
Supercomputing 2004
Tutorial S03:

Bridging Programming Languages
With .

Gary Kumfert
Tamara Dahlgren Thomas Epperly

Center for Applied Scientific Computing
This work was performed under the auspices of the U.S. Department of Energy by the University
of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

UCRL-PRES-205332

2

General Announcements

Restrooms
Break schedule
You should have:

SC Tutorial Questionnaire
Babel Slides (including this one)
Personal Laptop w/ access to UNIX-like
environment (for Part II: Hands-on)

Please Ask Questions
Lot of arcana goes into interoperability

3

Handout Material

Details about Slides

Many Slides are labeled
These are “hidden slides” in the
presentation (intended for readers)
Speakers will skip these slides by default.
But, we are happy to visit them if there are
any questions.

Glossary of Terms in back of Handouts.
We will post Errata at
http://www.llnl.gov/CASC/components/docs/sc04.html

This symbol is used to warn about
corrections made after publication of notes.

This symbol is used to warn about
corrections made after publication of notes.

http://www.llnl.gov/CASC/components/docs/sc04.html

4

email: components@llnl.gov
website: http://www.llnl.gov/CASC/components

Tamara Dahlgren
<dahlgren1@llnl.gov>

Thomas Epperly
<epperly2@llnl.gov>

Gary Kumfert
<kumfert1@llnl.gov>

Jim Leek
<leek2@llnl.gov>

mailto:components@llnl.gov
http://www.llnl.gov/CASC/components

5

Today’s Outline
I. Tutorial - 3 hours
:30 Introduction – Gary Kumfert
:15 Performance – Thomas Epperly
:30 SIDL Language – Thomas Epperly
:30 Babel Tool – Thomas Epperly
:30 Using Babel Objects – Thomas Epperly
:30 Building Babel Libraries – Gary Kumfert
:15 Closing – Gary Kumfert

II. Hands On – 3 hours

I. Introduction

7

Most Science & Engineering Apps
Already Mix Languages

Scripting Driver
(Python)

Simulation Framework
(C)

Solver Library
(C++)

Numerical Routines
(FORTRAN 77)

Visualization System
(Java)

Physics Models
(FORTRAN 90)

8

When we say “Language Interoperability”
we mean something very different than

from what most applications do.
Scripting Driver

(Python)

Simulation Framework
(C)

Solver Library
(C++)

Numerical Routines
(FORTRAN 77)

Visualization System
(Java)

Physics Models
(FORTRAN 90)

Logging and Plotting
(Python)

Suppose your iterative solver isn’t
converging, but oscillating in a curious
way. Can you pause the simulation,
write a Python script to extend the
(C++) convergence check and log the
pertinent physics in those regions?

9

When we say “Language Interoperability”
we mean complete language transparency

Scripting Driver
(Python)

Simulation Framework
(C)

Solver Library
(C++)

Numerical Routines
(FORTRAN 77)

Visualization System
(Java)

Physics Models
(FORTRAN 90)

Adaptive Sampling
(Python)

Now suppose you have a regime in your
physics models that is of interest. Can
you extend Fortran90 modules in some
scripts to explore new ideas as the
simulation progresses?

10

Mixing Of Languages is Commonplace,
but too often Inflexible & Fragile
Developers are often painfully aware of
language boundaries

Usually fixed early on in design process
Frequent source of portability problems.

Usually a great reluctance to add new
languages

Often teams will rewrite a package in a language
they already use, rather have to add a new one.
Particularly true when several languages are
already in play.

Most tools for language interoperability are
point-to-point & and have a strong bias for
one or the other

11

When Mixing n Languages,
Tool usage can grow O(n2)

C

C++

Fortran 90

Python

Fortran 77

Java

cfortran.h

Chasm

COM

CORBA

JNI

Native

Platform-Dependent

Siloon

SWIG

12

Babel is an n-way Language
Interoperability Tool

C

f77

f90

Java

C++ Python

Once a library has been
“Babelized” it is equally

accessible from all
supported languages

Additional languages
added ~1/year

13

Babel Supports a Uniform
Model Across All Languages

f77

f90C

C++ Python

Java

Full OOP, Polymorphism,
Exception Handling in

every language.

Can throw an exception
from C++, catch it in

F77 and have the
exception itself be in C

14

Babel may be right for your
group, if you are...

Library developers wanting to support users
in multiple languages
A standards body wanting to produce
language-independent standards
An code-team who must coordinate more
than two languages in a single, scientific
application.
A computational scientist who expects their
code to evolve over many years along with
scientific research & discovery

15

Babel Goals and Boundaries

Complete Language Transparency
High Performance / Binary
Interoperability
Acceptable

Generate lots of code
Dictate compiler flags, etc.

Not Acceptable
Require custom compilers, linkers, etc.
Generate code beyond language
standards.

16

Babel Has Two Parts:
Code Generator & Runtime Library

SIDL
interface

description

Babel
Compiler

C++

F77

F90

Python

C

XML

Matlab?

Java

Babel
Runtime

Application

17

Tutorial Sections
Follow this Flow

SIDL
interface

description

Babel
Compiler

C++

F77

F90

Python

XML

C

Matlab?

Java

Babel
Runtime

Application

Part 3:
SIDL

Language

Part 4:
Babel
Tool

Parts 5 & 6:
Using Objects
& Building Libs

18

Babel distinguishes between
User and Developer

Developer of Babel-wrapped Library
Must know Babel & SIDL
Generate SIDL file
Connect Babel-generated code to their
implementation

User of a Babel-wrapped Library
May not even know they are using Babel
Must learn the API for the language
binding of that library

19

User/Developer Distinction
Influences Babel’s Design

We assume our users have various levels of
skill and interest in programming.

Stark difference from CORBA and COM

Babel

Complexity

Developer
user

Make Babel handle complexity
whenever possible.

If Babel can’t,
developer next

20

Typical Developer Workflow
For a New Project

SIDL
interface

description

Babel
Compiler C++ Skels

C++ Impls

IORs

C++ Stubs

libTheLib.so

1. Write SIDL File
2. `babel --server=C++ TheLib.sidl`
3. Add implementation details
4. Compile & Link into Library/DLL

21

Typical Developer Workflow
Wrapping Legacy Code

mycode.sidl Babel
Compiler Skels

Impls

IORs

Stubs

libTheLib.a

1. Write your SIDL interface
2. Generate server side in your native language
3. Edit Implementation (Impls) to dispatch to your code

(Do NOT modify the legacy library itself!)
4. Compile & Link into Library/DLL

legacy_library.a

22

Typical User Workflow...

SIDL
interface

description

Babel
Compiler IOR

Headers

F90 Stubs

1. `babel --client=F90 TheLib.sidl`
2. Compile & Link generated Code &

Runtime
3. Place DLL in suitable location

libTheLib.so

Babel
Runtime

Application

23

Alternate User Workflow...
(Only Babel Runtime Needed)

1. -I (directory of your calling language)
2. -L (directory of your calling language)
3. -lTheLib -lsidl

C++

C

libTheLib.a

Babel
Runtime

Application

F90

F77

Code ships with
Babel bindings
pre-generated

24

Handout Material

Some Commercial
interoperability technologies

Technology Similarities Differences
Common
Object
Request
Broker
Architecture
(CORBA)

• Common Object Model
• Maps IDL to C, C++,
Java, and Python

• No built-in support for
scientific data types
• No IDL to Fortran
mapping (yet)
• Not high performance

Common
Object Model
(COM)

• Common Object Model
• Fast in-process
communication
• Maps IDL to C, C++,
Java, Fortran

• No built-in support for
scientific data types
• Windows platforms
only
• No IDL to Python

25

Handout Material

Some Open Source language
interoperability options
Technology Description

cfortran.h Wrapper technology for C and Fortran that
relies on C preprocessor macros.

Simplified Wrapper and
Interface Generator (SWIG)

Non-IDL wrapper technology to hook C/C++
code to driver languages including Java and
Python.

Scripting Interface
Languages for Object-
Oriented Numerics
(SILOON)

Wrapper technology that extracts interfaces
from C++ libraries and automatically
generates stubs and skeletons.

Chasm Wrapper technology that automatically
generates implementation glue code for
CCA Fortran 90 components.

However, these are all point-to-point solutions.However, these are all point-to-point solutions.

26

Introduction Summary

Babel is an IDL-based language
interoperability tool
SIDL (Scientific Interface Definition
Language) is input to Babel
Babel/SIDL tuned for Computational Science
and Engineering Domain
In process connect. No messaging or
interpreted middle-layer.
Use your own platforms & compilers
Next Module: Performance

II. Performance

28

Performance overview

How Babel’s design principles address
performance
Babel’s method/function call overhead
How to maximize performance

29

How Babel’s design principles
address performance

Correctness is primary — occasionally
at the expense of performance
Runtime performance is important
Design tradeoffs impact performance

Natural look-and-feel vs. faster
::std::string versus char * in C++

Reducing development time reduces
time to solution

30

Babel’s performance cost is
a modest CPU overhead

CPU overhead
Modest increase in cost of function/method calls
due to virtual function dispatch
Some overhead per argument depending on type,
mode and language due to type translation

Memory overhead
Per object memory >= 32 bytes (in two or more
malloc’ed blocks corresponding to IOR &
reference counting data)
Memory usage scales with the depth of the type
hierarchy
Memory overhead is in addition to your private
data

31

Babel function calls compared
to native function calls

0 0.05 0.1 0.15 0.2

none

int

double

dcomplex Babel F77/F77
Native F77/F77
Babel C++/C++
Native C++/C++
Babel C/C
Native C/C

(µ seconds)

Timing performed
on an 500MHz
Intel PIII

Babel runtime
overhead depends on
language and
argument type.

32

Babel aggregate performance
relative to native F77

14.24.4F77F77
13.34.9F77C++
10.34.1F77C
15.34.1C++F77
14.54.9C++C++
12.23.9C++C
7.32.7CF77
6.33.5CC++
3.82.6CC

Overall
Average

(xF77)
"Simple"

Args. (xF77)Called Lang.
Calling
Lang.

33

Babel significantly outperforms
in-core CORBA

Native F77 Relative to Native F77

(ns) Babel C-to-C
OmniOrb

(Open Source
CORBA)

“Simple” Args. 18 2.6 91.1

Overall average 17 3.8 97.6

34

Overhead is undetectable for
coarse grained interfaces

The Babel overhead was undetectable in
performance tests with hypre, a scalable
linear equation solver library.
Kohn, Scott, Gary Kumfert, Jeff Painter, and Cal Ribbens,
"Divorcing Language Dependencies from a Scientific Software
Library," Proc. 10th SIAM Conf. Parallel Process. Sci. Comput.,
Portsmouth, VA, March 12-14, 2001.

35

How to maximize Babel
performance

First profile your code to make sure
Babel is actually the problem
Avoid strings
Use ordered arrays when indicated

Column-major or row-major
Call with arrays matching the specification

Maximize computation per Babel
function call

36

Proper blocking amortizes
interface and array overhead

McInnes, et al 2004 Meshes ranged from 13K to 52K elements.

Babel Overhead for Mesh Processing

1.00

1.25

1.50

1.75

2.00

2.25

0 25 50 75 100

Number of elements per call

M
ul

tip
le

s
of

 N
at

iv
e

tim
e Native Interface

SIDL Direct
SIDL Memcpy
SIDL For-loop

37

References

Bernholdt, Elwasif, Kohl and Epperly,
“A Component Architecture for High Performance
Computing,”
Workshop on Performance Optimization for High-
Level Languages and Libraries (POHLL-02)
McInnes, Allan, Armstrong, Benson, Bernholdt,
Dahlgren, Diachin, Krishnan, Kohl, Larson, Lefantzi,
Nieplocha, Norris, Parker, Ray, and Zhou, “Parallel
PDE-Based Simulations Using the Common
Component Architecture,” in Bruaset, Bjorstad, and
Tveito, editors, Numerical Solution of Partial
Differential Equations on Parallel Computers,
Springer-Verlag, 2004.

38

Conclusions

Babel introduces a small overhead
Much cheaper than business component
frameworks

Babel’s overhead negligible when…
Sufficiently high granularity
I/O or communication bound

Babel’s overhead a concern when…
Compute bound with fine granularity

III. SIDL

40

SIDL: Scientific Interface
Definition Language

Description
Grammar Constructs
XML Equivalence
Technical Limitations

41

There are two meanings
associated with s-i-d-l.

SIDL = interface definition language

and

sidl = basic object-oriented services

42

SIDL is one of three forms
of Babel type representation.

Scientific
Interface
Definition
Language

eXtensible
Markup
Language

Intermediate
Object
Representation

• Human-readable text
• Built-in scientific data types

• Machine-readable text
• Many useful tools available
• Repository form

• Executable
• Fast, single-process communication

Interface Definitions

43

The sidl package defines basic
Object-Oriented services.

Your Application
(Fortran 90)

Dynamic
Library
Support

• ClassInfo
• DLL
• Loader
• Scope
• Resolve

• BaseInterface
• BaseClass
• BaseException
• SIDLExceptionObject Model

44

Handout Material

The basic services are listed
in pseudo-class diagrams.

<<Interface>>
sidl.BaseInterface

addRef(): void
deleteRef(): void
isSame(BaseInterface): bool
queryInt(string): BaseInterface
isType(string): bool
getClassInfo(): ClassInfo

<<Interface>>
sidl.BaseException

getNote(): string
setNote(string): void
getTrace(): string
add[Line](string): void
add(string, int, string): void

<<Class>>
sidl.BaseClass

<<Class>>
sidl.SIDLException

= Inheritance

45

Handout Material

In addition to basics, sidl
includes reflection features.

<<Class>>
sidl.ClassInfoI

setName(string): void
setIORVersion(int, int): void

<<Interface>>
sidl.ClassInfo

getName(): string
getIORVersion(): string

<<Interface>>
sidl.BaseInterface

= Inheritance

46

Handout Material

It also supports dynamically
loading libraries/components.

<<Class>> sidl.DLL
loadLibrary(string,bool,bool):

bool
getName(): string
unloadLibrary(): void
lookupSymbol(string): opaque
createClass(string): BaseClass

<<Class>> sidl.Loader

setSearchPath(string): void
getSearchPath(): string
addSearchPath(string): void
loadLibrary(string,bool,bool):

bool
addDLL(DLL): void
unloadLibraries(): void
findLibrary(string,string,Scope,

Resolve): DLL

<<Class>> sidl.BaseClass

<<Enum.>>
sidl.Resolve

LAZY
NOW
SCLRESOLVE

<<Enum.>>
sidl.Scope

LOCAL
GLOBAL
SCLSCOPE

= Inheritance

47

SIDL: Scientific Interface
Definition Language

Description
Grammar Constructs
XML Equivalence
Technical Limitations

48

SIDL is used to define
component APIs.

sidl

<<Interface>>
BaseInterface

<<Class>
BaseClass

<<Interface>>
BaseException

<<Class>>
SIDLException

• Package: Container and
namespace for conceptually
related set of classes and
interfaces.

• Interface: Declares a set of
abstract, related methods,

• Class: Defines a set of
abstract and/or concrete,
related methods.

• Exception: Standard set of
basic methods to elaborate
on an unsuccessful
execution. = Inheritance

49

Packages provide a name space
hierarchy to avoid conflicts.

Only required if package
contains interfaces or classes.

Optional
nesting

final package greetings version 0.1 {

interface Message {
string getMsg();

}

package hello {
class World

implements-all greetings.Message { }
}

}

Optional, for non-
reentrance

50

Handout Material

SIDL packages are reentrant
unless marked final.

package greetings {
class Hello { }

}

package greetings {
class BuenosDias { }

}

package greetings {
class Aloha { }

}

greetings_Hello.sidl

greetings_BuenosDias.sidl

greetings_Aloha.sidl

package greetings {
class Hello { }
class BuenosDias { }
class Aloha { }

}

greetings.sidl

final package final_greetings {
class Hello { }
class BuenosDias { }
class Aloha { }

}

final_greetings.sidl
Note: Required version clauses

omitted due to space constraints.

Note: Required version clauses
omitted due to space constraints.

51

SIDL interfaces and classes
support method inheritance.

