
BABELBABELBABEL

Gary Kumfert, Tamara Dahlgren,
and Thomas Epperly

Lawrence Livermore National Laboratory

This work was performed under the auspices of the U.S. Department of Energy by the University
of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

UCRL-200005-PRES

CCA
Common Component Architecture

Exploring Applicability
of CCA to TSI

UCRL-PRES-203090

BABELBABELBABEL 2

What Are

Components

The likely Costs and Benefits of
Componentizing your code

.

.

CCA
Common Component Architecture

BABELBABELBABEL 3

What Are Components?

Hard Question
Unintentionally Vague

Component Technology is a Concept
Easier questions:

What’s a COM Component
What’s a .NET Component
What’s the difference between
Components in CORBA and Enterprize
Java Beans?
What’s a CCA Component?

BABELBABELBABEL 4

What Are Components?

A Pictorial Introduction

(aka Gary’s Sausage Grinder Talk)

There will be a quiz at the end!

BABELBABELBABEL 5

Once upon a time...

Input

Output

Program

BABELBABELBABEL 6

As Scientific Computing grew...

BABELBABELBABEL 7

Tried to ease the bottle neck

BABELBABELBABEL 8

SPMD was born.

21

3 4

21

3 4

2

1

3

4

BABELBABELBABEL 9

SPMD worked.

21

3 4

21

3 4

2

1

3

4

But it
isn’t

easy!!!

But it
isn’t

easy!!!

BABELBABELBABEL 10

Meanwhile, corporate computing
was growing in a different way

Input

Output

Program

browser

spreadsheet

editor

graphics

databasemultimedia

email client

Unicode

Input

BABELBABELBABEL 11

This created a whole new set of
problems...

browser

spreadsheet

editor

graphics

databasemultimedia

email client

Unicode

Interoperability
across multiple
languages
Interoperability
across multiple
platforms
Incremental
evolution of large
legacy systems
(esp. w/ multiple
3rd party software)

BABELBABELBABEL 12

Component Technology
addresses these problems

BABELBABELBABEL 13

So what’s a component ???
Implementation :
No Direct Access

Interface Access :
Generated by Tools

Matching Connector :
Assigned by Framework
Hidden from User

BABELBABELBABEL 14

1. Interoperability across
multiple languages

C

C++ F77 F90

Python

Language &
Platform

independent
interfaces

Automatically
generated

bindings to
working code

BABELBABELBABEL 15

2. Interoperability Across
Multiple Platforms Imagine a company

migrates to a new
system, OS, etc.

What if the
source to

this one part
is lost???

BABELBABELBABEL 16

Transparent Distributed
Computing

internetinternet

These wires
are very,

very smart!

BABELBABELBABEL 17

3. Incremental Evolution With
Multiple 3rd party software

v 1.0

v 2.0 v 3.0

BABELBABELBABEL 18

Now suppose you find this
bug...

v 1.0

v 2.0 v 3.0

BABELBABELBABEL 19

Good news: an upgrade available
Bad news: there’s a dependency

v 1.0

v 2.0 v 3.0

2.1

2.0

BABELBABELBABEL 20

Great News:
Solvable with Components

v 3.02.1

2.0

BABELBABELBABEL 21

Great News:
Solvable with Components

v 1.0

2.1 v 3.0

2.0

BABELBABELBABEL 22

The Model for Scientific
Component Programming

Science

Industry

?CCA
Common Component Architecture

BABELBABELBABEL 23

What Are

Components

The likely Costs and Benefits of
Componentizing your code

.

.

CCA
Common Component Architecture

We a
re

her
e

BABELBABELBABEL 24

Why Components
for Scientific Computing?

Interoperability
across multiple
languages
Interoperability
across multiple
platforms
Incremental
evolution of large
legacy systems
(esp. w/ multiple
3rd party software)

Sapphire

SAMRAI

Ardra
Scientific Viz

DataFoundry

Overture

linear solvers hypre
nonlinear solvers

ALPS

JEEP

BABELBABELBABEL 25

Why Components
for Scientific Computing?

integration of small
systems to large
ones
amenability to
change
manage correctness
in the face of
change

Interoperability
across multiple
languages
Interoperability
across multiple
platforms
Incremental
evolution of large
legacy systems
(esp. w/ multiple
3rd party software)

“Change-Oriented Software”

BABELBABELBABEL 26

When componentization might
make sense for you

Componentization is not automatic
Makes sense if:

You develop a library for wide-spread use
You mix your code with lots of others
You maintain a large code that will evolve
with your scientific pursuits

Doesn’t make sense for
Disposable, one-off codes
Software that is standalone & fixed
(not incl bugs)

BABELBABELBABEL 27

What happens with
componentization?

