
The Overture Hyperbolic Grid Generator

User Guide, Version 1.0

William D. Henshaw 1

Centre for Applied Scientific Computing
Lawrence Livermore National Laboratory
Livermore, CA, 94551
henshaw@llnl.gov
http://www.llnl.gov/casc/people/henshaw
http://www.llnl.gov/casc/Overture

May 20, 2011

UCRL-MA-134240

Abstract

This document describes the HyperbolicMapping class for generating surface and volume grids using
a marching algorithm. Surface grids can be grown over any other Mapping that defines a surface in
three-dimensions including a CompositeSurface which represents a surface as a collection of multiple
sub-surfaces. Volume grids can be generated in two or three space dimensions. A variety of boundary
conditions are available.

Contents

1 HyperbolicMapping 4
1.1 Hyperbolic Marching Equations . 4
1.2 Algorithm . 8

2 Steger-Chan Hyperbolic Marching 12

3 The Osher-Sethian Level Set (Hamilton-Jacobi) Marching Equations 14

4 Distributing points by equidistribution of a weight function 15

5 Boundary conditions 15
5.1 Boundaries, Ghost Points and the BoundaryOffset . 16
5.2 Normal Blending . 17
5.3 Projection of boundary points on surfaces . 17
5.4 Heuristic Comments on Hyperbolic Parameters . 17
5.5 Hints to making a grid . 18

6 Creating a surface grid on another Mapping or CompositeSurface 18

7 Examples 18
7.1 Bump . 21
7.2 Flat Plate . 22
7.3 Mast for a sail . 23

1 This work was partially supported by grant N00014-95-F-0067 from the Office of Naval Research

1

7.4 Airfoil grids . 24
7.5 Surface grid generation on a CompositeSurface for a soup can 25
7.6 Surface and Volume Grid Generation on a CAD model for an Automobile. 26
7.7 Grid Generation for a Truck. 28

7.7.1 Front . 28
7.7.2 Wheel . 30
7.7.3 Cab tender . 31

8 Class member functions 32
8.1 Constructor . 32
8.2 Constructor . 32
8.3 Constructor . 32
8.4 isDefined . 32
8.5 printStatistics . 32
8.6 setBoundaryConditionMapping . 32
8.7 setSurface . 33
8.8 setIsSurfaceGrid . 33
8.9 setStartingCurve . 33
8.10 saveReferenceSurfaceWhenPut . 33
8.11 setup . 34
8.12 setParameters . 34
8.13 setPlotOption . 35
8.14 smooth . 35
8.15 inspectInitialSurface . 35
8.16 generate . 35

2

Figure 1: Snapshot of the hyperbolic grid generator. A surface grid is grown on a CAD model for an
automobile. A starting curve is chosen and the grid is grown in both directions over the surface.

3

1 HyperbolicMapping

The HyperbolicMapping can be used to generate surface and volume grids by marching along or from a
given reference curve or surface.

This Mapping is still under development and subject to possibly severe changes.
See the Mapping monster manual[3] for a information on many other Mappings as well as a description

of Mappings in general.

1.1 Hyperbolic Marching Equations

Let (r, s, t) denote the parameter space (computational) coordinates. Instead of taking parameter space to
be the unit cube we instead take the grid spacing in parameter space to be 1, ∆r = ∆s = ∆t = 1.

Given a surface x0(r, s) = x(r, s, t = 0) we wish to generate a volume grid, x(r, s, t), so that the
grid lines in the t-direction are nearly orthogonal to the grid lines in the two other directions. We call
x(r, s, t = 0) the initial front and think of the variable t as a time like variable. If we have generated the
grid to “time” t = t0 we call x(r, s, t0) the current front.

The basic marching equations to determine x(r, s, t) given x(r, s, 0) are defined by the hyperbolic PDE

xt = S(r, s, t) n(r, s, t)

x(r, s, 0) = x0(r, s) initial conditions

B(x(r, s, t)) = 0 boundary conditions

where

n(r, s, t) =
xr × xs

‖xr × xs‖
normal to the front

S(r, s, t) scalar speed function

and the norm ‖ · ‖ is defined by
‖f‖2 ≡ f · f .