Features Limitations
Interface • Declares methods

• Supports multiple
interface inheritance
• Implicitly abstract

• Cannot be concrete
Cannot instantiate

• Cannot extend
classes

Class • Defines methods
• Supports multiple
interface inheritance
• Optionally abstract

Concrete by default

• Can extend only 1
class

52

SIDL supports three
inheritance directives.

extends
Used for like-type
inheritance

implements
Used when a class is
implementing/overriding a
subset of the methods
inherited from an interface

implements-all
Used when a class is
implementing/overriding
all of the methods
inherited from an interface

…
interface Message {

string getMsg();
};
interface Greeting

extends Message {
string getGreeting();

};
class HelloWorld

implements Greeting {
string getMsg();
string getGreeting();

};
class Hello implements-all Greeting {}
…

53

SIDL methods are defined
through their signatures.

Support… Do not support…
Method modifiers

static, final
Method name overloading
Parameter call modes

in (by value), inout & out (by ref)
Intrinsic data types

Access specifiers
private
protected
public

All methods are public; otherwise, why expose them?All methods are public; otherwise, why expose them?

54

Handout Material

Overloaded method names vary
by implementation language.

Native support
(C++, Java)
a_Bell.set(7);
a_Bell.set(4.5D);

greetings_Bell_setInt(a_Bell, 7);
greetings_Bell_setDouble(a_Bell, 4.5D);

No native support
(C, Fortran, Python)

package greetings version 1.5 {
…
class Bell {

void set[Int](in int i);
void set[Double](in double d);

}
}Short name Name extension

The tuple <short name, arg types, ordering> assumed unique!The tuple <short name, arg types, ordering> assumed unique!

55

Intrinsic Data Types include
three scientific types.

Standard Types
bool
char
int
long
float
double
fcomplex
dcomplex

Advanced Types
string
enum
array< Type, Dimension, Order >
opaque

General template mechanism is not supported.General template mechanism is not supported.

56

Array definitions only
require the data type.

1 Dimensional by default

Ordering used for packaging outgoing data
Incoming arrays can be in any order
Copied and transposed if actual is different

Reference counted!

array< int >
array< float, 2 >
array< float, 2, row-major >
array< double, 3, column-major >

Babel supports 7D arrays!Babel supports 7D arrays!

57

SIDL: Scientific Interface
Definition Language

Description
Grammar Constructs
XML Equivalence
Technical Limitations

58

XML files are generated for
high-level symbols only.

Package

ClassInterface

Method

Argument

Only one of these
symbols per file.

Only one of these
symbols per file.

Exception

59

Main contents of each XML
file depends on symbol type.

Package
High-level symbols in the package

Interface
Parent interfaces
Methods with arguments and
exceptions

Class
Parent class
Parent interfaces
Methods with arguments and exceptions

All XML files also
have XML version,
document type (i.e.,
Symbol), metadata,
and comment
blocks.

All XML files also
have XML version,
document type (i.e.,
Symbol), metadata,
and comment
blocks.

60

SIDL file is a more concise
representation than XML.

Hello.sidl

package greetings version 0.2 {

interface Message {
string getMsg();

};

package hello {
class World implements-all

greetings.Message { }
};

}

greetings-v0.2.xml

greetings.Message-v0.2.xml

greetings.hello-v0.2.xml

greetings.hello.World-v0.2.xml

Handout Material

61

greetings XML file lists only
the immediate symbols.

<?xml version=“1.0” encoding=“UTF-8”?>
<!DOCTYPE Symbol PUBLIC “-//CCA//SIDL Symbol DTD v1.1//EN” “SIDL.dtd”>
<Symbol>

<SymbolName name=“greetings” version=“0.2”/>
<Metadata date=“20040810 10:58:21 PST”>

<MetadataEntry key=“source-url” value=“file:/home/test/greetings.sidl”/>
<MetadataEntry key=“source-line” value=“1”/>
<MetadataEntry key=“babel-version” value=“0.9.4”/>

</Metadata>
<Comment/>
<Package final=“false”>

<PackageSymbol name=“Message” type=“interface” version=“0.2”/>
<PackageSymbol name=“hello” type=“package” version=“0.2”/>

</Package>
</Symbol>

greetings-v0.2.xml

Handout Material

62

Message automatically
inherits from base interface.

<Symbol> <SymbolName name=“greetings.Message" version=“0.2"/>
…metadata…
<Interface>

<ExtendsBlock>
<SymbolName name=“sidl.BaseInterface" version="0.9.2"/>

</ExtendsBlock>
<AllParentInterfaces>

<SymbolName name=“sidl.BaseInterface" version="0.9.2"/>
</AllParentInterfaces>
<MethodsBlock>

<Method communication=“normal” copy=“false” definition=“abstract”
extension=“” shortname=“getMsg”> <Comment/>
<Type type=“string”/>

<ArgumentList> </ArgumentList>
<ThrowsList> </ThrowsList>

</Method> </MethodsBlock>
</Interface>

</Symbol>
greetings.Message-v0.2.xml

63

Handout Material

World automatically inherits
from the base class.

<Symbol> <SymbolName name=“greetings.hello.World" version=“0.2"/>
…metadata… <Class abstract="false">

<Extends>
<SymbolName name=“sidl.BaseClass" version="0.9.4"/>

</Extends>
<ImplementsBlock>

<SymbolName name=“greetings.Message" version=“0.2"/>
</ImplementsBlock>
<AllParentClasses>

<SymbolName name=“sidl.BaseClass" version="0.9.4"/>
</AllParentClasses>
<AllParentInterfaces>

<SymbolName name=“greetings.Message" version=“0.2"/>
<SymbolName name=“sidl.BaseInterface" version="0.9.4"/>

</AllParentInterfaces>
<MethodsBlock>

…repeat of getMsg method’s information…
<MethodsBlock/>

</Class> </Symbol>
greetings.hello.World-v1.0.xml

64

SIDL: Scientific Interface
Definition Language

Description
Grammar Constructs
XML Equivalence
Technical Limitations

65

Symbol names dependent on
languages and compilers.

Case preserving Ensures no two symbols collide
in a case insensitive language

Reserved words Limited based on union of
reserved words and unallowable
names in supported languages

Method names Cannot be the same as the class
name

Would be a violation in C++

Built-in methods have “_” prepended to
avoid collisions with user defined names.

Built-in methods have “_” prepended to
avoid collisions with user defined names.

IV. Babel Tool

67

Outline

Introduction to the Babel Developers
Kit
How to download, build & install it
How to run Babel
What Babel produces

68

The Babel developers kit has
three main parts

The Babel tool (implemented in Java) to
translate interface definition language
into useable glue code
The Babel runtime library that provides
basic services (implemented in C)
Babel examples and an extensive suite
of multi-language tests

69

Babel supports common HPC
languages

C
C++
Fortran 77
Fortran 90/95
Python 2.x
Java (as of 0.9.4 release)
SIDL and XML output

70

Getting/installing Babel
http://www.llnl.gov/CASC/components/software.html
In an ideal world…
% tar --file babel-0.9.2.tar.gz --ungzip --extract
% cd babel-0.9.2
% ./configure ; make
where make is GNU make
In the real world…
Build requires multiple environment
variable settings (e.g., FC,
CHASMPREFIX, CC, CXX, …)
Check the INSTALL file for platform
specific notes

71

Checking a Babel build

It’s good idea to check your Babel
% make check
If everything goes right, you should see
something like:

476. strings/runSIDL/runSIDL.sh[Strings.Cstring.XML->XML] PASS
477. strings/runSIDL/runSIDL.sh[Strings.XML->XML] PASS

Fri, 02 Jul 2004 at 14:52:55
by epperly@tux163.llnl.gov
Wallclock Time: 0 secs

Total Passed Xfailed Failed Broken
Tests 477 472 5 0 0
Parts 13930 13920 10 0

Broken|Failed|Warning Exit Tot %Fail List of Failed

make[1]: Leaving directory `/home/epperly/current/linux/regression'

72

How to run Babel

In a shell, try typing
% babel --version
Babel version 0.9.2
%
If that works, babel is already in your
path; otherwise, ask your system
administrator or person who installed
Babel where it is

73

Babel’s command line interface

Babel is invoked from a shell command
line
The general pattern is
% babel <options> <SIDL files|type names>
For example,
% babel --client=c matrix.sidl
This generates a C api for the types
found in matrix.sidl

74

Babel has three primary
capabilities

% babel --client=<lang>
Generate client-side glue code for <lang>

% babel --server=<lang>
Generate server-side glue code and
implementation file

% babel --text=(sidl|xml)
Generate a textual description of type
information

75

Babel has three ancillary
functions

% babel --parse-check
Check the syntax of a SIDL file

% babel --version
Show the version of Babel

% babel --help
Show brief descriptions of command line
options

76

% babel --client=<lang>
generates code for using types
<lang> can be c, c++, f77, f90, python or
java
This generates source code to allow
you to use one or more types from C,
C++, F77, F90, Python or Java.
This code must be compiled before you
can use the API.

77

% babel --server=<lang>
generates code for implementing

<lang> can be c, c++, f77, f90, python or
java (Java available in 0.9.4)
Generates code for you to implement
one or more types in <lang>
Insert your implementation code in
something_Impl.<lang specific
extension>

78

Handout Material

% babel --text=(sidl|xml)
converts types to text

% babel --text=sidl
(Re)generate SIDL file from XML
One file per outermost package
Example: % babel --text=sidl sidl
This will write sidl.sidl converting XML
type information into SIDL

%babel --text=xml
Generate XML from SIDL
Useful for creating an XML repository

79

Handout Material

% babel --parse-check
checks file syntax

% babel --parse-check test.sidl

Simply checks if test.sidl uses correct
syntax. If test.sidl has mistakes, it prints
error messages.

Handout Material

Miscellaneous commands

80

% babel --help
prints brief help message explaining
command line options

% babel --version
Shows the version of babel your running
(useful for reporting bugs)

81

Server=Client+Server

--server generates everything that
--client generates plus the glue code to
link the IOR to your implementation
code

82

Options controlling how Babel
generates directories

--output-directory
Change the root directory where Babel
will generate its files
--generate-subdirs
Build directory tree instead of putting
everything in current directory
--hide-glue
Put everything except implementation
code in a glue subdirectory

83

Options to exclude types from
being generated

--exclude=<regex>
No code is generated for types
matching regex (requires Java 1.4)
--exclude-external
Generate code only for types explicitly
appearing on the command line as
SIDL files or types; no code is
generated for referenced types.

84

Handout Material

Options controlling commenting
in generated files

--suppress-timestamp
No timestamp in generated files
--comment-local-only
Include comments for locally defined
methods (not inherited methods)

Handout Material

Babel XML repository options

85

--repository-path
A semi-colon separated list of XML type
repositories (more on repositories
later)
--no-default-repository
Do not use the system repository that
contains the sidl package (not intended
for end users)

86

Handout Material

Babel uses XML repositories to
simplify usage

Directory with XML files
% cd repository/
% ls
sidl.BaseClass-v0.8.2.xml sidl.ClassInfo-v0.8.2.xml
sidl.BaseException-v0.8.2.xml sidl.DLL-v0.8.2.xml
sidl.BaseInterface-v0.8.2.xml sidl.Loader-v0.8.2.xml
sidl.ClassInfoI-v0.8.2.xml sidl-v0.8.2.xml
%

Avoid having lots of SIDL files on the
command line

% babel --client=c++ gov.cca
creates client for gov.cca package

87

Building/Using an XML
repository

% mkdir repo
% babel --text=xml --output-directory=repo \

yourtypes.sidl mytypes.sidl theirs.sidl
Now you can refer to it

% babel --repository-path=repo \
--client=python MyClassDef
Babel fetches MyClassDef and types it
references from XML repository

V. Using Babel Objects

89

How to use Babel objects that
are already implemented

Basic reference counting
Conway's game of life example

In C++, C, F90 & Python
Dynamic loading example

In Python & F77
Borrowed array example

In C & C++
Access without function calls
Overview of basic rules

90

Babel’s type system provides
intrinsic capabilities

Classes have constructors/destructors
Concrete classes have a create method
Ability to up and down cast
object/interface references
A null object reference
There are null reference tests
No explicit destructor (destruction
managed by reference counting)

91

Basic reference counting

Persistent references to an object are
counted
When the count goes to zero, the object
is destroyed
Reference counting is your
responsibility in C, Fortran 77 and
Fortran 90
Reference counting is automatic in
C++, Java & Python

92

Owning a reference

Your reference is part of the current
count
When your code owns a reference it
must:

delete the reference when it’s done with it
transfer the reference to another piece of
code that will take ownership

93

Borrowing a reference

You have a temporary reference to an
object (on loan from the owner)
You must NOT deleteRef()
To make a persistent copy of an array
object passed in as an argument use
smartCopy
You may addRef() to become the owner
of a reference to this object

94

Modes and ownership

in parameters are borrowed by the
implementation
Returned references (i.e., return value
and out parameters) are owned by the
caller (except _cast)
When you pass an inout parameter, you
transfer ownership of a reference to the
implementation

95

The _cast exception

_cast does not increment the reference
count
The idea is you are transforming the
type of a reference you already have
Having _cast this way seems to make
things shorter in more cases

96

How to use Babel objects that
are already implemented

Basic reference counting
Conway's game of life example

In C++, C, F90 & Python
Dynamic loading example

In Python & F77
Borrowed array example

In C & C++
Access without function calls
Overview of basic rules

97

Conway's game of life

Rectangular grid of cells
Counters with two or three neighbors survive
Counters with less than 2 neighbors die from
isolation
Counters with more than 3 neighbors die from
overcrowding
A new counter is created when an empty cell has
exactly 3 neighbors

98

The conway.BoundsException &
conway.Environment interfaces

package conway version 2.0 {
interface BoundsException extends sidl.BaseException {}

interface Environment {
/** Initialize a grid to a certain height & width */
void init(in int height, in int width);

/** Return true iff a cell is alive */
bool isAlive(in int x, in int y) throws
BoundsException ;

/** Return the number of living adjacent cells */
int nNeighbors(in int x, in int y) throws
BoundsException ;

/** Return the current height & width */
void getBounds(out int height, out int width);

/** Set an entire grid of data */
void setGrid(in array<int,2,column-major> grid);

}

99

Example using
conway.Environment from C++

// include C++ stub header
#include "conway_Environment.hh"
using sidl;
using ::conway::Environment;

SIDL packages translate into C++
namespaces. Use "using" to avoid
using fully qualified names.

100

Example: calculating a time step
in C++

int32_t height, width, x, y;
env.getBounds(height, width);
array<int32_t> grid = array<int32_t>::create2dCol(height,

width);
try {
for(x = 0, x < width; ++x) {
for(y = 0; y < height; ++y) {
int32_t n = env.nNeighbors(x, y);
if ((n == 2 && env.isAlive(x, y)) || n == 3)
grid.set(y, x, 1);

else
grid.set(y, x, 0);

}
}
env.setGrid(grid);

}
catch (BoundsException &be) { /* do something */ }

Handout Material

Notes

101

Here we assume that env (an instance of
::conway::Environment) was created by
someone else and passed into this code
segment.
SIDL method invocations are shown in blue.
The appear like normal C++ method
invocations, but the underlying
implementation is managed by Babel.
Array operations are shown in fuchsia.
create2dCol creates a two-dimensional array
with column-major ordering. The set method
changes element y, x.

102

Example: calculating a timestep
in C - part 1

#include "conway_Environment.h"
/* lines skipped */
int32_t height, width, x, y, n;
sidl_bool isAlive;
struct sidl_int__array *grid = NULL;
sidl_BaseInterface ex = NULL;
conway_Environment_getBounds(env, &height, &width);
grid = sidl_int__array_create2dCol(height, width);

Handout Material

Notes

103

SIDL arrays are structs pointers in C. Initializing to
NULL is a good defensive programming practice. For
efficiency sake, clients are allowed to access
elements of the SIDL array struct for basic numeric
types directly via macros to avoid function call
overheads.
SIDL object and interface references are typedef'ed
struct pointers (i.e., typedef struct
sidl_BaseInterface__object *sidl_BaseInterface).
The method name is a combination of the enclosing
package name, interface name and method name. In
C, you must explicitly pass the address of an
argument for out parameters.
This creates a 2-D array of integers to hold the grid.