1. Original Implementation

3. Redesign interface
to be Generated by Tools

2. Learn the technology
to properly design for
the connectors

4. Write bridging code to
connect original code to
new interface

What Are

BABELBABELBABEL 28

Components

The likely Costs and Benefits of
Componentizing your code

.

.

CCA
Common Component Architecture We are here

BABELBABELBABEL 29

What is the CCA?

Common Component Architecture
Is a “research” standard

CCA Forum
The grass-roots body
Voting membership: requires attendance
at 2 out of the last three quarterly
meetings.

CCTTSS is “official” name for the
SciDAC ISIC.

Rob Armstrong, Sandia, PI

BABELBABELBABEL 30

CCTTSS Research Thrust Areas
and Main Working Groups

Scientific Components
Scientific Data Objects
Lois Curfman McInnes, ANL
(curfman@mcs.anl.gov)

“MxN” Parallel Data Redistribution
Jim Kohl, ORNL (kohlja@ornl.gov)

Frameworks
Language Interoperability / Babel / SIDL
Component Deployment / Repository
Gary Kumfert, LLNL (kumfert@llnl.gov)

User Outreach
David Bernholdt, ORNL (bernholdtde@ornl.gov)

BABELBABELBABEL 31

Scientific Components
Abstract Interfaces and Component
Implementations

Mesh management
Linear, nonlinear, and optimization solvers
Multi-threading and load redistribution
Visualization and computational steering

Quality of Service Research
Fault Tolerance

Components and Frameworks

BABELBABELBABEL 32

Scientific Data Objects
& Interfaces

Define “Standard” Interfaces for HPC
Scientific Data

Descriptive, Not (Necessarily) Generative…
Basic Scientific Data Object

David Bernholdt, ORNL
Structured & Unstructured Mesh

Lori Freitag, ANL
Collaboration with SciDAC TSTT Center

Block Structured AMR
Phil Colella, LBNL
Collaboration with APDEC & TSTT

BABELBABELBABEL 33

“MxN” Parallel Data
Redistribution:The Problem…

N

M

BABELBABELBABEL 34

“MxN” Parallel Data
Redistribution:The Problem…
Create complex scientific simulations by
coupling together multiple parallel component
models

Share data on “M” processors with data on “N”
M != N ~ Distinct Resources (Pronounced “M by N”)

Model coupling, e.g., climate, solver / optimizer
Collecting data for visualization

Mx1; increasingly MxN (parallel rendering clusters)

Define “standard” interface
Fundamental operations for any parallel data coupler

Full range of synchronization and communication options

BABELBABELBABEL 35

CCA Frameworks

Component Containers & Run-Time
Environments
Research Areas:

Integration of prototype frameworks
SCMD/parallel with distributed, bridged for one application
Unify framework services & interactions…

Language interoperability tools
Babel/SIDL, incorporate difficult languages (F90…)
Production-scale requirement for application areas

Component deployment
Component repository, interface lookup & semantics

BABELBABELBABEL 36

CCA Frameworks
Ccaffeine

SPMD/SCMD parallel
Direct connection

CCAT / XCAT
Distributed
Network connection

SCIRun
Parallel, multithreaded
Direct connection

Decaf, DCS, Dune, Uintah, LegionCCA

BABELBABELBABEL 37

Outreach and Applications
Integration

Tools Not Just “Thrown Over The
Fence”…
Several Outreach Efforts:

General education and awareness
Tutorials, like this one!
Papers, conference presentations

Strong liaison with adopting groups
Beyond superficial exchanges
Real production requirements & feedback

Chemistry and climate work within CCTTSS
Actual application development work ($$$)

SciDAC Emphasis
More vital applied advanced computing
research!

BABELBABELBABEL 38

Active CCA Forum Working
Groups

Adaptive Mesh Refinement
Generalized Data Objects
Tutorial Presentations
Application Domain Groups:

Climate, Chemistry
MxN Data Redistribution
Embeddable Scripting
Fortran Users
Babel Development & Users
Deployment / XML Schemas
Ccaffeine Open Framework
Component-Based Debugging…

See http://www.cca-forum.org/working_groups.html for more info.

http://www.cca-forum.org/working_groups.html

BABELBABELBABEL 39

What Are

Components

The likely Costs and Benefits of
Componentizing your code

.

.

CCA
Common Component Architecture

We are here

BABELBABELBABEL 40

Babel Architecture

Intermediate Object Representation

C++C F77 F90 Python Java

App

Stub

IOR

Skel

Impl

S
er

ve
r-

si
de

C
lie

nt
-s

id
e

C++C F77 F90 Python Java

BABELBABELBABEL 41

Library Developer Does
This...

