
BABELBABELBABEL

Gary Kumfert,
Tamara Dahlgren, and Thomas Epperly 

Lawrence Livermore National Laboratory
This work was performed under the auspices of the U.S. Department of Energy by the University 
of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

UCRL-200005-PRES

CCA
Common Component Architecture

The Babel Language 
Interoperability Tool:

software integration, and 
evolution of large scale 

simulation codes

UCRL-PRES-203091



BABELBABELBABEL 2

Outline

Babel
Problem: Mixing Languages
Features
Performance/Overhead

Related Work
Large Scale Simulation Codes

Maintaining Correctness in face of Change
Components, Babel, & 
Large Scale Simulation Software



BABELBABELBABEL 3

What I mean by 
“Language Interoperability”

Simulation Framework
(C)

Solver Library
(C++)

Numerical Routines
(f77)

Scripting Driver
(Python)

Visualization System
(Java)

Callback Handlers
(Python)

Callback Handlers
(Python)



BABELBABELBABEL 4

Mixing Languages: hard, not 
portable, and unscalable

Native

cfortran.h

SWIG

JNI

Siloon

Chasm

Platform 
Dependent

C

C++

f77

f90

Python

Java



BABELBABELBABEL 5

Babel makes all supported 
languages peers

f77

f90C

C++ Python

Java

Once a library has been 
“Babelized” it is equally

accessible from all 
supported languages

This is not a 
Lowest Common

Denominator
Solution!



BABELBABELBABEL 6

Babel Goals and Boundaries

Complete Language Transparency
High Performance / Binary 
Interoperability
Acceptable

Generate lots of code
Dictate compiler flags, etc.

Not Acceptable
Require custom compilers, linkers, etc.
Generate code beyond language 
standards.



BABELBABELBABEL 7

Library Developer Does 
This...

SIDL 
interface

description

Babel
Compiler C++ Skels

C++ Impls

IORs

C++ Stubs

libgreetings.so

1. Write SIDL File
2. `babel --server=C++ greetings.sidl`
3. Add implementation details
4. Compile & Link into Library/DLL



BABELBABELBABEL 8

Library User Does This...

SIDL 
interface

description

Babel
Compiler IOR 

Headers

F90 Stubs

1. `babel --client=F90 greetings.sidl`
2. Compile & Link generated Code & 

Runtime
3. Place DLL in suitable location

libgreetings.so

Babel
Runtime

Application



BABELBABELBABEL 9

Performance Impact on 
Whole Apps: Negligible

hypre: 
“Lost in the noise”

Kohn et. al. Divorcing 
Language Dependencies 
from a Scientific 
Software Library. SIAM 
PP01. Portsmouth, VA, 
March 12-14, 2001

TAO/PETSc:  “overhead 
of using components is 
negligible and it does 
not affect the scalability 
of the algorithm”

Total execution time for a surface 
minimization problem using a fixed-sized 
250x250 mesh. Dual 550 MHz Pentium III 
nodes with 1-Gb of RAM each, connected 

with Myrinet



BABELBABELBABEL 10

Overhead on Single Function 
Call: Small & Variable

Bernholdt, et. al. A Component 
Architecture for High-Performance 
Computing, POHLL-02 New York, NY. 
22 June 2002

“avg” Babel overhead ≈ 3.8 * F77
Depends on argument modes, argument types 
and languages involved
All Babel calls are virtual 
(C++ virtual ≈ 2.2 *F77)

CORBA ≈ 25 * Babel



BABELBABELBABEL 11

Babel Performance Models: 
Joint work /w PERC & TSTT

compulsory
(multi-language)

compulsory
(Babel object model)

Efficient 
Implementation of Babel

Efficient Use of SIDL?%

?%

?%

?%

also, how hard for customer
to use SIDL efficiently?

To
ta

l 
O
ve

rh
ea

d

not performance tuned yet

e.g. no IOR shortcut if caller 
& callee in same language

e.g. No C++-style inline



BABELBABELBABEL 12

Bottom Line on Performance:

Minimal overhead (nsecs/call) on a 
per-process basis.

Can construct pathological worst cases
Yet to see real-world example where Babel 
was “too heavy weight”

No effect on parallel scalability
Communication latencies dominate
Hypre cannot measure Babel overheads 
on a modest parallel run.