104

Example: calculating a timestep
in C - part 2

for(x = 0, x < width; ++x) {
for(y = 0; y < height; ++y) {
n = conway_Environment_nNeighbors(env, x, y, &ex);
SIDL_CHECK(ex); /* check for exception */
switch(n) {
case 2:
isAlive = conway_Environment_isAlive(env, x, y,

&ex);
SIDL_CHECK(ex); /* check for exception */
sidl_int__array_set2(grid, y, x, isAlive ? 1 : 0);
break;

case 3:
sidl_int__array_set2(grid, y, x, 1); break;

default:
sidl_int__array_set2(grid, y, x, 0); break;

}
}

}

Handout Material

Notes

105

Function behave like normal C functions. For functions that
throw exceptions, you must pass an extra argument to
potentially hold the thrown exception ("&ex" in this case).
C does not natively support exceptions, so you must check the
exception pointer after each method that might throw an
exception. SIDL_CHECK is a macro that checks the exception
pointer and jumps to the EXIT: label if an exception was
thrown. If an exception is thrown, you should ignore the return
value and out parameter values.
Another SIDL function call that potentially throws an exception.
The returned bool value is 0 (false) or non-zero (true).
This array method sets element (y,x) in a 2-D array of integers.

106

Example: calculating a timestep
in C - part 3

conway_Environment_setGrid(env, grid);

EXIT:;
/* cleanup extra array reference */
if (grid) sidl_int__array_deleteRef(grid);
/* exception handling here */

Handout Material

Notes

107

Once the new grid is calculated, the
code makes the SIDL interface call to
move to the next generation.
SIDL_CHECK will jump here if any of

the called functions throw an
exception. Normal execution also
passes here. Since we no longer need
our reference to grid, we must call
deleteRef.

108

Example: calculating a timestep
in F90 - part 1

#include "sidl_BaseInterface_fAbbrev.h"
#include "conway_Environment_fAbbrev.h"
#include "conway_BoundsException_fAbbrev.h"
! skipping to later in the file
use sidl_BaseInterface
use conway_Environment
use conway_BoundsException
implicit none
type(sidl_int_2d) :: grid
type(sidl_BaseInterface_t)::ex
logical :: alive
integer(selected_int_kind(9)) :: x, y, height, width, n
call getBounds(env, height, width)
call create2dCol(height, width, grid)
call set_null(ex)

Handout Material

Notes

109

Because F90/95 limit module and function names to 31
characters, we preprocess F90 files with the GNU C
preprocessor to replace long names with mangled short
names.
Each class/interface is a F90 module.
SIDL arrays are derived types. For basic number types, you can
access the raw array data using the "d_data" element of the
derived type.
SIDL classes and interfaces are also derived types.
integer(selected_int_kind(9)) is the best way we've discovered
to get a 32 bit integer.
This is a SIDL function call. The interface reference must be
passed as the first argument. out parameters do not require
anything special.
This creates a 2-D array of integers. The return value of this
"function" is passed as the last argument, grid.
set_null initializes a SIDL interface, object or array pointer to
null.

110

Example: calculating a timestep
in F90 - part 2

do x = 0, width - 1
do y = 0, height - 1
grid%d_data(y,x) = 0 ! assume that it's dead
call nNeighbors(env, x, y, n, ex)
if (not_null(ex)) go to 100
if (n .eq. 2) then
call isAlive(env, x, y, alive, ex)
if (not_null(ex)) go to 100
if (alive) then
grid%d_data(y,x) = 1 ! alive

endif
else
if (n .eq. 3) then
grid%d_data(y,x) = 1 ! alive

endif
endif

enddo
enddo

Handout Material

Notes

111

This shows how you can treat the SIDL array as a
native F90/95 array using the d_data element of the
derived type.
This is a SIDL function call. The return value is
return via the out parameter n, and the potential
exception object is carried by the out parameter ex.
After each call to a SIDL function that can throw an
exception, the code must check if the exception
reference is not null. A non-null value indicates that
an exception was thrown.
Here is another SIDL function call. In this case, the
return value is in alive, and the exception reference
is ex.
Here is another example showing direct access to a
SIDL array.

112

Example: calculating a timestep
in F90 - part 3

call deleteRef(grid) ! return unneeded reference
return
100 call deleteRef(grid)
print *, 'BoundException'

Handout Material

Notes

113

The code is done with grid, so we
should free the reference.
In an exception is thrown, the code

jumps here. It cleans up and prints a
message.

114

Example: calculating a timestep
in Python

import Numeric
import conway.Environment
import conway.BoundsException
(height, width) = env.getBounds()
grid = Numeric.zeros((height, width), Numeric.Int32)
try:

for x in xrange(width):
for y in xrange(height):

n = env.nNeighbors(x, y)
if (n == 2 and env.isAlive(x, y)) or n == 3:

grid[y][x] = 1
env.setGrid(grid)

except conway.BoundsException, be:
exception handling code

pass

Handout Material

Notes

115

SIDL arrays appear as Numeric python arrays.
SIDL classes and interfaces are Python modules.
out parameters are passed out as a Python tuple, the
standard approach for Python functions that return
multiple values. Out parameters do not appear as
arguments in the function call.
Here is a SIDL function call that can throw an
exception.
nNeighbors and isAlive can throw exceptions. Any
thrown exceptions are caught here. be is the
exception object.

116

How to use Babel objects that
are already implemented

Basic reference counting
Conway's game of life example

In C++, C, F90 & Python
Dynamic loading example

In Python & F77
Borrowed array example

In C & C++
Access without function calls
Overview of basic rules

117

Dynamic class loading example:
SIDL

// selected excerpts from sidl.sidl
package sidl version 0.9.0 {

enum Scope { LOCAL, GLOBAL, SCLSCOPE };

enum Resolve { LAZY, NOW, SCLRESOLVE };

class DLL {
BaseClass createClass(in string sidl_name);

}

class Loader {
static DLL findLibrary(in string sidl_name, in string

target, in Scope lScope, in Resolve lResolve);
}

}

118

Dynamic class loading example
in Python

from sidl.Scope import *
from sidl.Resolve import *
from sidl.Loader import findLibrary
import mouse.Trap # interface
dll = findLibrary("better.Trap", "ior/impl",
SCLSCOPE, SCLRESOLVE)

if (dll):
obj = dll.createClass("better.Trap")
if (obj):
trap = mouse.Trap.Trap(obj) # cast
if (trap): # now we have a trap
trap.catchMouse()

Handout Material

Notes

119

This form of the import statement allows the
program to call methods with their short name.
Load the SIDL interface module.
This loads a shared-library (aka dynamically
loadable library) that has the implementation of the
SIDL type "better.Trap". If dll is true, the operation
succeeded.
Create an instance of the class named "better.Trap".
createClass returns a sidl.BaseClass object. The
program must cast this object to a mouse.Trap
interface reference before it can call the catchMouse
method.

120

Dynamic loading example in
Fortran 77

integer*8 dll, obj, trap
include 'sidl_Resolve.inc'
include 'sidl_Scope.inc'
call sidl_Loader_findLibrary_f('better.Trap',

'impl/ior', SCLSCOPE, SCLRESOLVE, dll)
if (dll .ne 0) then

call sidl_DLL_createClass_f('better.Trap', obj)
if (obj .ne. 0) then

call mouse_Trap__cast_f(obj, trap)
if (trap .ne. 0) then

call mouse_Trap_catchMouse_f(trap)
endif
call sidl_BaseClass_deleteRef_f(obj)

endif
call sidl_DLL_deleteRef_f(dll)

endif

Handout Material

Notes

121

Object, interface and array references are all 64 bit
integers.
Enumerated type values are available in an include
file.
Function names are a combination of the package
name, class name, function name and "_f".
Functions are treated as procedures with an extra
out parameter to hold the return value, dll in this
case.
In F77, the null object reference is represented by 0.
This check verifies that the library was loaded.
The "_cast" method converts an objective reference
to the type mouse.Trap if possible. (trap .ne. 0)
indicates that the cast succeeded.

122

How to use Babel objects that
are already implemented

Basic reference counting
Conway's game of life example

In C++, C, F90 & Python
Dynamic loading example

In Python & F77
Borrowed array example

In C & C++
Access without function calls
Overview of basic rules

123

Normal & borrowed arrays
In a normal SIDL array, both parts are allocated on the heap,
and Babel frees both parts when the reference count goes

to zero.

Array
metadata Array data

In a borrowed array, the data is allocated by your program,
and Babel will never free it.

Array
metadata Array data

124

Creating a borrowed array in C

double A[100][100], x[100], b[100];
const int32_t low[2] = { 0, 0 };
const int32_t up[2] = { 99, 99 };
const int32_t stride[2] = { 100, 1 }, vstride[1] = { 1 };
struct sidl_double__array
*sA = sidl_double__array_borrow(A, 2, low, up, stride),
*sx = sidl_double__array_borrow(x, 1, low, up, vstride),
*sb = sidl_double__array_borrow(b, 1, low, up, vstride),
*extrax = sx;

sidl_double__array_addRef(extrax);
loadProblem(A, b); /* initialize A & b */
matrix.Solver.solve(/*in*/ sA, /*inout*/ &sx, /*in*/ sb);
if (sx != extrax) sidl_double__array_copy(sx, extrax);
sidl_double__array_deleteRef(sx);
sidl_double__array_deleteRef(extrax);
sidl_double__array_deleteRef(sA);
sidl_double__array_deleteRef(sb);

Handout Material

Notes

125

These C arrays allocated on the stack will temporarily be
wrapped up as SIDL arrays for the purposes of calling
loadProgram and solve.
low & up hold the lower and upper bounds for each index.
stride holds the stride for A, and vstride holds the stride for x
and b.
Declare array variables and create SIDL wrappers for data
allocated on C's stack.
Create an extra reference to x to make sure the x vector
returned by matrix.Solver.solve is the same as the one passed
in.
Call a SIDL method to solve the linear system Ax = b.
The goal of this procedure is to get the result in the stack
variable x. However, matrix.Solver.solve is allowed to deleteRef
sx and return a new array in sx. If this occurs, the program
must copy the results into extrax (a cached reference to a SIDL
wrapper for x).

126

Creating a borrowed array in
C++

// assuming using sidl
double A[100][100], x[100], b[100];
const int32_t low[2] = { 0, 0 };
const int32_t up[2] = { 99, 99 };
const int32_t stride[2] = { 100, 1 },

vstride[1] = { 1 };
array<double> sA, sx, sb, extrax;
loadProblem(A, b); // initialize A & b
sA.borrow(A, 2, low, up, stride);
sx.borrow(x, 1, low, up, vstride);
sb.borrow(b, 1, low, up, vstride);
extrax = sx;
matrix.Solver.solve(/*in*/ sA, /*inout*/ sx, /*in*/

sb);
if (sx != extrax) extrax.copy(sx);

Handout Material

Notes

127

C++ arrays allocated on the stack.
low and up are the lower and upper bounds for the
SIDL array wrappers. stride is the stride for A, and
vstride is the stride for x and b.
Declarations of SIDL wrappers for A, b and x.
Create wrappers for A, b and x.
Create an extra reference for x to check if
matrix.Solver.solve returns a different solution
vector.
If matrix.Solver.solve replaces sx, copy the results
from sx into extrax to make sure the results are
stored in x.

128

Creating a persistent reference
to an array

Use smartCopy when creating a persistent reference
to an unknown array to avoid a reference to a
borrowed array because the array data may
unexpectedly disappear

struct sidl_double__array *g_array;
void cache(struct sidl_double__array *src)
{
if (g_array)
sidl_double__array_deleteRef(g_array);
g_array =
sidl_double__array_smartCopy(src);

}

129

How to use Babel objects that
are already implemented

Basic reference counting
Conway's game of life example

In C++, C, F90 & Python
Dynamic loading example

In Python & F77
Borrowed array example

In C & C++
Access without function calls
Overview of basic rules

130

Zero overhead array access
from C

C implementation of dot product:

double dot(const struct sidl_double__array *x
const struct sidl_double__array *y) {

double result = 0;
if ((1 == sidlStride(x, 0)) && (1 == sidlStride(y, 0)) {
const double *xp = x->d_firstElement;
const double *yp = y->d_firstElement;
int32_t len = MIN(sidlLength(x,0), sidlLength(y,0));
while(len-- >= 0) {
result += (*(xp++)) * (*(yp++));

}
}
else { /* other code for arbitrarily strided arrays */ }
return result;

}

131

Zero overhead array access
from C++

C++ implementation of dot product:

double dot(const array<double> &x,
const array<double> &y) {

double result = 0;
if ((1 == x.stride(0)) && (1 == y.stride(0)) {
const double *xp = x.first();
const double *yp = y.first();
int32_t len = MIN(x.length(0), y.length(0));
while(len-- >= 0) {
result += (*(xp++)) * (*(yp++));

}
}
else { /* code for arbitrarily strided arrays */ }

}
return result;

132

How to use Babel objects that
are already implemented

Basic reference counting
Conway's game of life example

In C++, C, F90 & Python
Dynamic loading example

In Python & F77
Borrowed array example

In C & C++
Access without function calls
Overview of basic rules

133

Long and short names

Long name includes packages
sidl.BaseClass.addRef
Short name is just the last part
addRef
Often Babel replaces ‘.’ with ‘_’ to
create a globally unique name
sidl_BaseClass_addRef

134

Overloading

Methods can have overloading
extensions, for example
double get[Part](in int partNo);
All languages except C++ and Java
would use “getPart” as the method
name

135

Fortran 90 name length

Fortran 90 names are limited to 31
characters
#include “sidl_BaseClass_fAbbrev.h”

name mangling for sidl.BaseClass
Preprocess your F90 with a C
preprocessor (we use GCC everywhere)

Handout Material

Basic type mapping

136

SIDL type C type Python F77 F90

bool sidl_bool integer logical logical

char char string character character(len=1)

dcomplex struct
sidl_dcomplex

internal
complex

complex*16 complex(selected_real_kind(15,307))

double double double real*8 real(selected_real_kind(15,307))

fcomplex struct
sidl_fcomplex

internal
complex

complex*8 complex(selected_real_kind(6,37))

float float double real*4 real(selected_real_kind(6,37))

int int32_t integer integer*4 integer(selected_int_kind(9))

long int64_t indefinite
precision

integer*8 integer(selected_int_kind(18))

opaque void * CObject integer*8 integer(selected_int_kind(18))

string char * string character(*) character(len=*)

137

Special argument handling –
C

in and inout argument should be
initialized

object/interface reference should be
initialized to NULL or a valid object

inout and out parameters need pass by
reference

pass address of a argument using &

138

Special argument handling -
Python

inout and out parameters are contained
in the returned tuple
Example:
int lookup(in int col, out int row)
(result, row) = lookup(current)
You can use positional or keyword args
in Python
(result, row) = lookup(col = current)

139

Extra arguments

self object parameter added to object
methods for C, F77 & F90
C adds “, out sidl.BaseInterface excpt)”
to methods that throw exceptions
F77 & F90 add return value and
exception as extra arguments (in that
order)

140

Method naming for supported
languages

C++ Short method name

Java Short method name

C Long method name with _

Fortran 77 Long method name with _ and _f
appended

Fortran 90 Short method name

Python Short or long depending on import

141

Casting objects

Failed casts
produce a
Null object
Remember
cast doesn’t
increment
the
reference
count!

