
BABELBABELBABEL

Gary Kumfert,
Tamara Dahlgren, and Thomas Epperly

Lawrence Livermore National Laboratory
This work was performed under the auspices of the U.S. Department of Energy by the University
of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

UCRL-200005-PRES

CCA
Common Component Architecture

Babel-ized
Libraries Make Large Scale

Software Easier to Fabricate,
Maintain, and Evolve

UCRL-PRES-202548

BABELBABELBABEL 2

Babel: Tool of choice for
mixing more than 2 languages

C

C++

f77

f90

Python

Java

C

C++

f77

f90

Python

Java
Native cfortran.h

SWIG JNI
Siloon Chasm

Platform Dependent

Not a LCD Solution.
Supports polymorphism,
reference counting, and
exceptions in all languages.

BABELBABELBABEL 3

Library Developer Does
This...

hello.sidl Babel
Compiler C++ Skels

C++ Impls

IORs

C++ Stubs

libhello.so

1. Write SIDL File
2. `babel --server=C++ hello.sidl`
3. Add implementation details
4. Compile & Link into Library/DLL

BABELBABELBABEL 4

Library User Does This...

hello.sidl Babel
Compiler

User’s
Language
Specific

Wrappers
libhello.so

1. `babel --client=F90 hello.sidl`
2. Compile & Link generated Code &

Runtime
3. Place DLL in suitable location

Babel
Runtime

Application

BABELBABELBABEL 5

Another view of Babel’s
2-Stage Wrapping Architecture

Java

Intermediate Object Representation

C++C F77 F90 Python Java

App

Stub

IOR

Skel

Impl

S
er

ve
r-

si
de

C
lie

nt
-s

id
e

C++C F77 F90 Python

BABELBABELBABEL 6

New Story

Babel is a Language Interoperability Tool,
but...

... observed recurring themes (benefits)
when Babel was applied in scientific
software, not directly related to mixing
languages

BABELBABELBABEL 7

Babel and Fabrication of
Large Scale Scientific SW
Automates the tedious and mechanical
process of connecting languages
SIDL as a design & negotiation tool
Reduce dependency entanglement among
developers

Software expert does SIDL design
Everyone else codes whatever they like
(in whatever language they like) to add
implementation to stubbed out codes
Maps well to multidisciplinary teams

BABELBABELBABEL 8

Fabrication Examples

SIDL supports multi-lingual standards
CCA, TSTT, TOPS

People like arguing designs in SIDL
Easy to pick up
No distracting implementation details
Easy to e-mail, no special editors (like UML)

Hypre is mostly numerical researchers, not
OOP software engineers.

Lead controls the interfaces
Researchers implement the guts

BABELBABELBABEL 9

Babel and Maintenance of
Large Scale Scientific SW
Preserve functionality & correctness in the
face of external change
Generated language wrappers are more
robust and portable than ad-hoc solutions.
Babel adds new languages ~ 1/year
Good software practices encoded in Babel
avoids lots of bugs

reference counting
exception handling
semantic checking (in development)

BABELBABELBABEL 10

Maintenance Example

NWChem uses Babel to connect Fortran 77
to Fortran 77

2 Fortran 77 codes, some C in each
Fortran 77 has no binary standard

some add an underscore to linker symbols
some don’t
g77 adds two if one already exists, just one otherwise

The two codes weren’t designed for each other,
and each made a different assumption.
They found it easier to wrap both in Babel and let
Babel hide the underscore issue inside each
library

BABELBABELBABEL 11

Babel and the Evolution of
Large-Scale Scientific SW
Internal change for new capabilities
Fast Prototyping with Scripting

Empower and exploit creativity of users

High Performance with compiled code
Polymorphism – create new
functionality without

Changing existing code
Making lots of copies

BABELBABELBABEL 12

Evolution Example

CCA Forum
started with 3 “reference frameworks”

none were interoperable
Babel later adopted for frameworks to support
components multiple languages

Side effect: Also made components work with
frameworks in multiple languages.

Next generation of CCA frameworks (Ccaffeine,
XCAT3 and SCIRun2) will all seamlessly load each
other’s Babelized components.

Will also bridge between older component models and
Babel
Frameworks can also expose themselves as a
component to another framework

BABELBABELBABEL 13

Scientific Computing Software
is Dominated by Change

Changed more often than software of similar
size in other fields

A twenty-year-old LLNL program changed
substantively 75 times in one year. It was not a
period of major new development or a new
machine. -- Paul F. DuBois, LLNL

Both developers and users make changes
Software changes track scientific progress
(hard to predict)
Application area may change or expand
Hardware will change, especially high
performance, large-scale exotics

BABELBABELBABEL 14

Babelized Libraries appear
very “Change Oriented.”

Project: http://www.llnl.gov/CASC/components

Project Team Email: components@llnl.gov

Mailing Lists: majordomo@lists.llnl.gov
subscribe babel-users [email address]
subscribe babel-announce [email address]

http://www.llnl.gov/CASC/components
mailto:components@llnl.gov
mailto:majordomo@lists.llnl.gov

	Babel-izedLibraries Make Large Scale Software Easier to Fabricate, Maintain, and Evolve
	Babel: Tool of choice for mixing more than 2 languages
	Library Developer Does This...
	Library User Does This...
	Another view of Babel’s 2-Stage Wrapping Architecture
	New Story
	Babel and Fabrication of Large Scale Scientific SW
	Fabrication Examples
	Babel and Maintenance of Large Scale Scientific SW
	Maintenance Example
	Babel and the Evolution of Large-Scale Scientific SW
	Evolution Example
	Scientific Computing Software is Dominated by Change
	Babelized Libraries appear very “Change Oriented.”