BABELBABELBABEL 13

Outline

Babel
Problem: Mixing Languages
Features
Performance/Overhead

Related Work
Large Scale Simulation Codes

Maintaining Correctness in face of Change
Components, Babel, & 
Large Scale Simulation Software



BABELBABELBABEL 14

Other IDL Projects In 
Scientific Computing

ASE: Argonne SIDL Environment
http://www.mcs.anl.gov/ase
Knepley and Smith @ Argonne
Based on Babel-0.6 (Dec’01)
Foundation for PETSc 3.0

PIDL: Parallel Interface Definition 
Language

http://www.cs.utah.edu/~damevski/thesis.pdf
Damevski & Parker @SCI Institute, Utah
C++ only
Parallel RMI

http://www.mcs.anl.gov/ase
http://www.cs.utah.edu/~damevski/thesis.pdf


BABELBABELBABEL 15

“Automatic” Wrapper 
Generators

e.g., SWIG, Chasm, PyFort
Parse existing code

Heavily rooted in a particular language
Are not 100% automatic

Often need manual hints, tweeks, etc.
Cannot wrap 100% of the existing code

PyFort does a subset of F90
Great for code you don’t control



BABELBABELBABEL 16

SWIG v. Babel
(David Beazley @ U Chicago)

Call from C, C++, F77, 
F90, Python, and Java 

Implement in C, C++, 
F77, F90, and Python
Hand-written SIDL

Library Developer task
(or “motivated” user?)
SIDL “object model”
SIDL is self contained, no 
extra hints needed

Better suited for 
production use

Call from Tcl, Perl, 
Python, Java, Ruby,
mzscheme, or Guile
Implement in C, C++

Reads existing code
Library User can do 
independently 
C++ “type system” 
Auxiliary .i files fill in 
details

Better suited for 
fast prototyping



BABELBABELBABEL 17

Outline

Babel
Problem: Mixing Languages
Features
Performance/Overhead

Related Work
Large Scale Simulation Codes

Maintaining Correctness in face of Change
Components, Babel, & 
Large Scale Simulation Software



BABELBABELBABEL 18

How Big is a “Big Code”?
(lines of source)

Simulator for Major Systems 
in a Tokamak?
Simulator for capsule physics 
in NIF?
Hewlett-Packard Printer 
Driver?

Thanks to Paul F. DuBois, LLNL



BABELBABELBABEL 19

How Big is a “Big Code”?
(lines of source)

Simulator for Major Systems 
in a Tokamak?
Simulator for capsule physics 
in NIF?
Hewlett-Packard Printer 
Driver?

Thanks to Paul F. DuBois, LLNL

300,000

500,000

5,000,000



BABELBABELBABEL 20

How Big is a “Big Code”?
(lines of source)

Simulator for Major Systems 
in a Tokamak?
Simulator for capsule physics 
in NIF?
Hewlett-Packard Printer 
Driver? 5,000,000

300,000
From a software engineering 
perspective:  if the large scale 
simulations aren’t really that big, 
why do they seem so difficult?

500,000



BABELBABELBABEL 21

Challenges in Scientific SW 
Differ from Industry

Correctness is harder to achieve
Domain knowledge is very specialized
Long development times for physics

the rest of the code evolves rapidly.
Users needs vary quickly
Platforms vary quickly
Distribution is usually source



BABELBABELBABEL 22

Correctness

Software engineering literature and 
commercial tools commonly 
assumes a static “specification”

Unit-testing literature commonly 
assumes verification against 
textual output



BABELBABELBABEL 23

Scientific Computing Software 
is Dominated by Change

Scientific programs are changed much more 
often than programs of similar size in other 
fields.

A twenty-year-old LLNL program changed 
substantively 75 times in one year. It was not a 
period of major new development or a new 
machine.

The developers are not the only ones who 
need to change the program – the users do 
too.
Even the application area may change or 
expand.

Thanks to Paul F. DuBois, LLNL



BABELBABELBABEL 24

Change Oriented Software

Absorb change without losing 
correctness
Empower and exploit the creativity of 
users
Reduce dependency entanglement 
among developers



BABELBABELBABEL 25

Current Change-Oriented 
State of Art: Scripting

Python is BIG at Livermore
SciPy.org:  

SWIG and PyFort shrink-wrapped codes
Enthought, Inc. provides the consulting 
services 

PyMPI
gives you a interactive session to parallel 
machine

Python

Hydro FFT Graphics



BABELBABELBABEL 26

Users Like Scripting

Developers aren’t a bottleneck 
Users share domain-specific expertise 
with each other.
Users are much more productive
Users enjoy coding (scripting is fun)
If you expose the “main loop”, they can 
add physics or modify quantities (e.g., 
adding noise to boundary conditions or 
energy deposition).