C++ newt=oldt;

C new=x_y_z__cast(oldt);

Java newt=(x.y.z)
x.y.z._cast(oldt);

F77 call x_y_z__cast_f(oldt,
newt)

F90 call cast(oldt, newt)

Python newt = x.y.z.z(oldt)

142

Checking/initializing Null
objects

C++: if (obj._not_nil())
obj = ctor(); // invoke the constructor
C: if (obj)
obj = NULL; /* init to Null object */
Fortran 77: if (obj .ne. 0)
obj = 0
Fortran 90: if (is_null(obj))
call set_null(obj)
Python: if (obj):
obj = None

Handout Material

Array methods

143

Creation createCol, create1dCol, …,
createRow, create1dRow, …,
copy, slice, smartCopy

Borrowing borrow
Element accessors get, get1, get2, get3, get4,

set, set1, set2, set3, set4
Dimension
accessors

dimen, lower, upper, stride,
length

Ordering accessors
and conversion

isColumnOrder, isRowOrder,
ensure

VI. Building Babel Libraries

145

This Module for Implementers
of a Babelized Library

1. Write SIDL File
2. `babel --server=C++ greetings.sidl`
3. Add implementation details
4. Compile & Link into Library/DLL

SIDL
interface
definition

Babel
Compiler C++ Skels

C++ Impls

IORs

C++ Stubs

libgreetings.so

Section 3: SIDL Language
Section 4:
Babel Tool

This Section

146

greetings.sidl: A Sample
SIDL File

package greetings version 1.0 {

interface Hello {

void setName(in string name);

string sayIt ();

}

class English implements-all Hello { }

}

package greetings version 1.0 {

interface Hello {

void setName(in string name);

string sayIt ();

}

class English implements-all Hello { }

}

Next several slides will show implementations of this
interface in C, C++, Fortran 90 and Python

Handout Material

Notes on greetings.sidl

147

1. Classic “Hello World” example with a
little state information. It can say
“Hello SC’04” for instance.

2. The Hello interface supports
internationalization

3. The English class implements all the
methods in the inherited interface,
and is therefore concrete (not
abstract) and instantiable.

148

A C++ Implementation

::std::string

greetings::English_impl::sayIt() throw ()

{

// DO-NOT-DELETE splicer.begin(greetings.English.sayIt)

::std::string msg(”Hello ”);

return msg + d_name + ”!”;

// DO-NOT-DELETE splicer.end(greetings.English.sayIt)

}

::std::string

greetings::English_impl::sayIt() throw ()

{

// DO-NOT-DELETE splicer.begin(greetings.English.sayIt)

::std::string msg(”Hello ”);

return msg + d_name + ”!”;

// DO-NOT-DELETE splicer.end(greetings.English.sayIt)

}

namespace greetings {
class English_impl {

private:
// DO-NOT-DELETE splicer.begin(greetings.English._impl)
::std::string d_name;
// DO-NOT-DELETE splicer.end(greetings.English._impl)

namespace greetings {
class English_impl {

private:
// DO-NOT-DELETE splicer.begin(greetings.English._impl)
::std::string d_name;
// DO-NOT-DELETE splicer.end(greetings.English._impl)

greetings_English_Impl.hh

greetings_English_Impl.cc

Handout Material

Notes on C++ Impl

149

1. The SIDL package is a C++ namespace
2. The C++ class is similar to SIDL class (has

_impl suffix)
3. Note the splicer blocks. All hand-edits to

Impl files should be put between these
matched pairs. Babel will preserve only
these regions.

4. State is added to the C++ header files.
SIDL strings map to std::string in C++.
Why d_name? The “d_” prefix is a coding
convention we use to signify member data.
Not required, but consistent for us.

Handout Material

More Notes on C++ Impl

150

5. Note that every user-defined method has a
splicer block. (Also for includes and extra
things at the end of the file (not shown)).

6. This is the implementation of sayIt(). It
returns a string saying “Hello <name>”.
First initialize the “Hello” part

7. Now use std::string concatenation to
append the name and an exclamation point.

8. (NOT SHOWN) The implementation for the
setName() method.

151

A C Implementation (1/4):
The private data

struct greetings_English__data {
/* DO-NOT-DELETE splicer.begin(greetings.English._data) */
char * d_name;
/* DO-NOT-DELETE splicer.end(greetings.English._data) */

}

struct greetings_English__data {
/* DO-NOT-DELETE splicer.begin(greetings.English._data) */
char * d_name;
/* DO-NOT-DELETE splicer.end(greetings.English._data) */

}

greetings_English_Impl.h

152

A C Implementation (2/4):
Allocate data in ctor

void
impl_greetings_English__ctor(greetings_English self)
{

/* DO-NOT-DELETE splicer.begin(greetings.English._ctor) */
struct greetings_English__data *dptr =

malloc(sizeof(struct greetings_English__data));
if (dptr) {

dptr->d_name = NULL;
}
greetings_English__set_data(self, dptr);
/* DO-NOT-DELETE splicer.end(greetings.English._ctor) */

}

void
impl_greetings_English__ctor(greetings_English self)
{

/* DO-NOT-DELETE splicer.begin(greetings.English._ctor) */
struct greetings_English__data *dptr =

malloc(sizeof(struct greetings_English__data));
if (dptr) {

dptr->d_name = NULL;
}
greetings_English__set_data(self, dptr);
/* DO-NOT-DELETE splicer.end(greetings.English._ctor) */

}

greetings_English_Impl.cc

153

A C Implementation (3/4):
Deallocate Data in dtor

void

impl_greetings_English__dtor(greetings_English self)

{

/* DO-NOT-DELETE splicer.begin(greetings.English._dtor) */

struct greetings_English__data *dptr =

greetings_English__get_data(self);

if (dptr) {

if (dptr->d_name != NULL) {

free((void *) dptr->d_name);

}

memset(dptr, 0, sizeof(struct greetings_English__data));

free((void *) dptr);

}

/* DO-NOT-DELETE splicer.end(greetings.English._dtor) */

}

void

impl_greetings_English__dtor(greetings_English self)

{

/* DO-NOT-DELETE splicer.begin(greetings.English._dtor) */

struct greetings_English__data *dptr =

greetings_English__get_data(self);

if (dptr) {

if (dptr->d_name != NULL) {

free((void *) dptr->d_name);

}

memset(dptr, 0, sizeof(struct greetings_English__data));

free((void *) dptr);

}

/* DO-NOT-DELETE splicer.end(greetings.English._dtor) */

}
greetings_English_Impl.cc

154

A C Implementation (4/4):
Implement the Method

char *

impl_greetings_English_sayIt(greetings_English self) {

/* DO-NOT-DELETE splicer.begin(greetings.English.sayIt) */

struct greetings_English__data dptr =

greetings_English__get_data(self);

char[1024] buffer = ”Hello ”;

if (dptr->d_name) {

strncat(buffer, dptr->dname, 1017);

strncat(buffer, ”!”, 1017 – strlen(dptr->d_name));

}

return sidl_String_strdup(buffer);

/* DO-NOT-DELETE splicer.end(greetings.English.sayIt) */

}

char *

impl_greetings_English_sayIt(greetings_English self) {

/* DO-NOT-DELETE splicer.begin(greetings.English.sayIt) */

struct greetings_English__data dptr =

greetings_English__get_data(self);

char[1024] buffer = ”Hello ”;

if (dptr->d_name) {

strncat(buffer, dptr->dname, 1017);

strncat(buffer, ”!”, 1017 – strlen(dptr->d_name));

}

return sidl_String_strdup(buffer);

/* DO-NOT-DELETE splicer.end(greetings.English.sayIt) */

}

greetings_English_Impl.cc

Handout Material

Notes on the C Impl

155

1. In C, private data goes into the *_data struct. Note
that the name is <packagename>_<classname> to
minimize symbol collisions. C does not have C++
style namespaces.

2. C splicer blocks are embedded in C-style
comments. Splicer blocks function the same in
every language binding.

3. SIDL strings are zero-terminated char* in C.
4. C++’s default constructors did everything for us in

the previous example. In C,
construction/destruction is done manually.
The implicit C++ this pointer is an explicit self
object in C.

5. Allocate private data, initialize it.

Handout Material

More Notes on C Impl

156

6. Then pack it into Babel’s object handle using the
*_set_data() call.

7. Destructor is just like constructor in reverse. Note
we zero memory before freeing it. Paranoid
programming is a good thing sometimes.

8. Finally, we get to the method we want, the sayIt()
method. We get our private data out of the Babel
object.

9. Next we carefully append strings (using strncat to
prohibit buffer overflows).

10. Finally we return a copy of the string. Why?
Because return values are receivers’ responsibility
to clean up, and giving them stack data is bad.

157

Fortran 90 Impl (1/4):
Add state to *Mod.F90

#include “greetings_English_fAbbrev.h”
module greetings_English_impl

type greetings_English_private
sequence
! DO-NOT-DELETE splicer.begin(greetings.English.private_data)

character (len=1024) :: d_name
! DO-NOT-DELETE splicer.end(greetings.English.private_data)

end type greetings_English_private

type greetings_English_wrap
sequence
type(greetings_English_Private), pointer :: d_private_data

end type greetings_English_wrap

end module greetings_English_impl

#include “greetings_English_fAbbrev.h”
module greetings_English_impl

type greetings_English_private
sequence
! DO-NOT-DELETE splicer.begin(greetings.English.private_data)

character (len=1024) :: d_name
! DO-NOT-DELETE splicer.end(greetings.English.private_data)

end type greetings_English_private

type greetings_English_wrap
sequence
type(greetings_English_Private), pointer :: d_private_data

end type greetings_English_wrap

end module greetings_English_impl

greetings_English_Mod.F90

Handout Material

Notes on F90 Mod file

158

1. Preprocess F90 with GCC’s C preprocessor to
handle 31 character limit in F90 language. (Some
F90 preprocessors also have 31 character limit!)

2. Private data goes in an F90 Module
3. Private data goes in the _private type
4. All Babel types need to be declared “sequence” to

force F90 compiler to preserve ordering and
contiguousness of data items in the type.

5. Cheated here and made the string have have an
upper bound.

6. The _wrap type holds a pointer to the _private
type. (Ask Tom for arcane technical reason.)

159

Fortran 90 Impl (2/4):
Implement subroutines

recursive subroutine greetings_English_sayIt_mi(self, retval)
use greetings_English
use greetings_English_impl
! DO-NOT-DELETE splicer.begin(greetings.English.sayIt.use)
! DO-NOT-DELETE splicer.end(greetings.English.sayIt.use)
implicit none
type(greetings_English_t) :: self ! in
character (len=*) :: retval ! out

! DO-NOT-DELETE splicer.begin(greetings.English.sayIt)
type(greetings_English_wrap) :: dp
call greetings_English__get_data_m(self, dp)
retval = ’Hello ’ // dp%d_private_data%d_name // ’!’
! DO-NOT-DELETE splicer.end(greetings.English.sayIt)

end subroutine greetings_World_sayIt_mi

recursive subroutine greetings_English_sayIt_mi(self, retval)
use greetings_English
use greetings_English_impl
! DO-NOT-DELETE splicer.begin(greetings.English.sayIt.use)
! DO-NOT-DELETE splicer.end(greetings.English.sayIt.use)
implicit none
type(greetings_English_t) :: self ! in
character (len=*) :: retval ! out

! DO-NOT-DELETE splicer.begin(greetings.English.sayIt)
type(greetings_English_wrap) :: dp
call greetings_English__get_data_m(self, dp)
retval = ’Hello ’ // dp%d_private_data%d_name // ’!’
! DO-NOT-DELETE splicer.end(greetings.English.sayIt)

end subroutine greetings_World_sayIt_mi

greetings_English_Impl.F90

160

Fortran 90 Impl (3/4):
Allocate private_data in ctor
recursive subroutine greetings_English__ctor_mi(self)

use greetings_English
use greetings_English_impl
! DO-NOT-DELETE splicer.begin(greetings.English._ctor.use)
! DO-NOT-DELETE splicer.end(greetings.English._ctor.use)
implicit none
type(greetings_English_t) :: self

! DO-NOT-DELETE splicer.begin(greetings.English._ctor)
type(greetings_English_wrap) :: dp
allocate(dp%d_private_data)
dp%d_private_data%d_name = ’’
call greetings_English__set_data_m(self, dp)
! DO-NOT-DELETE splicer.end(greetings.English._ctor)

end subroutine greetings_English__ctor_mi

recursive subroutine greetings_English__ctor_mi(self)
use greetings_English
use greetings_English_impl
! DO-NOT-DELETE splicer.begin(greetings.English._ctor.use)
! DO-NOT-DELETE splicer.end(greetings.English._ctor.use)
implicit none
type(greetings_English_t) :: self

! DO-NOT-DELETE splicer.begin(greetings.English._ctor)
type(greetings_English_wrap) :: dp
allocate(dp%d_private_data)
dp%d_private_data%d_name = ’’
call greetings_English__set_data_m(self, dp)
! DO-NOT-DELETE splicer.end(greetings.English._ctor)

end subroutine greetings_English__ctor_mi

greetings_English_Impl.F90

161

Fortran 90 Impl (4/4):
Release private_data in dtor

recursive subroutine greetings_English__dtor_mi(self)
use greetings_English
use greetings_English_impl
! DO-NOT-DELETE splicer.begin(greetings.English._dtor.use)
! DO-NOT-DELETE splicer.end(greetings.English._dtor.use)
implicit none
type(greetings_English_t) :: self

! DO-NOT-DELETE splicer.begin(greetings.English._dtor)
type(greetings_English_wrap) :: dp
call greetings_English__get_data_m(self, dp)
deallocate(dp%d_private_data)
! DO-NOT-DELETE splicer.end(greetings.English._dtor)

end subroutine greetings_English__ctor_mi

recursive subroutine greetings_English__dtor_mi(self)
use greetings_English
use greetings_English_impl
! DO-NOT-DELETE splicer.begin(greetings.English._dtor.use)
! DO-NOT-DELETE splicer.end(greetings.English._dtor.use)
implicit none
type(greetings_English_t) :: self

! DO-NOT-DELETE splicer.begin(greetings.English._dtor)
type(greetings_English_wrap) :: dp
call greetings_English__get_data_m(self, dp)
deallocate(dp%d_private_data)
! DO-NOT-DELETE splicer.end(greetings.English._dtor)

end subroutine greetings_English__ctor_mi

greetings_English_Impl.F90

Handout Material

Notes on F90 Impl File

162

1. F90 subroutines are always recursive. The
_mi suffix prevents collision with other
language bindings. The SIDL return value
is a return argument in F90.

2. Use statements for stub and impl types.
3. F90 has two splicer blocks per method

impl. One for use statements, the other for
actual instructions.

4. All the parameters are listed and a
comment is added describing the SIDL
mode (in, out, inout).

Handout Material

More Notes on F90 Impl File

163

5. Same as before, get private data from Babel
object (self), concatenate strings, return
value.

6. Construction is fairly boilerplate:
a. Allocate private data
b. Initialize
c. Set Babel object to point to private_data

7. Destruction is always construction in
reverse.

164

A Python Implementation
class English:

def __init__(self, IORself):
self.__IORself = IORself
DO-NOT-DELETE splicer.begin(__init__)
self.d_name = ’’
DO-NOT-DELETE splicer.end(__init__)

def sayIt(self):
DO-NOT-DELETE splicer.begin(sayIt)
return ’Hello ’ + self.d_name + ’!’
DO-NOT-DELETE splicer.end(sayIt)

def setName(self, name):
DO-NOT-DELETE splicer.begin(sayIt)
self.d_name = name
DO-NOT-DELETE splicer.end(sayIt)

class English:

def __init__(self, IORself):
self.__IORself = IORself
DO-NOT-DELETE splicer.begin(__init__)
self.d_name = ’’
DO-NOT-DELETE splicer.end(__init__)

def sayIt(self):
DO-NOT-DELETE splicer.begin(sayIt)
return ’Hello ’ + self.d_name + ’!’
DO-NOT-DELETE splicer.end(sayIt)

def setName(self, name):
DO-NOT-DELETE splicer.begin(sayIt)
self.d_name = name
DO-NOT-DELETE splicer.end(sayIt)

greetings/English_Impl.py

Handout Material

Notes on Python Impl

165

1. Here’s a great reason why Python is so popular.
The entire implementation fits on one slide.

2. Initialization is a little tricky. We’ve been calling
the Babel object “self”, but Python has its own
“self”, so we call ours “IORself.”

3. Python is weakly typed, variables come into
existence on demand. Init name to empty string.

4. String concatenation... no overflow issues to worry
about. Python handles it for us.

5. Here’s even an implementation of setName()
which has been avoided ’til now in the interest of
space.

166

To use any of the previous
Impls, User Does This...