SIDL
interface

description

Babel
Compiler C++ Skels

C++ Impls

IORs

C++ Stubs

libgreetings.so

1. Write SIDL File
2. `babel --server=C++ greetings.sidl`
3. Add implementation details
4. Compile & Link into Library/DLL

BABELBABELBABEL 42

greetings.sidl: A Sample
SIDL File

package greetings version 1.0 {

interface Hello {

void setName(in string name);

string sayIt ();

}

class English implements-all Hello { }

}

package greetings version 1.0 {

interface Hello {

void setName(in string name);

string sayIt ();

}

class English implements-all Hello { }

}

BABELBABELBABEL 43

Adding the Implementation

namespace greetings {
class English_impl {

private:
// DO-NOT-DELETE splicer.begin(greetings.English._impl)
::std::string d_name;
// DO-NOT-DELETE splicer.end(greetings.English._impl)

namespace greetings {
class English_impl {

private:
// DO-NOT-DELETE splicer.begin(greetings.English._impl)
::std::string d_name;
// DO-NOT-DELETE splicer.end(greetings.English._impl)

::std::string

greetings::English_impl::sayIt()

throw ()

{

// DO-NOT-DELETE splicer.begin(greetings.English.sayIt)

::std::string msg(”Hello ”);

return msg + d_name + ”!”;

// DO-NOT-DELETE splicer.end(greetings.English.sayIt)

}

::std::string

greetings::English_impl::sayIt()

throw ()

{

// DO-NOT-DELETE splicer.begin(greetings.English.sayIt)

::std::string msg(”Hello ”);

return msg + d_name + ”!”;

// DO-NOT-DELETE splicer.end(greetings.English.sayIt)

}

BABELBABELBABEL 44

Adding the Implementation

namespace greetings {
class English_impl {

private:
// DO-NOT-DELETE splicer.begin(greetings.English._impl)
::std::string d_name;
// DO-NOT-DELETE splicer.end(greetings.English._impl)

namespace greetings {
class English_impl {

private:
// DO-NOT-DELETE splicer.begin(greetings.English._impl)
::std::string d_name;
// DO-NOT-DELETE splicer.end(greetings.English._impl)

package greetings version 1.0 {
interface Hello {

void setName(in string name);
string sayIt ();

}
class English implements-all Hello { }

}

package greetings version 1.0 {
interface Hello {

void setName(in string name);
string sayIt ();

}
class English implements-all Hello { }

}

::std::string

greetings::English_impl::sayIt()

throw ()

{

// DO-NOT-DELETE splicer.begin(greetings.English.sayIt)

::std::string msg(”Hello ”);

return msg + d_name + ”!”;

// DO-NOT-DELETE splicer.end(greetings.English.sayIt)

}

::std::string

greetings::English_impl::sayIt()

throw ()

{

// DO-NOT-DELETE splicer.begin(greetings.English.sayIt)

::std::string msg(”Hello ”);

return msg + d_name + ”!”;

// DO-NOT-DELETE splicer.end(greetings.English.sayIt)

}

BABELBABELBABEL 45

Library User Does This...

SIDL
interface

description

Babel
Compiler IOR

Headers

F90 Stubs

1. `babel --client=F90 greetings.sidl`
2. Compile & Link generated Code &

Runtime
3. Place DLL in suitable location

libgreetings.so

Babel
Runtime

Application

BABELBABELBABEL 46

F90/Babel “Hello World”
Application

program helloclient

use greetings_English

implicit none

type(greetings_English_t) :: obj

character (len=80) :: msg

character (len=20) :: name

name=’World’

call new(obj)

call setName(obj, name)

call sayIt(obj, msg)

call deleteRef(obj)

print *, msg

end program helloclient

program helloclient

use greetings_English

implicit none

type(greetings_English_t) :: obj

character (len=80) :: msg

character (len=20) :: name

name=’World’

call new(obj)

call setName(obj, name)

call sayIt(obj, msg)

call deleteRef(obj)

print *, msg

end program helloclient

These subroutines
come from directly
from the SIDL

These subroutines
come from directly
from the SIDL

Some other subroutines
are “built in” to every
SIDL class/interface

Some other subroutines
are “built in” to every
SIDL class/interface

BABELBABELBABEL 47

F90/Babel “Hello World”
Application

program helloclient

use greetings_English

implicit none

type(greetings_English_t) :: obj

character (len=80) :: msg

character (len=20) :: name

name=’World’

call new(obj)

call setName(obj, name)

call sayIt(obj, msg)

call deleteRef(obj)

print *, msg

end program helloclient

program helloclient

use greetings_English

implicit none

type(greetings_English_t) :: obj

character (len=80) :: msg

character (len=20) :: name

name=’World’

call new(obj)

call setName(obj, name)

call sayIt(obj, msg)

call deleteRef(obj)

print *, msg

end program helloclient

These subroutines
come from directly
from the SIDL

These subroutines
come from directly
from the SIDL

Some other subroutines
are “built in” to every
SIDL class/interface

Some other subroutines
are “built in” to every
SIDL class/interface

package greetings version 1.0 {
interface Hello {

void setName(in string name);
string sayIt ();

