19520 7 55 0.842 184.26 602.29 1.62 5.690.250.500.75 115709 20776 14 18 0.586 2.46 125.43 2.07 3.421.00 40272 19332 11 27 0.717 0.94 99.97 1.83 1.765 step smoother� S-ouplings C-points levels yles onv. time (s) omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 679552 19520 7 81 0.889 180.65 490.04 1.62 5.690.250.500.75 115709 20776 14 32 0.740 2.44 118.83 2.07 3.421.00 40272 19332 11 37 0.775 0.94 73.55 1.83 1.76Table 4: AMG results for UU-3 as a funtion of the strength threshold �. Blanks in the tableindiate that AMG failed due to exessive memory requirements.13



4.3 GSMG results, and number of sample vetorsTables 5{7 show results for GSMG as a funtion of the number of sample relaxed vetors used.The smoothness threshold was hosen automatially. It is immediately lear that the grid andoperator omplexities are muh smaller than those for AMG, although more ouplings are usedfor interpolation. A related result is that GSMG uses fewer oarse grid points and fewer levels.The GSMG onvergene rate is generally better or omparable, exept when only 5 steps areused in the smoother.GSMG has a relatively large setup ost, but the lower operator omplexity generally makesthe solve ost muh lower than AMG's solve ost. This an be advantageous in situations wheremultiple systems need to be solved with the same matrix. The total (setup and solve) time maybe larger or smaller depending on the problem.For these problems, GSMG requires about 5 to 10 sample relaxed vetors to give the besttotal time. However, the number of V-yles and the solve time an be redued further if moresample vetors are used, up to about 20 or 25. The best number of samples to use does notseem to depend on the number of smoother steps.GSMG operates salably (by omparing results for UU-2 and UU-3) for these problems whena large number of smoothing steps (e.g., 20) is used.For UU-2 and UU-3, the number of smooth ouplings seems to inrease when the number ofsmoothing steps is dereased. This implies that 1) the seleted smoothness threshold dependson the number of smoothing steps, and/or 2) the relaxed vetors appear geometrially smootherif less smoothing is used. 20 step smoothersample S-ouplings C-points levels yles onv. time (s) omplexityvetors (1st lev) (1st lev) rate setup solve grid operator5 413118 3982 5 9 0.291 9.87 26.39 1.22 1.4010 395234 4282 7 7 0.209 17.77 22.29 1.27 1.5415 401322 4282 7 7 0.203 24.77 21.52 1.26 1.5020 404530 4138 7 7 0.210 32.19 21.35 1.26 1.4725 389628 4562 6 7 0.217 40.23 21.61 1.27 1.5210 step smoothersample S-ouplings C-points levels yles onv. time (s) omplexityvetors (1st lev) (1st lev) rate setup solve grid operator5 397814 4278 5 13 0.413 6.62 19.57 1.24 1.4610 378938 4762 6 10 0.318 10.15 17.29 1.29 1.5715 370308 4801 5 9 0.344 13.91 14.10 1.28 1.5320 378622 4639 6 8 0.299 17.16 12.30 1.28 1.5325 363602 5147 6 9 0.314 21.54 13.97 1.29 1.525 step smoothersample S-ouplings C-points levels yles onv. time (s) omplexityvetors (1st lev) (1st lev) rate setup solve grid operator5 460252 3573 5 20 0.607 4.52 15.63 1.20 1.3610 470442 3238 6 18 0.541 5.79 13.36 1.18 1.2915 471892 3233 5 18 0.533 7.71 13.43 1.18 1.2920 480870 2978 5 17 0.508 9.02 12.19 1.17 1.2425 488626 2828 6 19 0.604 10.35 13.30 1.16 1.20Table 5: GSMG results for UU-1 as a funtion of the number of sample relaxed vetors.