SIDL
interface
definition

Babel
Compiler IOR

Headers

F90 Stubs

1. `babel --client=F90 greetings.sidl`
2. Compile & Link generated Code &

Runtime
3. Place DLL in suitable location

libgreetings.so

Babel
Runtime

Application

167

F90/Babel “Hello World”
Application

program helloclient

use greetings_English

implicit none

type(greetings_English_t) :: obj

character (len=80) :: msg

character (len=20) :: name

name=’World’

call new(obj)

call setName(obj, name)

call sayIt(obj, msg)

call deleteRef(obj)

print *, msg

end program helloclient

program helloclient

use greetings_English

implicit none

type(greetings_English_t) :: obj

character (len=80) :: msg

character (len=20) :: name

name=’World’

call new(obj)

call setName(obj, name)

call sayIt(obj, msg)

call deleteRef(obj)

print *, msg

end program helloclient

These subroutines
come directly
from the SIDL

These subroutines
come directly
from the SIDL

Some other subroutines
are “built in” to every
SIDL class/interface

Some other subroutines
are “built in” to every
SIDL class/interface

168

Applying Babel to
Legacy Code

mycode.sidl Babel
Compiler Skels

Impls

IORs

Stubs

libmycode.so

1. Write your SIDL interface
2. Generate server side in your native language
3. Edit Implementation (Impls) to dispatch to your code

(Do NOT modify the legacy library itself!)
4. Compile & Link into Library/DLL

legacy_library.so

169

Example of Babelized Legacy
Code: MPI

API choices made in this example:
Made sends and receives operations on MPI
communicator objects
Overloaded methods based on scalar type
Use Babel arrays instead of buffer and count

“row-major” (or “column-major”) also guarantees
non-strided, even for 1-D arrays.

package mpi version 2.0 {
class Comm {

int send[Int](in array<int,1,row-major> data,
in int dest, in int tag);

...
}

}

package mpi version 2.0 {
class Comm {

int send[Int](in array<int,1,row-major> data,
in int dest, in int tag);

...
}

}

mpi.sidl

170

Example of Babelized Legacy
Code (MPI): The *Impl.h
/* DO-NOT-DELETE splicer.begin(mpi.Comm._includes) */
#include “mpi.h”
/* DO-NOT-DELETE splicer.end(mpi.Comm._includes) */
...
struct mpi_Comm__data {

/* DO-NOT-DELETE splicer.begin(mpi.Comm._data) */
MPI_Comm com;
/* DO-NOT-DELETE splicer.end(mpi.Comm._data) */

};

/* DO-NOT-DELETE splicer.begin(mpi.Comm._includes) */
#include “mpi.h”
/* DO-NOT-DELETE splicer.end(mpi.Comm._includes) */
...
struct mpi_Comm__data {

/* DO-NOT-DELETE splicer.begin(mpi.Comm._data) */
MPI_Comm com;
/* DO-NOT-DELETE splicer.end(mpi.Comm._data) */

};

mpi_comm_Impl.h

MPI is a C standard, so implement the Babel
wrappers in C.
New Communication Objects have state

For C state is kept in a *_data struct.
Remember to observe splicer blocks

171

Example of Babelized Legacy
Code (MPI): The *Impl.c

In C, use *_get_data() to extract
user-defined state from Babel object.
Since array is 1-D and unstrided, use
address of first element as buffer

int32_t
impl_mpi_Comm_sendInt(mpi_Comm self, SIDL_int__array data,

int32_t dest, int32_t tag) {
/* DO-NOT-DELETE splicer.begin(mpi.Comm.sendInt) */
struct mpi_Comm__data *dptr = mpi_Comm__get_data(self);
void * buff = (void*) sidl_int__array_first(data);
int count = sidl_int__array_length(data, 0);
return mpi_send(buff, count, MPI_INT, dest, tag, dptr->comm);
/* DO-NOT-DELETE splicer.end(mpi.Comm.sendInt) */

}

int32_t
impl_mpi_Comm_sendInt(mpi_Comm self, SIDL_int__array data,

int32_t dest, int32_t tag) {
/* DO-NOT-DELETE splicer.begin(mpi.Comm.sendInt) */
struct mpi_Comm__data *dptr = mpi_Comm__get_data(self);
void * buff = (void*) sidl_int__array_first(data);
int count = sidl_int__array_length(data, 0);
return mpi_send(buff, count, MPI_INT, dest, tag, dptr->comm);
/* DO-NOT-DELETE splicer.end(mpi.Comm.sendInt) */

}

mpi_comm_Impl.c

172

What’s the Hardest Part
of this Process?

SIDL
interface
definition

Babel
Compiler C Skels

C Impls

IORs

C Stubs

libfunction.so

Properly compiling and linking the
libraries

especially dynamically loadable .so files.

173

Why do users have trouble
with compile and link step?
Mixed language context is less forgiving

extra diligence needed to resolve linker symbols
After compilation, no guarantee that linker will be
launched with same language in mind.

Poor tools to support and debug dynamic
loaded libraries
Little agreement among UNIX vendors on
how to deal with three kinds of linkage

174

Makefiles are Programs for
Building Programs

Capabilities are limited
Poor support for actions generating multiple files
Static dependencies: All files generated by a SIDL
file must be listed explicitly

Babel provides some simple tools to help
with your build and configuration

We also have a few tricks that seem to work
Replicating our full autoconf, automake, libtool
setup not recommended in general

175

babel.make: A makefile
fragment Babel creates

Each compiled language generates a
babel.make file along with source code.

Variable names depend on language and
whether you’re doing client or server
Simply “include babel.make” in your Makefile
and code for those targets

IMPLHDRS = Hello_World_Impl.h
IMPLSRCS = Hello_World_Impl.c
IORHDRS = Hello_IOR.h Hello_World_IOR.h
IORSRCS = Hello_World_IOR.c
SKELSRCS = Hello_World_Skel.c
STUBHDRS = Hello.h Hello_World.h
STUBSRCS = Hello_World_Stub.c

IMPLHDRS = Hello_World_Impl.h
IMPLSRCS = Hello_World_Impl.c
IORHDRS = Hello_IOR.h Hello_World_IOR.h
IORSRCS = Hello_World_IOR.c
SKELSRCS = Hello_World_Skel.c
STUBHDRS = Hello.h Hello_World.h
STUBSRCS = Hello_World_Stub.c

176

Use Macro Renaming and
Suffix Rules in Makefiles

We use these
techniques a lot in
our Makefiles

Remember to preprocess F90

IMPLOBJS = $(IMPLSRCS:.c=.o)
IOROBJS = $(IORSRCS:.c=.o)
SKELOBJS = $(SKELSRCS:.c=.o)
STUBOBJS = $(STUBSRCS:.c=.o)

.SUFFIXES: .c .o

.c.o:
$(CC) –c $< -o $@

IMPLOBJS = $(IMPLSRCS:.c=.o)
IOROBJS = $(IORSRCS:.c=.o)
SKELOBJS = $(SKELSRCS:.c=.o)
STUBOBJS = $(STUBSRCS:.c=.o)

.SUFFIXES: .c .o

.c.o:
$(CC) –c $< -o $@

.SUFFIXES: .F90 .o

.F90.o:
$(CPP) $(INCLUDES) -P -o $(@:.o=.f90) -x c $<
$(F90COMPILE) -c -o $@ $(@:.o=.f90)
rm -f $(@:.o=.f90)

.SUFFIXES: .F90 .o

.F90.o:
$(CPP) $(INCLUDES) -P -o $(@:.o=.f90) -x c $<
$(F90COMPILE) -c -o $@ $(@:.o=.f90)
rm -f $(@:.o=.f90)

177

Use babel-stamp idiom to
workaround 1 action, n files
Make generally assumes
one action, one file
Since Babel generates multiple files, we
use a dummy file to get rules right

foo.o : foo.c
$(CC) –c foo.c

foo.o : foo.c
$(CC) –c foo.c

$(ALLOBJS) : babel-stamp

babel-stamp : foo.sidl
$(BABEL) foo.sidl && \
echo “bogus file” > babel-stamp
$(MAKE) $(ALLOBJS)

clean:
$(RM) babel-stamp $(ALLOBJS)

$(ALLOBJS) : babel-stamp

babel-stamp : foo.sidl
$(BABEL) foo.sidl && \
echo “bogus file” > babel-stamp
$(MAKE) $(ALLOBJS)

clean:
$(RM) babel-stamp $(ALLOBJS)

178

Configuration is Hard

>40 handmade autoconf macros in M4
>38K lines of configure script (x2)
>100 configuration settings in
babel-config
>160 settings in babel_config.h

179

Use “babel-config” to
reproduce Babel’s settings

% babel-config --jardir
/you/installed/it/here/jar

% babel-config --with-f90 && echo $?
0

% babel-config --libs-f77-L
-L /some/wierd/dir/lib -L/other/f77/lib

% babel-config --dump-vars=X_
X_PACKAGE=babel
X_VERSION=0.8.6
X_CONFIGPATH=/some/path
...

180

Multiple approaches to see
how Babel built DLL’s

1. Watch our regression tests build
make check, delete one library, make check

2. Try using “babel-libtool”
Libtool is an obscure tool and may be more
confusing to learn than its worth

3. Read the “Advanced Topics” section of
Babel User’s Guide (version 0.9.4)

Page on “linkers, loaders, and PIC” is most
downloaded page of the manual

4. email babel-users@llnl.gov

mailto:babel-users@llnl.gov

181

Recommendation: Put an entire
SIDL Package in a library

IORs depend on Skels
Skels depend on Impls
Impls need Stubs to
call methods on
themselves
Stubs depend on IOR
Include external stubs

passed as arguments,
returned values, or
manipulated internally

foo
Impl

foo
Skel

foo
Stub

foo
IOR

StubStubStub

libpkg.so

foo
Impl

foo
Skel

foo
Stub

foo
IOR

Impl

Skel

Stub

IOR

182

Q: Why not keep each Stub
exclusively with its own Impl?

Impl

Skel

Stub

IOR

libfoo.so

Impl

Skel

Stub

IOR

libbar.so

A: Works only if bar_Impl and foo_Impl are
implemented in the same language !!!

183

IORs provide a language-
independent binary interface

Impl

Skel

Stub

IOR

StubStubStub

libfoo.so

Impl

Skel

Stub

IOR

StubStubStub

libbar.so

184

All the external Stubs being
SIDL interfaces is a good sign!
More flexible/
loosely coupled
Indicates your
package depends
on a generalization,
not a particular
implementation

foo
Impl

foo
Skel

foo
Stub

foo
IOR

StubStubStub

libpkg.so

foo
Impl

foo
Skel

foo
Stub

foo
IOR

foo
Impl

foo
Skel

foo
Stub

foo
IOR

185

The Babel-Life Demo has all
external stubs are interfaces

Impl

Skel

Stub

IOR

StubStubStubs

libCxx.so

Environment

Impl

Skel

Stub

IOR

libF90.so

StubStubStubs

Ruleset

Impl

Skel

Stub

IOR

libC.so

StubStubStubs

TimeStepper

pyth
onAnd a “main” in any of

Ja
vaF77

186

Implementing in interpreted
languages needs special care
Python

Impl

jniSkel

jniStub

IOR

libfoo.so

self
Stubs

StubStubStubs

Java

.class / .jar files

Impl

pySkel

pyStub

IOR

libfoo.so

self
Stubs

StubStubStubs

.py / .gz files

$PYTH
O
N
PA

TH

$CLA
SSPA

TH

187

There’s more than one way
to distribute Babelized Code

hypre wants their customers to be relatively
unaware they’re using Babel.

They pre-generate compiled language bindings
They ship Babel’s runtime bundled with hypre

BABELBABELBABEL 4

Library User Does This...

1. `babel --client=F90 greetings.sidl`
2. Compile & Link generated Code &

Runtime
3. Place DLL in suitable location

SIDL
interface
definition

Babel
Compiler IOR

Headers

F90 Stubs

libgreetings.so

Babel
Runtime

Application

BABELBABELBABEL 38

hypre Users Do This

1. -I directory of your calling language
2. -L directory of your calling language
3. -lhypre –lsidl

Application
F77

C

F90

C++

libhypre.a

Babel
Runtime

188

babel-x.y.z/runtime ==
babel-runtime-x.y.z

Runtime subdirectory has its own
configure script.

It gets called by top level configure script
and becomes part of babel-x.y.z
Calling it directly from the command line
configures it for separate distribution

Essentially, Babel uses its own runtime
subdirectory the same way hypre does

189

Lots More Information In
Babel Users’ Guide (aka BUG)

Fine tuning your file layout
Primer Static and Dynamic Linkage
Platform specific details
Different strategies for mixing
generated and hand-written code in
CVS

VII. Closing

191

Goals of this Module

Catch our Breath
Babel Present

Customers
Open Source Model

Babel Future
Release Criteria for 1.0

Followup Options

192

Major Customers

www.cca-forum.org

http://www.osti.gov/scidac

CCA
Common Component Architecture

193

CCA Toolkit will use Babel in
many contexts

Component : Derived From
Component Author

(not necessarily the
original code’s author),

Institution

Linear Algebra : Global Arrays Manojkumar Krishnan, PNNL
Linear Algebra : SCALAPack David Bernholdt, ORNL

Structured Mesh : GRACE Jaideep Ray, SNL, Rutgers

Parallel IO/Data : HDF5/Pnet CDF Jay Larson, ANL
Parallel Integrator : CVODE Ben Allan, Sandia

Sparse Linear Algebra : Epetra Randall Bramley, Indiana Univ.
Simple Mesh : (New) Randall Bramley, Indiana Univ.

Unstructured Mesh : TSTT participants Lori Diachin, LLNL

Parallel Visualization : CUMULVS James Kohl, ORNL
Performance Measurement : TAU Sameer Shende, Univ. Oregon

Distributed Array Descriptor : (New) David Bernholdt, ORNL
Optimization : TAO Lois Curfman McInnes, ANL

194

Open Source in Licensing,
and Modus Operandi

Open Mailing Lists
babel-announce, babel-users, babel-dev

Open Bug-tracking
Online CVS repository
Code contributors beyond LLNL
Regular Release Schedule
Volunteers put together DEB and RPMs

195

0

20

40

60

80

100

120

140

160

De
c

'0
2

Fe
b

'0
3

Ap
r

'0
3

Ju
n

'0
3

Au
g

'0
3

Oc
t '

03
De

c
'0

3
Fe

b
'0

4
Ap

r
'0

4
Ju

ne
 '0

4
Au

gu
st

 '0
4*

#
 s

uc
ce

ss
fu

l
do

w
nl
oa

ds

0.9.4
0.9.4-runtime
0.9.2
0.9.2-runtime
0.9.0
0.9.0-runtime
0.8.8
0.8.8-runtime
0.8.6
0.8.6-runtime
0.8.4
0.8.4-runtime
0.8.2
0.8.2-runtime
0.8.0
0.8.0-runtime
0.7.4

Babel Downloads by Month

196

Open Babel Forum: an Open
Source Developer Community

Libraries

Babel Extensions

Applications

Core Babel

Libraries

Extensions

Libraries

Babel Dialects

197

Goals of this Module

Catch our Breath
Babel Present

Customers
Open Source Model

Babel Future
Release Criteria for 1.0

Followup Options

198

Release Criteria for 1.0

1st Draft Presented at Summer’03 CCA
Meeting
2nd Draft (to be finished) Will Be Posted
to babel-users mailing list
Official version posted on website and
updated with each 0.X release

199

What version 1.0 means
(and does not mean)

Babel’s matured to a point where we
can see a good point to go 1.0

Indicates maturity, capability, stability
After 1.0 release, 1.0.x will be bug fixes
only
Continuing R&D on CVS trunk line

200

Current Research Activities
in Babel

Semantics (Design by Contract) in SIDL
Tamara Dahlgren’s Ph.D. thesis

RMI & Parallel RMI
Joint work with MxN group in CCA,
Indiana Utah., Univ. Utah, ORNL

Automated Transformation of Legacy
Code into SIDL

FY’05 LDRD in submission
SQE of Build Systems

201

Goals of this Module

Catch our Breath
Babel Present

Customers
Open Source Model

Babel Future
Release Criteria for 1.0

Followup Options

Part II: Hands On

NOTE: Check online for latest changes and corrections
to this document.

http://www.llnl.gov/CASC/components/docs/scO4.html

203

Outline: Babel Life

Background: Conway’s Game of Life
Task 0: Setup and Run

Appreciating the Babel Implementation
Task 1: Write a Program Using Babel Objects
Task 2: Modify Existing Impl
Task 3: Re-implement a piece in your
language of choice
Task 4: Add new method/feature
Task 5: Create new object

204

A Brief History of
Conway’s Game of Life

published by Martin Gardner in his
“Mathematical Games” column, Scientific
American, Oct 1970
2-D Cartesian grid (Conway used a Go board
before minicomputers)
At each time-step evaluate live cells for next
time-step

Birth: dead cell with 3 live neighbors (NSEW and
diagonals)
Survival: live cell with 2 or 3 live neighbors.
Death: live cell with <2 neighbors (loneliness) or
>3 neighbors (overcrowding)

205

Life is the best known (and
studied) cellular automaton
Conway originally believed no game produced
an infinite number of “live” cells.