BABELBABELBABEL 27

Developers Like Scripting

Developers get built-in graphical 
debugger
Prototype algorithms in interpreter.
Many facilities get out of compiled code 
for good

If 90% of runtime is spent in 10% of code, 
why not script the other 90%?

Can try new uses/configurations for 
existing pieces without a lot of 
investment



BABELBABELBABEL 28

Downside of Scripting
Does your code look like this?



BABELBABELBABEL 29

Downside of Scripting
Does your code look like this?

Or like this?



BABELBABELBABEL 30

Outline

Babel
Problem: Mixing Languages
Features
Performance/Overhead

Related Work
Large Scale Simulation Codes

Maintaining Correctness in face of Change
Components, Babel, & 
Large Scale Simulation Software



BABELBABELBABEL 31

Babel is a funded part of the CCA

I implemented a Babel-based interface 
for the hypre library of linear equation 
solvers. The Babel interface was 
straightforward to write and gave us 
interfaces to several languages for less 
effort than it would take to interface to a 
single language.

--Jeff Painter, LLNL.

research.cs.vt.edu/lacsa

CCA
Common Component Architecture



BABELBABELBABEL 32

Software Components: 
Commercial vs. Computational

Industry developed component 
technology to 

increase reuse
control costs
scale to large systems

Large Scale Simulation needs it for
integration of small systems to large ones
amenability to change
manage correctness in the face of change



BABELBABELBABEL 33

Babel’s Contributions to 
Change-Oriented Software
SIDL

Compilable Software Contract btwn 
developer and user
Language Independent Standards

CCA Specification in SIDL
Version Management of Interfaces
Ongoing Research:  Adding semantic 
specifications



BABELBABELBABEL 34

Babel’s Contributions to 
Change-Oriented Software
Language Transparent Software

Keeps implementation details from driving 
the design
Lowers integration barriers

Stories: 
Babel helps NWChem mix F77 w/ F77
Babel in Adaptive Algorithm Research



BABELBABELBABEL 35

CCA’s Contributions to 
Change-Oriented Software 
Pure Babel

still imperative programming  
assembly of call graph is 
embedded in code 

CCA 
separates component 
development from application 
assembly
application assembly can be 
deferred to last minute (like 
scripting)
Loosely coupled systems are 
inherently more changeable 



BABELBABELBABEL 36

For More on CCA 

CCA tutorial next month at SIAM 
Parallel Processing in San Francisco

CCA Quarterly meeting Thurs-Fri in 
downtown Knoxville



BABELBABELBABEL 37

Conclusions

From a SE perspective: the dominant 
feature of Scientific Software is Change

Assuring correctness is also especially 
vexing

Scripting is current state-of-art for 
change-oriented software
Component technology is cutting-edge 
research, but offers more than scripting



BABELBABELBABEL 38

Contact Info

Project:    http://www.llnl.gov/CASC/components

Project Team Email: components@llnl.gov

Mailing Lists: majordomo@lists.llnl.gov
subscribe babel-users [email address]
subscribe babel-announce [email address]

http://www.llnl.gov/CASC/components
mailto:components@llnl.gov
mailto:majordomo@lists.llnl.gov

	The Babel Language Interoperability Tool:software integration, and evolution of large scale simulation codes
	Outline
	What I mean by “Language Interoperability”
	Mixing Languages: hard, not portable, and unscalable
	Babel makes all supported languages peers
	Babel Goals and Boundaries
	Library Developer Does This...
	Library User Does This...
	Performance Impact on Whole Apps: Negligible
	Overhead on Single Function Call: Small & Variable
	Babel Performance Models: Joint work /w PERC & TSTT
	Bottom Line on Performance:
	Outline
	Other IDL Projects In Scientific Computing
	“Automatic” Wrapper Generators
	SWIG v. Babel
	Outline
	How Big is a “Big Code”?(lines of source)
	How Big is a “Big Code”? (lines of source)
	How Big is a “Big Code”? (lines of source)
	Challenges in Scientific SW Differ from Industry
	Correctness
	Scientific Computing Software is Dominated by Change
	Change Oriented Software
	Current Change-Oriented State of Art: Scripting
	Users Like Scripting
	Developers Like Scripting
	Downside of Scripting
	Downside of Scripting
	Outline
	Babel is a funded part of the CCA
	Software Components: Commercial vs. Computational
	Babel’s Contributions to Change-Oriented Software
	Babel’s Contributions to Change-Oriented Software
	CCA’s Contributions to Change-Oriented Software
	For More on CCA
	Conclusions
	Contact Info