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20 step smoothersample S-ouplings C-points levels yles onv. time (s) omplexityvetors (1st lev) (1st lev) rate setup solve grid operator5 66340 1537 6 13 0.421 2.45 9.96 1.37 1.7810 60420 1646 6 10 0.359 4.24 7.52 1.40 1.7715 50024 1881 7 9 0.362 6.38 7.06 1.44 1.8320 48390 1894 6 9 0.334 8.09 6.84 1.43 1.7725 51474 1831 6 9 0.351 9.80 6.80 1.43 1.7510 step smoothersample S-ouplings C-points levels yles onv. time (s) omplexityvetors (1st lev) (1st lev) rate setup solve grid operator5 93754 1131 5 34 0.754 1.39 12.01 1.27 1.5310 83410 1336 6 16 0.503 2.31 6.05 1.34 1.6415 77654 1429 6 17 0.539 3.37 6.47 1.34 1.6220 70336 1553 6 13 0.443 4.21 4.99 1.37 1.6525 65636 1633 6 15 0.495 5.44 6.01 1.39 1.745 step smoothersample S-ouplings C-points levels yles onv. time (s) omplexityvetors (1st lev) (1st lev) rate setup solve grid operator5 119578 747 5 68 0.871 0.86 10.55 1.18 1.2510 118906 778 5 54 0.827 1.25 8.56 1.18 1.2815 117028 851 5 53 0.827 1.66 8.55 1.19 1.3120 114298 849 5 47 0.822 2.07 7.67 1.18 1.2925 110540 957 5 43 0.808 2.51 7.19 1.20 1.32Table 6: GSMG results for UU-2 as a funtion of the number of sample relaxed vetors.20 step smoothersample S-ouplings C-points levels yles onv. time (s) omplexityvetors (1st lev) (1st lev) rate setup solve grid operator5 687806 9621 6 19 0.579 23.95 129.46 1.30 1.6510 671350 10134 6 13 0.473 39.51 90.91 1.32 1.6715 633350 10810 8 11 0.413 56.62 76.65 1.35 1.7220 620908 11043 7 12 0.434 73.68 83.83 1.36 1.7125 599488 11275 7 11 0.392 93.43 78.89 1.37 1.7410 step smoothersample S-ouplings C-points levels yles onv. time (s) omplexityvetors (1st lev) (1st lev) rate setup solve grid operator5 834420 7656 6 35 0.757 13.03 106.01 1.22 1.4710 859320 7265 6 28 0.693 19.30 80.89 1.21 1.3815 887646 6763 6 37 0.765 25.22 102.31 1.19 1.3420 898644 6672 6 28 0.678 31.55 77.86 1.19 1.3425 896832 6757 7 23 0.637 39.67 67.34 1.22 1.415 step smoothersample S-ouplings C-points levels yles onv. time (s) omplexityvetors (1st lev) (1st lev) rate setup solve grid operator5 979128 5302 6 67 0.857 7.59 94.71 1.15 1.2110 980378 5173 6 58 0.833 10.67 81.14 1.15 1.1915 977984 5400 7 55 0.830 14.28 78.28 1.16 1.2120 976900 5249 6 57 0.831 17.60 80.29 1.15 1.1925 982190 5574 7 55 0.831 20.72 77.33 1.16 1.19Table 7: GSMG results for UU-3 as a funtion of the number of sample relaxed vetors.15



4.4 GSMG-L resultsThe GSMG-L results in Tables 8{10 show that the grid and operator omplexities are larger thanthose of GSMG, but smaller than those of AMG. Further, GSMG-L is able to ahieve slightlybetter onvergene rates than both GSMG and AMG. However, the total time for GSMG-Lis larger than the total time for GSMG due to its larger omplexities, and the total time forGSMG-L may be larger or smaller than the total time for AMG depending on its setup ost.Twenty sample vetors were used in these tests.Whereas AMG needs approximately the same number of C-points regardless of the strengththreshold, GSMG-L needs far fewer C-points when the smoothness threshold is small. ThusGSMG-L seems to have a better distribution of its smooth ouplings than AMG has of itsstrong ouplings.Like AMG, the GSMG-L results are somewhat problemati sine the best timings are gen-erally ahieved when the grid and operator omplexities are smallest rather than when theonvergene rate is fastest. This similarity in the AMG and GSMG-L results an be explainedby the similar way they use loal salings to selet the relevant ouplings.20 step smoother� S-ouplings C-points levels yles onv. time (s) omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 499542 2400 5 8 0.228 23.81 17.92 1.13 1.120.25 277751 6648 8 6 0.158 69.77 37.84 1.47 3.170.50 147494 9103 10 6 0.193 84.33 48.75 1.74 4.040.75 53504 10820 12 7 0.248 61.33 41.88 2.03 3.031.00 20740 9976 11 12 0.485 35.32 41.71 1.83 1.6510 step smoother� S-ouplings C-points levels yles onv. time (s) omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 499542 2400 5 13 0.433 13.91 16.16 1.13 1.120.25 287391 6558 7 8 0.279 36.25 23.88 1.46 3.010.50 145395 9248 9 6 0.209 43.14 23.95 1.75 4.060.75 51801 10845 12 8 0.306 30.32 23.22 2.03 2.981.00 20740 9961 11 18 0.619 17.62 30.74 1.83 1.655 step smoother� S-ouplings C-points levels yles onv. time (s) omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 499542 2400 5 25 0.648 8.01 16.18 1.13 1.120.25 406307 4894 7 23 0.643 17.74 28.42 1.33 2.300.50 211570 8771 9 11 0.365 25.96 24.26 1.71 4.180.75 67649 11165 12 9 0.378 19.55 16.04 2.06 3.331.00 20740 9607 10 27 0.721 10.01 25.24 1.80 1.65Table 8: GSMG-L results for UU-1 as a funtion of the smoothness threshold � .4.5 Alternative interpolationsTable 11 shows the number of GSMG V-yles required for onvergene using linear interpola-tion, linear interpolation using diret onnetions only, and interpolation using weights from thesmoothness matrix (GS-weighted). AMG interpolation did not lead to onvergene when therelevant ouplings were based on geometri smoothness.The results show essentially the same performane exept when GS-weighted interpolationwas used with a small number of smoothing steps. Thus the use of geometri oordinates (for16