He lost that $50 bet within a year to Bill Gosper
Gosper Glider Gun is still the smallest gun known
Puffers are smaller and also would win the bet

By 1982, Conway and Gosper independently
demonstrated universal Turing machines in
life

206

Some Web Resources

Eric Weisstein’s Treasure Trove
www.ericweisstein.com/encyclopedias/life
Life Lexicon
www.argentum.freeserve.co.uk/lex.htm
Hobbiest Web Pages

www.canb.auug.org.au/~dbell

http://www.ericweisstein.com/encyclopedias/life
http://www.argentum.freeserve.co.uk/lex.htm
http://www.canb.auug.org.au/~dbell

207

Before we start doing tasks,
this is not a race!

Goal here is learning, not get to the end
fastest
Someone may not get past first three
tasks, but still acquire more new
information than a seasoned CS pro
who races through
We will go through tasks leisurely
Happy to stop and discuss interesting
developments from the class

208

Task 0: Setup and Run

Choose your setup.
Install Babel (option#2 only)
Configure/Build/Run Babel-life
Tour of your working Babel-Life
installation

Preparation for next tasks.

People are circulating
to help you

Group projects are
allowed

209

Choose your setup

Option 1: ssh to our server
☺Babel is preinstalled

You can’t take it home with you

Option 2: install Babel on your machine
☺You can play with it after class

Installing Babel takes more time/expertise

210

Option #1: Setup

Install ssh client, if needed.
Get student account for our machine
Get IP address of our machine
ssh to our environment
copy babel-life.tar.gz to your home
directory
goto slide #213

211

Option #2: Prerequisites to
Installing Babel

Mandatory
Java http://java.sun.com
libxml2

Required for Python-support
Python
Numeric extension Module

Required for Fortran90-support
Chasm
Fortran 90 compiler that Chasm supports

Required for example GUI:
Python
Python Meta-Widgets (PMW)

http://java.sun.com/

212

Option #2: Installing Babel

Get tarball (& dependencies)
website:
http://www.llnl.gov/CASC/components
CD ROM: (you can keep)
USB drive (please return to us!!!)

Refer Back to Section IV: Babel tool
Refer to the B.U.G.
(Babel Users’ Guide)
Copy babel-*.*.*/contrib/babel-life.tar.gz
to your home directory

http://www.llnl.gov/CASC/components

213

Both Options #1 & #2

`babel --help` to confirm Babel works
gtar zxvf babel-life.tar.gz
cd babel-life
./mini-configure `where babel-config`
make
(wait a few minutes)
cd runPython;
make MYSCRIPT=myscript.py py

214

The Babel-Life
Implementation

Design
SIDL File
Directory Layout
Implementations
mini-configure
Make
Run

215

Basic setup
Specification is
written entirely in
SIDL interfaces
Each language is
implemented in a
separate
(descriptively
named) package
To demonstrate
language
interoperability,
we’ll mix-and-
match from
various
implementations

package conway version 2.0 {

interface Environment { ... }

interface Ruleset { ... }

interface TimeStepper { ... }
interface BoundsException

extends sidl.BaseException {}

}

package conway version 2.0 {

interface Environment { ... }

interface Ruleset { ... }

interface TimeStepper { ... }
interface BoundsException

extends sidl.BaseException {}

}

package f90 version 2.0 {

class Environment implements-all

conway.Environment { }

class Ruleset implements-all

conway.Ruleset { }

class TimeStepper implements-all

conway.TimeStepper { }

package f90 version 2.0 {

class Environment implements-all

conway.Environment { }

class Ruleset implements-all

conway.Ruleset { }

class TimeStepper implements-all

conway.TimeStepper { }
package cxx version 2.0 {

class Environment implements-all

conway.Environment { }

package cxx version 2.0 {

class Environment implements-all

conway.Environment { }

216

life.sidl file details
package conway version 2.0 {

interface Environment {

void init(in int height, in int width);

bool isAlive(in int x, in int y) throws BoundsException;

int nNeighbors(in int x, in int y) throws BoundsException;

array<int,2> getGrid();

void setGrid(in array<int,2,column-major> grid);

}

interface Ruleset {

bool setAlive(in int x, in int y, in Environment env)

throws BoundsException;

}

interface TimeStepper {

void init(in Environment env, in Ruleset rules);

int step();

int nStepsTaken();

}

interface BoundsException extends sidl.BaseException {}

}

package conway version 2.0 {

interface Environment {

void init(in int height, in int width);

bool isAlive(in int x, in int y) throws BoundsException;

int nNeighbors(in int x, in int y) throws BoundsException;

array<int,2> getGrid();

void setGrid(in array<int,2,column-major> grid);

}

interface Ruleset {

bool setAlive(in int x, in int y, in Environment env)

throws BoundsException;

}

interface TimeStepper {

void init(in Environment env, in Ruleset rules);

int step();

int nStepsTaken();

}

interface BoundsException extends sidl.BaseException {}

}

217

Three Main Objects
and their Roles

Environment Object– Manages a 2-D state
Query alive or dead at a point (x,y).
Tells number of living neighbors at point(x,y).
Throws BoundsExceptions.

Ruleset Object – Evaluates Life-or-Death
Given an (x,y) point and an environment, it will tell
if the point lives or dies at next time step

TimeStepper Object– Evolves state
Initialized with a Ruleset and Environment, can
take a time-step, and keeps track of which time-
step it’s at.

218

Babel-Life’s Object
Interaction Chart

main() RulesetEnvironment TimeStepper
init()

create()h, w

init()
env, rules

step()

2-D array setAlive()

getGrid()

2-D array
setGrid()

setGrid()
2-D array

foreach
(x,y)

in 2-D
 array

do
 (f

or
ev

er
)

219

Why Life is a great example
for SC Audience

Life is
simpler to understand
tiny implementation
easy to visualize (print / sleep)
physics-domain neutral
interesting & fun

Relevant because object interactions are
VERY similar to traditional SC calculations

Objects exchange 2-D arrays, and handles to each
other
Each object can be implemented in a different
Babel-supported language

Ruleset
Environment

TimeStepper
PhysicsEvaluation

FieldData

SimulationProgress
≈

220

Directory Layout

babel-life/
libC/ C implementations
libCxx/ C++ implementations
libF90/ F90 implementations
runC/ incomplete C driver
runPython/ Run scripts or interactive
runGUI/ Fancy GUI
lib/ input files for GUI

221

Configuration issues are a
big deal & BIGGER PAIN

If your code depends on Babel, then
your configuration depends on how
Babel was configured
babel-config

is installed in same directory as babel
the best way to query all kinds of babel’s
build details
`babel-config --help` for details

222

mini-configure

This is a hand-made script that uses
babel-config to build a Makefile
fragment
This fragment is included by all the
Makefiles in babel-life
In this case, the fragment is called
“settings.make”

223

make

If you are option#2 and some of your
languages were disabled at configure
time:

make at the babel-config/ directory may
not be enough
cd into each of the relevant subdirectories
and run make there too
If you don’t have python... not being able
to use the GUI will be a real annoyance.

224

Task 1: Write a Program
That Uses Babel Objects

Note that there’s no runCxx/, runF77/,
runJava, or runF90/ directories!
There is a runC/ directory... but its

incomplete.
We’ll complete the C driver
from babel-life/

cd runC/
write the Makefile and driver code

225

babel-life/runC/Makefile
(part 1/2)

include ../settings.make # get config settings
include babel.make # files Babel generates
STUBOBJS=${STUBSRCS:.c=.lo} # lo suffix for libtool
ALLOBJS=${STUBOBJS} # all libtool objects
ALLSTATICS=${STUBSRCS:.c=.lo} # o suffix for static objs
SIDLFILES= ../life.sidl ../libC/clife.sidl \

../libF90/f90life.sidl ../libCxx/cxxlife.sidl

ALLLIBS= -L../libC -lcconway -L../libCxx -lcxxconway \

-L../libF90 -lf90conway

all : my_driver # static-linked executable

babel-stamp: ${SIDLFILES} # Makefile idiom from talk
${BABEL} --client=C ${SIDLFILES} && \

touch babel-stamp

${MAKE} all

include ../settings.make # get config settings
include babel.make # files Babel generates
STUBOBJS=${STUBSRCS:.c=.lo} # lo suffix for libtool
ALLOBJS=${STUBOBJS} # all libtool objects
ALLSTATICS=${STUBSRCS:.c=.lo} # o suffix for static objs
SIDLFILES= ../life.sidl ../libC/clife.sidl \

../libF90/f90life.sidl ../libCxx/cxxlife.sidl

ALLLIBS= -L../libC -lcconway -L../libCxx -lcxxconway \

-L../libF90 -lf90conway

all : my_driver # static-linked executable

babel-stamp: ${SIDLFILES} # Makefile idiom from talk
${BABEL} --client=C ${SIDLFILES} && \

touch babel-stamp

${MAKE} all

226

babel-life/runC/Makefile
(part 2/2)

Note: we use GNU libtool in a peculiar way, actually
installing it with the rest of babel as... babel-libtool
my_driver: babel-stamp ${ALLOBJS} my_driver.lo

${BABEL_LIBTOOL} --mode=link ${CXX} \
-all-static -no-install -no-undefined \
-o my_driver my_driver.lo ${ALLSTATICS} \
${ALLLIBS} -L${BABEL_LIBDIR} -lsidl ${CLIBS}

clean:
${RM} *.o *.lo

source files are generated, so its okay to remove most
(but not IMPLs!)
new:

${RM} my_driver babel-stamp ${STUBHDRS} ${STUBSRCS} \
${IORHDRS} ${IORSRCS} ${SKELHDRS} ${SKELSRCS}

suffix rules: (e.g. *.c->*.lo) from settings.make

Note: we use GNU libtool in a peculiar way, actually
installing it with the rest of babel as... babel-libtool
my_driver: babel-stamp ${ALLOBJS} my_driver.lo

${BABEL_LIBTOOL} --mode=link ${CXX} \
-all-static -no-install -no-undefined \
-o my_driver my_driver.lo ${ALLSTATICS} \
${ALLLIBS} -L${BABEL_LIBDIR} -lsidl ${CLIBS}

clean:
${RM} *.o *.lo

source files are generated, so its okay to remove most
(but not IMPLs!)
new:

${RM} my_driver babel-stamp ${STUBHDRS} ${STUBSRCS} \
${IORHDRS} ${IORSRCS} ${SKELHDRS} ${SKELSRCS}

suffix rules: (e.g. *.c->*.lo) from settings.make

227

babel-life/runC/my_driver.c
(part 1/5)

#include <stdio.h> /* need printf() */
#include <unistd.h> /* need sleep() */

#include "sidl_header.h" /* need sidl_int__array */

/* the language-independent interfaces */
#include "conway_TimeStepper.h"

#include "conway_Ruleset.h"

#include "conway_Environment.h"

/* Static-linking requires the actual classes be declared
at compile time. Dynamic linking can defer this
decision to run-time. We’ll do static for now.*/

#include "c_Ruleset.h"

#include "cxx_Environment.h"

#include "f90_TimeStepper.h"

#include <stdio.h> /* need printf() */
#include <unistd.h> /* need sleep() */

#include "sidl_header.h" /* need sidl_int__array */

/* the language-independent interfaces */
#include "conway_TimeStepper.h"

#include "conway_Ruleset.h"

#include "conway_Environment.h"

/* Static-linking requires the actual classes be declared
at compile time. Dynamic linking can defer this
decision to run-time. We’ll do static for now.*/

#include "c_Ruleset.h"

#include "cxx_Environment.h"

#include "f90_TimeStepper.h"

228

babel-life/runC/my_driver.c
(part 2/5)

int main() {
/* create concrete classes,
* but immediately cast them up to parent interfaces
*/

conway_Ruleset rs =
conway_Ruleset__cast(c_Ruleset__create());

conway_Environment env =
conway_Environment__cast(cxx_Environment__create());

conway_TimeStepper ts =
conway_TimeStepper__cast(f90_TimeStepper__create());

main_loop(rs, env, ts); /* this is on next slide */

/* delete references when done */
conway_Ruleset_deleteRef(rs);
conway_Environment_deleteRef(env);
conway_TimeStepper_deleteRef(ts);
return 0;

}

int main() {
/* create concrete classes,
* but immediately cast them up to parent interfaces
*/

conway_Ruleset rs =
conway_Ruleset__cast(c_Ruleset__create());

conway_Environment env =
conway_Environment__cast(cxx_Environment__create());

conway_TimeStepper ts =
conway_TimeStepper__cast(f90_TimeStepper__create());

main_loop(rs, env, ts); /* this is on next slide */

/* delete references when done */
conway_Ruleset_deleteRef(rs);
conway_Environment_deleteRef(env);
conway_TimeStepper_deleteRef(ts);
return 0;

}

229

babel-life/runC/my_driver.c
(part 3/5)

void main_loop(conway_Ruleset rs,
conway_Environment env,
conway_TimeStepper ts) {

int32_t population = init_grid(env); /*see next slide*/
int32_t step = 0;

conway_TimeStepper_init(ts, env, rs);

while (population > 0) {
population = conway_TimeStepper_step(ts);
step = conway_TimeStepper_nStepsTaken(ts),
printf("step %d: population %d\n", step, population);
print_grid(env); /* see two slides ahead*/
sleep(1);

}
}

void main_loop(conway_Ruleset rs,
conway_Environment env,
conway_TimeStepper ts) {

int32_t population = init_grid(env); /*see next slide*/
int32_t step = 0;

conway_TimeStepper_init(ts, env, rs);

while (population > 0) {
population = conway_TimeStepper_step(ts);
step = conway_TimeStepper_nStepsTaken(ts),
printf("step %d: population %d\n", step, population);
print_grid(env); /* see two slides ahead*/
sleep(1);

}
}

230

babel-life/runC/my_driver.c
(part 4/5)

/* Create a 20x50 grid, where live cells appear as
runs of five on the middle row */

int32_t init_grid(conway_Environment env) {
struct sidl_int__array* grid;

const int32_t height=20, width=50, i=10;
int32_t j, k;
int32_t population=0;

conway_Environment_init(env, height, width);
grid = conway_Environment_getGrid(env);
for (j=0; j<45; j+=6) {

for (k=0; k<5; ++k) {
sidl_int__array_set2(grid, i, j+k, 1);
++population;

}
}
conway_Environment_setGrid(env, grid);
sidl_int__array_deleteRef(grid);
return population;

}

/* Create a 20x50 grid, where live cells appear as
runs of five on the middle row */

int32_t init_grid(conway_Environment env) {
struct sidl_int__array* grid;

const int32_t height=20, width=50, i=10;
int32_t j, k;
int32_t population=0;

conway_Environment_init(env, height, width);
grid = conway_Environment_getGrid(env);
for (j=0; j<45; j+=6) {

for (k=0; k<5; ++k) {
sidl_int__array_set2(grid, i, j+k, 1);
++population;

}
}
conway_Environment_setGrid(env, grid);
sidl_int__array_deleteRef(grid);
return population;

}

231

babel-life/runC/my_driver.c
(part 5/5)

void print_grid(conway_Environment env) {
struct sidl_int__array* grid =

conway_Environment_getGrid(env);

const int32_t low0 = sidl_int__array_lower(grid, 0);
const int32_t up0 = sidl_int__array_upper(grid, 0);
const int32_t low1 = sidl_int__array_lower(grid, 1);
const int32_t up1 = sidl_int__array_upper(grid, 1);
const char icons[] = { '0', '.' };
int32_t i, j;

for(i=low0; i<=up0; i++) {
for(j=low1; j<=up1; j++) {

putchar(icons[sidl_int__array_get2(grid, i, j)]);
}
putchar('\n');

}
sidl_int__array_deleteRef(grid);

}

void print_grid(conway_Environment env) {
struct sidl_int__array* grid =

conway_Environment_getGrid(env);

const int32_t low0 = sidl_int__array_lower(grid, 0);
const int32_t up0 = sidl_int__array_upper(grid, 0);
const int32_t low1 = sidl_int__array_lower(grid, 1);
const int32_t up1 = sidl_int__array_upper(grid, 1);
const char icons[] = { '0', '.' };
int32_t i, j;

for(i=low0; i<=up0; i++) {
for(j=low1; j<=up1; j++) {

putchar(icons[sidl_int__array_get2(grid, i, j)]);
}
putchar('\n');

}
sidl_int__array_deleteRef(grid);

}

232

Task 1: Self Check

The output of your new application
babel-life/runC/my_driver

should be identical to
cd babel-life/runPython/ &&\
python myscript.py

A word about environment variables:
It is critical to have paths set up for appropriate
libraries to be found at runtime.
Original version of this tutorial required users use
make to pass these settings to python (not
elegant)
Now path info is generated by mini-config and
imported directly into python via babelenv.py

233

Losing track what object is
implemented in what language?
That’s the whole point of Babel!!!

you shouldn’t have to care
they’re all just Babel objects.