}
class English implements-all Hello { }

}

package greetings version 1.0 {
interface Hello {

void setName(in string name);
string sayIt ();

}
class English implements-all Hello { }

}

BABELBABELBABEL 48

SWIG v. Babel
(David Beazley @ U Chicago)

Call from C, C++, F77,
F90, Python, and Java

Implement in C, C++,
F77, F90, and Python
Hand-written SIDL

Library Developer task
(or “motivated” user?)
SIDL “object model”
SIDL is self contained, no
extra hints needed

Better suited for
production use

Call from Tcl, Perl,
Python, Java, Ruby,
mzscheme, or Guile
Implement in C, C++

Reads existing code
Library User can do
independently
C++ “type system”
Auxiliary .i files fill in
details

Better suited for
fast prototyping

BABELBABELBABEL 49

Change Oriented Software

Absorb change without losing
correctness
Empower and exploit the creativity of
users
Reduce dependency entanglement
among developers

BABELBABELBABEL 50

Babel’s Contributions to
Change-Oriented Software
SIDL

Compilable Software Contract btwn
developer and user
Language Independent Standards

CCA Specification in SIDL
Version Management of Interfaces
Ongoing Research: Adding semantic
specifications

BABELBABELBABEL 51

Babel’s Contributions to
Change-Oriented Software
Language Transparent Software

Keeps implementation details from driving
the design
Lowers integration barriers

Stories:
Babel helps NWChem mix F77 w/ F77
Babel in Adaptive Algorithm Research

BABELBABELBABEL 52

CCA’s Contributions to
Change-Oriented Software
Pure Babel

still imperative programming
assembly of call graph is
embedded in code

CCA
separates component
development from application
assembly
application assembly can be
deferred to last minute (like
scripting)
Loosely coupled systems are
inherently more changeable

BABELBABELBABEL 53

For More on CCA

CCA tutorial at SIAM Parallel
Processing at San Francisco (late Feb)

CCA Quarterly meetings.
Next one hosted by NCAR in Colorado
April 15-16.

BABELBABELBABEL 54

Contact Info

CCA Forum: http://www.cca-forum.org
cca-forum@cca-forum.org

Babel (&stuff):
http://www.llnl.gov/CASC/components

components@llnl.gov my team
kumfert@llnl.gov me

http://www.cca-forum.org/
mailto:cca-forum@cca-forum.org
http://www.llnl.gov/CASC/components
mailto:components@llnl.gov
mailto:kumfert@llnl.gov

	Exploring Applicability of CCA to TSI
	What Are
	What Are Components?
	What Are Components?
	Once upon a time...
	As Scientific Computing grew...
	Tried to ease the bottle neck
	SPMD was born.
	SPMD worked.
	Meanwhile, corporate computing was growing in a different way
	This created a whole new set of problems...
	Component Technology addresses these problems
	So what’s a component ???
	1. Interoperability across multiple languages
	2. Interoperability Across Multiple Platforms
	Transparent Distributed Computing
	3. Incremental Evolution WithMultiple 3rd party software
	Now suppose you find this bug...
	Good news: an upgrade available
	
	Great News: Solvable with Components
	The Model for Scientific Component Programming
	What Are
	Why Components for Scientific Computing?
	Why Components for Scientific Computing?
	When componentization might make sense for you
	What happens with componentization?
	What Are
	What is the CCA?
	CCTTSS Research Thrust Areasand Main Working Groups
	Scientific Components
	Scientific Data Objects& Interfaces
	“MxN” Parallel Data Redistribution:The Problem…
	“MxN” Parallel Data Redistribution:The Problem…
	CCA Frameworks
	CCA Frameworks
	Outreach and Applications Integration
	Active CCA Forum Working Groups
	What Are
	Babel Architecture
	Library Developer Does This...
	greetings.sidl: A Sample SIDL File
	Adding the Implementation
	Adding the Implementation
	Library User Does This...
	F90/Babel “Hello World” Application
	F90/Babel “Hello World” Application
	SWIG v. Babel
	Change Oriented Software
	Babel’s Contributions to Change-Oriented Software
	Babel’s Contributions to Change-Oriented Software
	CCA’s Contributions to Change-Oriented Software
	For More on CCA
	Contact Info