20 step smoother� S-ouplings C-points levels yles onv. time (s) omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 122522 600 5 22 0.638 5.74 11.87 1.12 1.110.25 64953 1736 6 8 0.252 13.12 9.50 1.48 2.810.50 23694 2443 8 7 0.230 14.85 10.07 1.75 3.300.75 10607 2592 10 8 0.242 9.24 7.27 1.90 2.251.00 5270 2552 9 10 0.355 7.10 6.99 1.81 1.6410 step smoother� S-ouplings C-points levels yles onv. time (s) omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 122522 600 5 44 0.796 2.98 11.58 1.12 1.110.25 67244 1778 7 14 0.467 8.26 9.43 1.48 2.870.50 24567 2459 8 8 0.254 7.99 6.00 1.76 3.330.75 10009 2641 10 9 0.284 5.19 4.49 1.92 2.301.00 5270 2536 9 13 0.476 3.97 5.01 1.80 1.635 step smoother� S-ouplings C-points levels yles onv. time (s) omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 122522 600 5 86 0.891 1.86 12.99 1.12 1.110.25 95171 1317 6 54 0.839 3.54 13.42 1.35 2.110.50 45808 2357 8 23 0.646 5.60 11.08 1.73 3.920.75 14364 2787 10 12 0.408 3.29 3.62 1.95 2.631.00 5270 2449 9 19 0.591 2.11 3.79 1.77 1.61Table 9: GSMG-L results for UU-2 as a funtion of the smoothness threshold � .20 step smoother� S-ouplings C-points levels yles onv. time (s) omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 989686 4800 5 20 0.599 48.39 90.90 1.13 1.120.25 517821 15008 8 7 0.225 253.85 150.08 1.59 5.450.50 170967 19798 11 7 0.241 169.43 114.48 1.87 4.110.75 86516 19297 13 8 0.305 107.46 84.24 1.96 2.551.00 40260 18689 11 17 0.591 71.09 119.27 1.76 1.6410 step smoother� S-ouplings C-points levels yles onv. time (s) omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 989686 4800 5 38 0.769 28.17 95.87 1.13 1.120.25 577647 13944 9 24 0.653 165.16 252.02 1.56 5.420.50 190193 19778 11 11 0.389 90.17 92.10 1.88 4.230.75 81996 19825 13 10 0.371 54.97 52.55 1.98 2.571.00 40260 18164 11 26 0.703 34.18 86.01 1.74 1.605 step smoother� S-ouplings C-points levels yles onv. time (s) omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 989686 4800 5 74 0.875 16.19 97.16 1.13 1.120.25 846116 9238 8 57 0.854 70.70 190.16 1.35 3.210.50 404468 17774 10 36 0.740 64.96 197.95 1.80 5.290.75 124615 21112 13 19 0.611 38.54 66.83 2.03 3.201.00 40260 17338 11 40 0.798 19.24 71.99 1.70 1.58Table 10: GSMG-L results for UU-3 as a funtion of the smoothness threshold � .17



linear interpolation) is not mandatory in GSMG.smoother linear linear GS-weightedsteps (diret only)UU-1 20 7 7 710 8 9 85 17 18 20UU-2 20 9 9 810 13 16 135 47 44 60UU-3 20 12 13 1110 28 26 315 57 54 75Table 11: GSMG results showing the number of V-yles required for onvergene using linearinterpolation, linear interpolation using diret onnetions only, and interpolation using weightsfrom the smoothness matrix.5 ConlusionsThis paper has argued that geometri smoothness may more aurately determine the relevantouplings in AMG for matries that are not diagonally dominant. Determining the geometriallysmooth ouplings omes at additional setup ost, but methods based on geometri smoothness,suh as GSMG, may have muh smaller solve timings. The smaller solve timings are primarily theresult of smaller operator omplexities. On the negative side, GSMG is muh more sensitive tothe geometri smoothness of the algebraially smooth error. GSMGmay require many smoothingsteps for some problems.One of the main di�erenes between AMG and GSMG is that AMG uses a loal de�nitionof strong ouplings (i.e., the strength of the oupling is based on loal information) whereas inGSMG, a global threshold is used to determine whether a oupling is smooth for the entire grid.The latter strategy seems to lead to a method that results in better omplexities for the �niteelement problems tested here.The geometri harater of algebraially smooth error needs to be better understood. Forexample, an smooth error vary sharply in some regions of the grid, but an still be interpo-lated geometrially? Methods an be designed that test how well neighboring points provideinterpolation in order to deide on the most relevant ouplings for a grid point.AknowledgmentsThe author is grateful to Ulrike Meier Yang for advie on using the BoomerAMG ode. Theauthor also wishes to thank Robert D. Falgout, Van Emden Henson, Jim E. Jones, and PanayotS. Vassilevski for their helpful omments during this work.Referenes[1℄ O. Axelsson. On iterative solvers in strutural mehanis; separate displaement orderingsand mixed variable methods. Mathematis and Computers in Simulation, 40:11{30, 1999.[2℄ A. Brandt. Algebrai multigrid theory: The symmetri ase. Appl. Math. Comput., 19:23{56, 1986. 18
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