To change which implementation you use in
statically linked C driver, simply change
which one gets created and recompile.
Want to try

a driver in a different language?
dynamic loading so you can change Impls without
recompile?
Exception handling?

234

Task 1 Recap:
What did we learn?

To use Babel objects:
Need the SIDL file
Run Babel to generate language bindings
of choice

babel --client=language [SIDL FILES...]
Requires no knowledge of what language the
objects were written in.

Code the application to the wrappers.

235

For the rest of this class,
we’ll just use the Python GUI

cd babel-life/runGUI; make
Life.py is the main script.
Statements like

from c.Ruleset import Ruleset
determine what Impls get loaded.
Feel free to edit Life.py to experiment
with other Impls, Python won’t care.

236

Task 2: Modify Existing Code

High-life:
Birth also occurs with 6 neighbors.

Try high-life w/ the following pattern centered
on a large (50x50) field for 12 generations
. . O O O
. O . . O
O . . . O
O . . O .
O O O . .

Look in
babel-life/lib/high-life.cgl

237

Task 2: How To’s

No need to modify SIDL files yet
Just pick a Ruleset in a language you
are comfortable with... and tweek the
rules.
Then

rebuild that library
edit “import” statement at top of
babel-life/runGUI/Life.py to load your
modified Impl
run the GUI

238

Task 2: Self Check

In High-Life, the prescribed pattern
replicates (& annihilates) itself
Called a “replicator”
Should propagate diagonally to NW and
SE corners of the board

239

Background Info on
Variations of Life

Standard rules can be abbreviated “23/3”
2 or 3 neighbors = survival
3 neighbors = birth

High-Life is 23/36
Invented 1994 by Nathan Thompson
Interesting because of “replicators”
“replicators” proven to exist in “23/3”, but none
known

Majority of other combinations are either too
chaotic or too desolate to be interesting
For more information on variations, see:
http://en.wikipedia.org/wiki/Conway's_Game_of_Life
#Variations_on_Life

240

Task 3: Reimplement An
Object in Language of Choice

Not everything in Babel-Life is
implemented in every language
Regardless of what language you write
it in, it should load into the GUI by only
modifying the

from <pkg>.<class> import <class>
line in Life.py

241

Task 3: Details

Now, you’ll have to edit (or write) a
SIDL file... depending on language of
interest

In C, could implement TimeStepper or
Environment
In Java | Python, have to create a lib*/
subdirectory

If you’re not doing C, also need to write
Makefiles, etc.

242

Task 3: More Details

For dynamic loading, you may also
want to edit the libdemo.scl file

This is an XML catalog of what types are
available in what libraries.
You added a new type, so either add it to
the existing SCL file, or create a new one
and add it to SIDL_DLL_PATH.

For static linked executables, (e.g. the
C driver we wrote) you may need to edit
libraries in the final link line.

243

Task 3: Self Check

You implemented in a different language, but
shouldn’t have changed the behavior.
From the GUI, try:

File | Open | achims-p144.cgl
Run

This game has a period of 144 timesteps.
See

Info | Game Info
for more information

244

Task 3 Recap:
What did we learn?

Adding a new type is a lot more
involved than modifying the behavior of
an existing one.
Adding one type didn’t affect any of the
others.
Didn’t affect the driver (when using
dynamic loading).

Task 4: Add a new feature

245

Day/Night is a variation of Life with a
3678/34678 rule and has interesting
properties of symmetry...

About now, you may think it better to simply
make a Ruleset with programmable rules, and
you’d probably be right.

Add the following methods to the conway.Ruleset
interface.

void getRules(out string survivals, out string births);

bool setRules(in string survivals, in string births);

About now, you may think it better to simply
make a Ruleset with programmable rules, and
you’d probably be right.

Add the following methods to the conway.Ruleset
interface.

void getRules(out string survivals, out string births);

bool setRules(in string survivals, in string births);

STOPSTOP

246

Okay, we changed the
interface, now what?

Now all the Ruleset Impls are invalid.
Pick your favorite Impl and re-run Babel.
Now

find the splicer block for setRules()... and add an
implementation. (similar for getRules())
Ruleset now has state, implement _ctor() and
_dtor()

Use _ctor and _dtor from other classes as a template
The 23/3 rule is a reasonable default rule

logic for setAlive() method is no longer hard-
coded, but depends on state of the Ruleset object

Thought Exercise: See how function objects
are more flexible than function pointers?

247

The impls are all coded up...
but what about the GUI?

Rebuild all the Python stubs in runPython
In Life.py

Don’t change a thing
New button will appear (with a little foresight and
introspection)

...
if ‘setRules’ in dir(Ruleset()):

self.buttonAdd(‘Rules’,
helpMessage=‘Default game...’,
statusMessage=‘Change Rules...’,
command=self.change_rules)

...
if ‘setRules’ in dir(Ruleset()):

self.buttonAdd(‘Rules’,
helpMessage=‘Default game...’,
statusMessage=‘Change Rules...’,
command=self.change_rules)

Life.py

248

Okay, we got that done, now
what about Day/Night?

Symmetry.
Given two identical games, reverse all the
bits on one. Now for each timestep, both
games will continue to be the inverse of
the other.

For more about 3678/34678 rule, see
www.canb.auug.org.au/~dbell

http://www.canb.auug.org.au/~dbell

249

Recap of Entire Hands-on
up to Now

Task 1: Wrote a driver that used
existing Babel Objects
Task 2: Changed behavior of an
existing Impl, but not its API.
Task 3: Implemented a new object
with behavior and API identical to an
existing one.
Task 4: Changed an interface that
multiple objects implement.

250

But we still can’t support the
full breadth of Life’s variations

Boundary conditions can be periodic.

HexLife is same as standard life, but on a hex
grid.

QuadLife is standard life, but with four
colors.

Births are the
majority color of their three parents,
or the fourth color if no majority

Survivals never change color

251

Task 5: Create a new object

Really up to you where you want to go
from here.

Could add Hex-Life, Quad-Life, or
Immigration (a 2-color degenerate case of
Quad-Life)
Could make a new Environment I/O object
(don’t add I/O to the Environment
interface, in case you want I/O and
computation in separate languages)
Could start working on Babelizing your
own code

252

Open Question:

What’s the smallest set of interfaces &
methods to support all variations of
Life?

253

Please Fill Out Survey Forms

Thank You

Happy Babeling

*** Handout Material ****** Handout Material ****** Handout Material ***Handout Material

Glossary

254

abstract (SIDL keyword) – Used to modify classes or
methods. An abstract method is a method that has no
implementation, it's a way of declaring a method that every
subclass must implement for itself. An abstract class has one
or more abstract methods, and therefore cannot be instantiated.
array (Babel concept) – Babel arrays are allocatable, n-
dimensional cubes of data (n =1..7). They may be strided or
packed, row-major or column-major.
BLAS - Basic Linear Algebra Subprograms. BLAS is a
famous library for doing matrix and vector algebra. More
information may be found at: http://www.netlib.org/blas/
BNF - BackusNaur Form. BNF is a formal way to describe
grammar rules of a programming language.

255

bool (SIDL keyword) – A boolean/logical data type with
values true and false.
borrowed array (Babel concept) – a SIDL array that does
not manage its own data. The data is provided by some third
party who assumes responsibility for deallocating the data. It is
useful for sending data through Babel, but the developer must
beware in case the third party deallocates the array data before
the program has finished with it. (See also: array)
B.U.G. – Babel Users’ Guide
CCA - Common Component Architecture
(see http://www.cca-forum.org, or Tutorial M03)
char (SIDL keyword) – A fundamental type holding 1 byte
of data — enough for one ASCII character. (See also: string)
class (SIDL keyword) – The fundamental user-defined data
type. Operations that can be performed on a class are called
methods. These methods can be explicit in the class definition,
or inherited from parent classes or interfaces. (See also:
abstract, concrete, interface, object, static)

*** Handout Material ****** Handout Material ****** Handout Material ***Handout Material

256

concrete class (Babel concept) – A class without any
abstract methods. Only concrete classes may be instantiated
(i.e. have a _create() method). Babel classes are concrete by
default. Opposite of an abstract class.
COM - Common Object Model. Microsoft's IDL-based
interoperability technology.
component – Modular, plug-and-play, software units that
adhere to certain practices of a particular component
architecture.
component architecture - A specification and
implementation of component technology (e.g., CORBA,
COM, CCA, etc.). Prescribes component lifecycle,
interoperability, arbitration, etc. Provides services to
components such as networking, event management, etc.
copy (SIDL keyword) – Reserved for future use.
CORBA - Common Object Request Broker Architecture. A
community component architecture that emphasizes access to
remote components across a network. http://www.omg.org

*** Handout Material ****** Handout Material ****** Handout Material ***Handout Material

257

dcomplex (SIDL keyword) – The name is short for “double
complex.” It stores a complex number via two 64-bit floating
point variables.
dense array – (See: packed array)
developer (Babel concept) – One are two anticipated roles
for Babel use. The developer authors Babelized libraries.
(See also: user)
DLL(compiler term) – Dynamically Loaded Library.
Libraries suitably constructed to being loaded by the user by
string-name using the dlopen() function. Different from static
linked libraries (lib*.a) or shared object libraries (lib*.so).
double (SIDL keyword) – A 64 bit floating point data type.
DTD (XML technology) – Document Type Definition.
Standard mechanism to impose additional structure to an XML
document. http://www.w3.org/2002/xmlspec
dynamic linking (compiler term) – The action of
dynamically linking DLLs into running code.

*** Handout Material ****** Handout Material ****** Handout Material ***Handout Material

258

enum (SIDL keyword) – Short for enumeration. A user-
defined type with a finite set of possible states. Each state has
a unique name. Integer values are used to represent these
states, and they may be specified explicitly in the SIDL file.
However, good programming style advises programming to
the names, and not relying on the underlying integer values.
exception (Babel concept) – An alternate execution path
for rare, exceptional, or error conditions. When exceptions are
thrown, methods(subroutines) are popped off the stack until
the exception is caught or the program terminates. Not every
SIDL type can be thrown as an exception: only classes or
interfaces that implement the sidl.BaseException interface.
(See also: throw)
extends (SIDL keyword) - Used to declare “like-type”
inheritance. A class may extend another class, or an interface
may extend multiple interfaces. (See also implements,
implements-all)

*** Handout Material ****** Handout Material ****** Handout Material ***Handout Material

259

external stubs – Stubs from external types. In the
context of a Babelized library, it is important that these stubs
be included in the library and in the same language as the rest
of the library (regardless of what language the external types
are implemented in). (See B.U.G. §14.2.3)
external types – From a library’s point of view, these are
types referenced in the library, but implemented elsewhere.
These types often appear as base classes or interfaces,
argument types, or even exception types.
fcomplex (SIDL keyword) – Short for “float complex,” it
stores an imaginary number as two 32-bit floating point
numbers.
final (SIDL keyword) – Used to modify packages and
methods. A final package declares all its types in a single
SIDL file and will not allow other SIDL files to add to its
package. A final method does not allow child classes to
override its implementation.
float (SIDL keyword) – A 32-bit floating point data type.

*** Handout Material ****** Handout Material ****** Handout Material ***Handout Material

260

full name (Babel term) – (a.k.a. fully qualified name) The
concatenation of package names, class name, and method
name. Used in non object oriented languages to avoid
ambiguity. (See also: short name, B.U.G. §6.5)
fundamental types – The built-in SIDL types (as
opposed to user-defined types). Includes bool, int, char, long,
float, double, fcomplex, dcomplex, opaque, and string.
glue code – (a.k.a. wrapper code). All the Stubs, IORs and
Skels that Babel generates is glue code. Impls are not
considered glue code.
HTML - Hypertext Markup Language
http://www.w3.org/MarkUp
impl – short for implementation. Used in the context of the
Impl files that Babel generates.
implements (SIDL keyword) – Used when a class inherits
from one or more interfaces. Note that the keyword applies to
the interface in general: all the contained methods remain
abstract unless explicitly listed (i.e. redeclared) in the class.
(See also: implements-all)

*** Handout Material ****** Handout Material ****** Handout Material ***Handout Material

261

implements-all (SIDL keyword) – Used when a class
inherits from one or more interfaces and all contained methods
will also be implemented. No need to redeclare concrete
methods in the class. (See: implements, B.U.G. 5.6)
import (SIDL keyword) – Used to bring other packages into
scope. Version number is optional.
in (SIDL keyword) – One of three possible modes that every
argument in every method must declare. Also inout, and out.
(See: B.U.G. 5.2)
independent arrays (Babel concept) – Babel arrays that
reclaim their own storage when reference count goes to zero.
Opposite of a borrowed array.
inheritance (OOP term) – a standard mechanism of code
reuse whereby derived classes (a.k.a child- or sub-classes)
acquire characteristics from their parent classes (a.k.a. super-
classes). (See also: extends, implements)
inout (SIDL keyword) – One of three possible modes that
every argument in every method must declare. Also in, and
out. (See: B.U.G. 5.2)

*** Handout Material ****** Handout Material ****** Handout Material ***Handout Material

262

instance method – (OOP term) an operation that
performs on a live object. Implies the object must be created
before the operation can perform. (Opposite: class method)
int (SIDL keyword) – A 32-bit integer data type.
int32_t, int64_t (ANSI C) – standard mechanism for
guaranteeing 32 or 64 bit integers.
interface (SIDL keyword) – A user-defined type that can
declare a set of methods. All interface methods are abstract
by definition, so interfaces can never be instantiated directly.
The purpose of an interface is to provide dissimilar
implementations a common API to inherit.
interprocess – between distinct processes.
IOR (Babel term) – Intermediate Object Representation. The
layer of glue code that all language bindings have in common.
Also where Babel does its work maintaining arrays, supporting
polymorphism, etc.

