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SIDL integration into Java is nearly 
seamless

• SIDL and Java have a lot in common, and 
the JNI allows us to call native code just 
like Java code.
– SIDL packages, classes, interfaces, and methods 

are called just like standard Java

• Ex: package.Class.method();

– No need to worry about reference counting.

– Exceptions are caught and thrown, same as Java

– Enums are final static ints in their own class
• Ex: int state = package.enum.name; 



Some mappings aren’t perfect
(Holder Classes)

• Java does not support pass by reference, 
so we have a public static inner class 
named Holder in each type for use as 
out/inout arguments
– sidl.Integer.Holder inout   = new sidl.Integer.Holder(3);

obj.passinout(inout);
int x = inout.get();

• Holder classes are available for ALL types, 
including basic types, user defined types, 
and arrays.



Some mappings aren’t perfect
(Wrapper Classes)

• Java interfaces and abstract classes 
cannot hold an IOR pointer.  We created 
another static inner class for abstract 
types named Wrapper.  
– Allows Babel to pass abstract types as 

method arguments and return them.

– Allows Babel casting on abstract types.

– Allows throwing and catching Exception 
Interfaces.



Some mappings aren’t perfect
(Babel casting)

• When Java casting is insufficient, use a Babel 
cast.
– bar x = (bar) bar._cast(fooArray.get(2,3));

• When is Babel cast necessary?
– Whenever a sub class is taken out of an array of or 

passed as a super class/interface. 

• Why is a Babel cast necessary?
– When objects are passed by Babel or an object is 

retrieved from a SIDL array, a new object is created 
and the IOR placed inside.  Java doesn’t know the 
IOR type, so a Babel cast is necessary to downcast 
it.



Every Type has an Array

• Arrays are static inner classes, every type 
has them.  (Including basic types)
– Array(int dim, int[] lower, int[] upper, boolean isRow)

– foo.Bar.Array objArray = 

new foo.Bar.Array(5,0,0,0,0,0,0,true);

– sidl.Integer.Array intArray = 
new sidl.Integer.Array(5,0,0,0,0,0,0,true); 

• Every Array class also has numbered array 
subclasses that make things easier.
– foo.Bar.Array1 arry1 = new foo.Bar.Array1(5,true);
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Generating Java bindings

• Client side:
%babel –client=Java file.sidl
%babel –cJava file.sidl

• Server side:
%babel –server=Java file.sidl
%babel –sJava file.sidl

Stub and Skeleton files are generated in the current 
directory, named _jniStub and _jniSkel respectively. 
Java files go in a directory hierarchy that duplicates the 
package hierarchy. 
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A basic Object Array Example
(Client Side)

main(String args[]) {

  Employee.Array1 empArry = new  Employee.Array1(3, true);

  String[] name = {“John Smith”, “Jackie Choi”, Barney Rubble”};

  int[] salary = {“5232”, “2134”, “8792”};

  for(int i = 0; i < 3; ++i) {  //initialize array

    Employee emp = new Employee();

    emp.init(name[i], salary[i]);

    empArry.set(i, emp)  }

  int maxSalary, index;

  for(int i = 0; i < 3; ++i) { //find highest salary

     if(empArry.get(i).getSalary() > maxSalary) {

      maxSalary = empArry.get(i).getSalary; index = I; } }

System.out.println(empArray.get(index).getName() + “has a big 
salary”);



A basic Object Array Example
(Server Side)

public class Employee_Impl extends Employee {
  // DO-NOT-DELETE splicer.begin(objarg.Employee._data)
  private String d_name = "";
  private int d_salary = 0;
  // DO-NOT-DELETE splicer.end(objarg.Employee._data)
  public void init_Impl (/*in*/ java.lang.String name, /*in*/ int salary) {
    // DO-NOT-DELETE splicer.begin(objarg.Employee.init)
    d_name = name;
    d_salary = salary;
    return;
    // DO-NOT-DELETE splicer.end(objarg.Employee.init)
  }
  public java.lang.String getName_Impl () 
  {
    // DO-NOT-DELETE splicer.begin(objarg.Employee.getName) 
    return d_name;
    // DO-NOT-DELETE splicer.end(objarg.Employee.getName) 
 }
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Interface Wrappers

• Wrapper Classes are used when:
– An object is retrieved from an interface array

– An interface is passed to, or returned from, a Babel 
method

– An interface is used as an exception.

• When does the Babel user see them? 
– When an interface is used as an exception.

– Sometimes necessary for using BaseClass methods

• Why?
– Java understands interfaces being returned from a 

method, but Exceptions must be a class.



Interface Exception Example

• Client Side
try{ 
  obj.thrw() 
} catch(example.iException.Wrapper) {/*do nothing*/}

• Server Side
 public int thrw_Impl () throws example.iException.Wrapper {
    // DO-NOT-DELETE splicer.begin(ExceptionTest.Fib.getFib)     
     iException.Wrapper ex = new iException.Wrapper();     ex.setNote

(“You called thrw!");
      throw ex;
    // DO-NOT-DELETE splicer.end(ExceptionTest.Fib.getFib)
}
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Babel arrays in Java are a little 
‘Different.’

• Array Hierarchy
– Each type has a basic Array class, and 7 

subclasses, one for each dimension.
• Special conversion function _dcast()

• Long series of minor type changes whenever 
working through Array hierarchy.

• Object Arrays
– All object arrays actually hold a 

sidl.BaseClass array to hold the data.



Debugging

• Debugging the JNI is nightmare.
– No tools.

• No debugger can do naturally do both JAVA and 
native code.

– Very little documentation on calling Java from 
C.

– Java Garbage Collection causes 
unpredictable results.



Reference Counting

• Reference counting is taken care of by 
Java and Babel.
– User has no choice about getting rid of data, 

must keep it all until Java lets go.
– Casts must addRef().  (Unlike every other 

Babelized language).
– Must be careful to always have java deleteRef 

when collecting a Java object.

• Of course, all of this caused plenty of 
trouble and was very difficult to debug.



Unexpected Exceptions
(Server Side)

• What do you do with a Java runtime Exception?
– Not a lot you can do.

• Can’t transmit it

• Can’t convert it

– Just print the message and a stack trace to Standard 
Error, and keep going..

• What about unexpected SIDL Exceptions?
– Shouldn’t ever happen.  Requires changing code 

outside spliced blocks in the _Impl file.
• All you can do is print a message and keep going…

• This problem appears in Python and C++ too