*** Handout Material ****** Handout Material ****** Handout Material ***Handout Material

263

JNI (Java term) - Java Native Interface. The JNI is what
allows Java to call to C and C++. The “native” refers to the
compiled code running on the actual machine; as opposed to
Java bytecodes that run in a virtual machine.
language interoperability – Babel's main purpose.
The ability to have software written in different languages
communicate despite obstacles in calling conventions,
programming models, variable types, etc.
long (SIDL keyword) – A 64-bit integer data type. Note:
Python sometimes has trouble with longs (See B.U.G. 11.7)
method (OOP concept) – An operation associated with a
user-defined type. (Also called “member function” in C++
community). Static methods are analogous to “functions,”
“procedures,” or subroutines in procedural languages. (See
also: abstract, final, overload, override).
namespace (OOP concept) – A mechanism for divvying
up globally accessible names to avoid conflicts. Also a C++
keyword. (See also: package)
non-strided – (See: packed array)

*** Handout Material ****** Handout Material ****** Handout Material ***Handout Material

264

Object model (OOP term) – Set of rules/practices for the
definition, behavior, and use of objects in a system. C++ and
Java are both object-oriented programming languages, but
their object models have important differences. (See B.U.G.
5.6)
OMG – Object Management Group. A standards body that
oversees CORBA. http://www.omg.org/
oneway (SIDL keyword) – Reserved for future use.
OOP – Object-Oriented Programming
opaque (SIDL keyword) – A 32 or 64 bit variable that
defies 3rd party inspection. Normally used to pass private data
(pointers) between two parts of a system without describing
the data in SIDL. Babel preserves as many bits as a standard
pointer has and does no language translation. Not useful in an
interprocess communication. Not intended for casual use.
out (SIDL keyword) – One of three possible modes that
every argument in every method must declare. Also in, and
inout. (See: B.U.G. 5.2)

*** Handout Material ****** Handout Material ****** Handout Material ***Handout Material

265

override method (OOP concept) – A defining
mechanism in OOP to support polymorphism (a.k.a dynamic
dispatch). Assume a child class customizes the implementation
of a virtual method it inherits from its parent. Whenever it is
used – even if used as a parent class – its customized
implementation will always be invoked. Thus, overridden
methods are determined by type of the object at run-time.
Babel’s dynamic dispatch facilities are in the IOR.
overloaded methods (OOP concept) – a feature in some
languages where two or more methods may have the same
name, but different argument lists. This is accomplished in
Java and C++ by hashing type information of the argument
lists into the method name to disambiguate. (Called name
mangling in C++). To prevent exposing users to mangled
symbols, Babel takes a different approach where SIDL authors
disambiguate explicitly with a method suffix. (See also: long
name, short name).

*** Handout Material ****** Handout Material ****** Handout Material ***Handout Material

266

package (SIDL keyword) – Provides a namespace for user-
defined types. Packages are arbitrarily nested. May be
versioned or un-versioned. May be declared final, or not.
packed array (Babel concept) – the data of the array is
occupying its minimal memory footprint. It is not strided.
There are no unused memory locations between consecutive
elements in the array.
PIC (compiler term) – Position Independent Code. An extra
level of indirection built into compiled code to enable shared
libraries and dynamic loaded libraries.
preprocessor (ANSI C term) – A simple source code
transformation that happens transparently in C/C++/Fortran
compilers. #include and #define are common preprocessor
directives. Babel uses the GNU C preprocessor on Fortran90
code to manage character limits in Fortran90.
private data (OOP concept) – Data associated with an
object that is only accessible to the object’s methods. In
Babel, all data is private.

*** Handout Material ****** Handout Material ****** Handout Material ***Handout Material

267

process – an individual program with its own memory
space. May have multiple threads. May be part of a multi-
process simulation.
reference counting – a resource tracking mechanism
Babel uses. Each Babel object or array keeps a count of how
many handles to itself have been created. When the count
goes to zero, the object and its resources are reclaimed.
shared library (compiler term) – a software library that
gets loaded into a program as it is being launched. Differs
from static library or DLL.
short name (Babel term) – The overloaded name of a
method without its disambiguating extension. (See: full name,
B.U.G. 5.6)
SIDL (Babel term) - Scientific Interface Definition Language.
The input language for Babel that drives the generation of glue
code. (See: B.U.G. 5)

*** Handout Material ****** Handout Material ****** Handout Material ***Handout Material

268

Skel (Babel term) – Babel skeleton code, provides the
language translation between the IOR and the Impl.
SO (compiler term) – Shared Object. A Unix catch-all suffix
for shared libraries and dynamically loadable libraries.
SPMD - Single Program Multiple Data. The term used to
describe parallel programs that use multiple processes running
the same code working on different data to solve a problem.
state (OOP concept) – The constituent data of an object.
static (SIDL keyword) – A modifier for methods. Makes
the method available at all times, irrespective of whether an
instance is created. Has no access to instance data. Analogous
to global functions in procedural languages. For example,
Math.sin(). (Opposite of instance method)
static linking (compiler term) – The practice of linking
code at compile time. It has a slight speed advantage, but
makes the executable big since libraries are copied en masse
into the executable file.

*** Handout Material ****** Handout Material ****** Handout Material ***Handout Material

269

string (SIDL keyword) – A fundamental data type that
stores a linear progression of characters of arbitrary length.
Each language binding represents strings differently.
stub (Babel term) – The layer of Babel glue code that does
language translation between the caller and the IOR.
SWIG – Simplied Wrapper and Interface Generator. SWIG
parses C/C++ and can automatically generate wrappers in any
one of variety of scripting languages. It has lower learning
curve than Babel and is the better choice if you only need, say
Python to C. But SWIG is limited to one scripting language
calling C/C++ – not the other way around and no plans to
support Fortran.
tarball – Typically a *.tar.gz file. Broadly, any file created
by the UNIX tar command, compressed or not.
throws (SIDL keyword) – Indicates that a method may take
an alternate execution path and exit with an exception instead
of the expected out parameters and return values.

*** Handout Material ****** Handout Material ****** Handout Material ***Handout Material

270

type (Babel term) – The species of a datum. Determines
how bits are interpreted (e.g. floating point or integer), and
storage requirements (fixed or variable). Types are either
fundamental or user-defined
URL (Web term) – Uniform Resource Locater. Often thought
of as a pointer to a web resource. (e.g. http://www.llnl.gov)
user (Babel concept) – One are two anticipated roles for
Babel use. The user of Babelized libraries need not learn
SIDL or be aware that Babel is involved. (See also: developer)
version (SIDL keyword) – Used to distinguish separate
generations of packages with the same name. All types in a
versioned package inherit that version number. Versions can
be specified in import and require statements.
virtual method(OOP concept) –A virtual method’s
implementation may be overridden by its derived classes. All
SIDL methods are virtual by default. Opposite of a final
method.

*** Handout Material ****** Handout Material ****** Handout Material ***Handout Material

271

VM (compiler term) – Virtual Machine. Typically used by
scripting languages to abstract away platform specific details.
void (SIDL keyword) – Used to state that the method has no
return value.
VPATH (Makefile term) – Used when software is compiled
in a different directory tree from where the source code
appears. The VPATH is the path from the build directory back
to its complimentary source directory. Useful for managing
multiple variations of the same software: various compilers,
compilation options, even various platforms on a shared file
system.
XML – Extensible Markup Language. A popular text-based
tree syntax for data exchange. http://www.w3.org/XML

*** Handout Material ****** Handout Material ****** Handout Material ***Handout Material

	Bridging Programming Languages With .
	General Announcements
	Details about Slides
	email: components@llnl.govwebsite: http://www.llnl.gov/CASC/components
	Today’s Outline
	I. Introduction
	Most Science & Engineering Apps Already Mix Languages
	When we say “Language Interoperability” we mean something very different than from what most applications do.
	When we say “Language Interoperability” we mean complete language transparency
	Mixing Of Languages is Commonplace, but too often Inflexible & Fragile
	When Mixing n Languages, Tool usage can grow O(n2)
	Babel is an n-way Language Interoperability Tool
	Babel Supports a Uniform Model Across All Languages
	Babel may be right for your group, if you are...
	Babel Goals and Boundaries
	Babel Has Two Parts:Code Generator & Runtime Library
	Tutorial Sections Follow this Flow
	Babel distinguishes between User and Developer
	User/Developer Distinction Influences Babel’s Design
	Typical Developer Workflow For a New Project
	Typical Developer Workflow Wrapping Legacy Code
	Typical User Workflow...
	Alternate User Workflow...(Only Babel Runtime Needed)
	Some Commercial interoperability technologies
	Some Open Source language interoperability options
	Introduction Summary
	II. Performance
	Performance overview
	How Babel’s design principles address performance
	Babel’s performance cost is a modest CPU overhead
	Babel function calls compared to native function calls
	Babel aggregate performance relative to native F77
	Babel significantly outperforms in-core CORBA
	Overhead is undetectable for coarse grained interfaces
	How to maximize Babel performance
	Proper blocking amortizes interface and array overhead
	References
	Conclusions
	III. SIDL
	SIDL: Scientific Interface Definition Language
	There are two meanings associated with s-i-d-l.
	SIDL is one of three forms of Babel type representation.
	The sidl package defines basic Object-Oriented services.
	The basic services are listed in pseudo-class diagrams.
	In addition to basics, sidl includes reflection features.
	It also supports dynamically loading libraries/components.
	SIDL: Scientific Interface Definition Language
	SIDL is used to define component APIs.
	Packages provide a name space hierarchy to avoid conflicts.
	SIDL packages are reentrant unless marked final.
	SIDL interfaces and classes support method inheritance.
	SIDL supports three inheritance directives.
	SIDL methods are defined through their signatures.
	Overloaded method names vary by implementation language.
	Intrinsic Data Types include three scientific types.
	Array definitions only require the data type.
	SIDL: Scientific Interface Definition Language
	XML files are generated for high-level symbols only.
	Main contents of each XML file depends on symbol type.
	SIDL file is a more concise representation than XML.
	greetings XML file lists only the immediate symbols.
	Message automatically inherits from base interface.
	World automatically inherits from the base class.
	SIDL: Scientific Interface Definition Language
	Symbol names dependent on languages and compilers.
	IV. Babel Tool
	Outline
	The Babel developers kit has three main parts
	Babel supports common HPC languages
	Getting/installing Babel
	Checking a Babel build
	How to run Babel
	Babel’s command line interface
	Babel has three primary capabilities
	Babel has three ancillary functions
	% babel --client=<lang>generates code for using types
	% babel --server=<lang>generates code for implementing
	% babel --text=(sidl|xml)converts types to text
	% babel --parse-checkchecks file syntax
	Miscellaneous commands
	Server=Client+Server
	Options controlling how Babel generates directories
	Options to exclude types from being generated
	Options controlling commenting in generated files
	Babel XML repository options
	Babel uses XML repositories to simplify usage
	Building/Using an XML repository
	V. Using Babel Objects
	How to use Babel objects that are already implemented
	Babel’s type system provides intrinsic capabilities
	Basic reference counting
	Owning a reference
	Borrowing a reference
	Modes and ownership
	The _cast exception
	How to use Babel objects that are already implemented
	Conway's game of life
	The conway.BoundsException & conway.Environment interfaces
	Example using conway.Environment from C++
	Example: calculating a time step in C++
	Notes
	Example: calculating a timestep in C - part 1
	Notes
	Example: calculating a timestep in C - part 2
	Notes
	Example: calculating a timestep in C - part 3
	Notes
	Example: calculating a timestep in F90 - part 1
	Notes
	Example: calculating a timestep in F90 - part 2
	Notes
	Example: calculating a timestep in F90 - part 3
	Notes
	Example: calculating a timestep in Python
	Notes
	How to use Babel objects that are already implemented
	Dynamic class loading example: SIDL
	Dynamic class loading example in Python
	Notes
	Dynamic loading example in Fortran 77
	Notes
	How to use Babel objects that are already implemented
	Normal & borrowed arrays
	Creating a borrowed array in C
	Notes
	Creating a borrowed array in C++
	Notes
	Creating a persistent reference to an array
	How to use Babel objects that are already implemented
	Zero overhead array access from C
	Zero overhead array access from C++
	How to use Babel objects that are already implemented
	Long and short names
	Overloading
	Fortran 90 name length
	Basic type mapping
	Special argument handling – C
	Special argument handling - Python
	Extra arguments
	Method naming for supported languages
	Casting objects
	Checking/initializing Null objects
	Array methods
	VI. Building Babel Libraries
	This Module for Implementers of a Babelized Library
	greetings.sidl: A Sample SIDL File
	Notes on greetings.sidl
	A C++ Implementation
	Notes on C++ Impl
	More Notes on C++ Impl
	A C Implementation (1/4):The private data
	A C Implementation (2/4):Allocate data in ctor
	A C Implementation (3/4):Deallocate Data in dtor
	A C Implementation (4/4):Implement the Method
	Notes on the C Impl
	More Notes on C Impl
	Fortran 90 Impl (1/4):Add state to *Mod.F90
	Notes on F90 Mod file
	Fortran 90 Impl (2/4):Implement subroutines
	Fortran 90 Impl (3/4):Allocate private_data in ctor
	Fortran 90 Impl (4/4):Release private_data in dtor
	Notes on F90 Impl File
	More Notes on F90 Impl File
	A Python Implementation
	Notes on Python Impl
	To use any of the previous Impls, User Does This...
	F90/Babel “Hello World” Application
	Applying Babel to Legacy Code
	Example of Babelized Legacy Code: MPI
	Example of Babelized Legacy Code (MPI): The *Impl.h
	Example of Babelized Legacy Code (MPI): The *Impl.c
	What’s the Hardest Part of this Process?
	Why do users have trouble with compile and link step?
	Makefiles are Programs for Building Programs
	babel.make: A makefile fragment Babel creates
	Use Macro Renaming and Suffix Rules in Makefiles
	Use babel-stamp idiom to workaround 1 action, n files
	Configuration is Hard
	Use “babel-config” to reproduce Babel’s settings
	Multiple approaches to see how Babel built DLL’s
	Recommendation: Put an entire SIDL Package in a library
	Q: Why not keep each Stub exclusively with its own Impl?
	IORs provide a language-independent binary interface
	All the external Stubs being SIDL interfaces is a good sign!
	The Babel-Life Demo has all external stubs are interfaces
	Implementing in interpreted languages needs special care
	There’s more than one way to distribute Babelized Code
	babel-x.y.z/runtime == babel-runtime-x.y.z
	Lots More Information In Babel Users’ Guide (aka BUG)
	VII. Closing
	Goals of this Module
	Major Customers
	CCA Toolkit will use Babel in many contexts
	Open Source in Licensing, and Modus Operandi
	Babel Downloads by Month
	Open Babel Forum: an Open Source Developer Community
	Goals of this Module
	Release Criteria for 1.0
	What version 1.0 means (and does not mean)
	Current Research Activities in Babel
	Goals of this Module
	Part II: Hands On
	Outline: Babel Life
	A Brief History of Conway’s Game of Life
	Life is the best known (and studied) cellular automaton
	Some Web Resources
	Before we start doing tasks, this is not a race!
	Task 0: Setup and Run
	Choose your setup
	Option #1: Setup
	Option #2: Prerequisites to Installing Babel
	Option #2: Installing Babel
	Both Options #1 & #2
	The Babel-Life Implementation
	Basic setup
	life.sidl file details
	Three Main Objects and their Roles
	Babel-Life’s Object Interaction Chart
	Why Life is a great example for SC Audience
	Directory Layout
	Configuration issues are a big deal & BIGGER PAIN
	mini-configure
	make
	Task 1: Write a Program That Uses Babel Objects
	babel-life/runC/Makefile (part 1/2)
	babel-life/runC/Makefile (part 2/2)
	babel-life/runC/my_driver.c(part 1/5)
	babel-life/runC/my_driver.c(part 2/5)
	babel-life/runC/my_driver.c(part 3/5)
	babel-life/runC/my_driver.c(part 4/5)
	babel-life/runC/my_driver.c(part 5/5)
	Task 1: Self Check
	Losing track what object is implemented in what language?
	Task 1 Recap: What did we learn?
	For the rest of this class, we’ll just use the Python GUI
	Task 2: Modify Existing Code
	Task 2: How To’s
	Task 2: Self Check
	Background Info on Variations of Life
	Task 3: Reimplement An Object in Language of Choice
	Task 3: Details
	Task 3: More Details
	Task 3: Self Check
	Task 3 Recap:What did we learn?
	Task 4: Add a new feature
	Okay, we changed the interface, now what?
	The impls are all coded up... but what about the GUI?
	Okay, we got that done, now what about Day/Night?
	Recap of Entire Hands-on up to Now
	But we still can’t support the full breadth of Life’s variations
	Task 5: Create a new object
	Open Question:
	Please Fill Out Survey Forms
	Glossary
	