These equations march the grid in the direction locally orthogonal to the current front. The speed function
S(r, s, t) determines how fast the front propagates; it can depend on local properties of the front. Smoothing
is also added to the equations so we actually solve a parabolic equation of the form

xt = S(r, s, t)n + ǫ(r, s, t)(xrr + xss)

To ensure that the front always propgates in the forward direction we require n · xt > 0 or equivalently

n ·
(
S(r, s, t)n + ǫ(xrr + xss)

)
> 0

In addition to smoothing the grid in the (r, s) directions, the the parabolic smoothing term will tend to
slow the front where the curvature is negative (i.e. n · (xrr + xss) < 0) and speed up the front where the
curvature is positive. Note that choosing too large a value for ǫ could cause the front to propogate in the
wrong direction resulting in negative cell-volumes. The speed function S(r, s, t) and dissipation coefficient
ǫ should be specified so that we get a “nice grid”. A nice grid should not have any grid lines that cross, it
should be reasonably orthogonal and reasonably smooth.

The marching equations can be solved with an implicit time marching algorithm. To do this we first
linearize the equations about the current front, x(r, s, tn), to obtain an equation of the form

xt = A(r, s, t)xr + B(r, s, t)xs + ǫ(xrr + xss) + f(r, s, t)

4

This equation can be solved using a θ−scheme for x(r, s, tn) ≈ xn,

xn+1 − xn

∆t
= θ

[
A(r, s, tn+1)xn+1

r + B(r, s, tn+1)xn+1
s + ǫ(xn+1

rr + xn+1
ss)

]

+ (1− θ) [A(r, s, tn)xn
r + B(r, s, tn)xn

s + ǫ(xn
rr + xn

ss)] + fn

fn = Snn??

where θ = 1 corresponds to backward-Euler. For efficiency we use an approximate factorization to reduce
the implicit matrix solve to a sequence of block-tridiagonal solves.

We now consider choices for the speed function, S(r, s, t). Following the approach of Steger-Chan we
define the speed function based on the local cell-areas of the front,

SA(r, s, t) = d0(t) ∆t ∆a/∆a

d0(t)∆t = distance to march in a time step ∆t, (approximate average value)

∆a(r, s) = ‖xr × xs‖ proportional to the local area of the front

∆a(r, s) = Locally averaged value of ∆a(r, s)

The speed function is proportional to the local cell area divided by a locally average cell area. The averaged
cell area, ∆a(r, s), is computed by smoothing the cell area ∆a(r, s) using a simple Jacobi type interation.
As a result of using this speed function the grid will tend to grow faster where the area of cells on the
front are smaller and slower where the grid cells are larger compared to the local average. Asymptotically
a front will tend toward a curve where the surface areas are equal. For example, a front may tend to a
sphere or a plane in 3D, depending on the boundary conditions for the front. Steger and Chan also use a
sophisticated dissipation term as described in section 2.

Following the approach of Sethian we could also choose the speed function proportional the the local
curvature,

Sc(r, s, t) = (1− ǫcκ(r, s, t))

κ(r, s, t) = local curvature

If ǫc > 0 then we are guaranteed that grid lines will not locally cross, although the front could propogate
in the wrong direction id Sc becomes negative. Here the curvature κ causes the grid to move faster where
the curvature is negative and slower where it is positive. The hyperbolic grid generator allows one to use
a combination of the area based speed function and the curvature based spped function. The comnbined
speed function is taken as the product of SA and Sc,

S(r, s, t) = d0(t) ∆t ∆a/∆a (1− ǫcκ(r, s, t))

For 2D volume grids or 3D surface grids there is also an option to blend the solution obtained from
the above equation with a distribution of points based on equidistributing a weight function based on the
arclength and curvature. If we equidistrubte the arclength, for example, we will obtain a distribution of
points, xE , that are equally spaced in arclength. A new front is defined by averaging the equidistributed
points with the points determined by using the speed function.

x̃(r, s, t) = (1− ωE)x(r, s, t) + ωExE(x(r, s, t))

The equidistributed points are determined by a weight function

w(r) = αA‖xr‖/‖xr‖∞ + αC‖xrr‖/‖xrr‖∞

5

where ‖f‖∞ = maxr ‖f(r)‖. The weight function is equidsitributed over the unit interval to determine
positions rE

i ∈ [0, 1], i = 1, 2, . . . , N , rE
i+1 > rE

i , such that

∫ rE

i+1

rE

i

wdr =
1

N

∫
1

0

wdr

This last equation expresses the condition that the weight function is equidistributed. The new grid points
positions are computed by evaluating the curve, c(r), defining the current front at the new parameter
positions rE

i ,
xE := c(rE) : re-evaluate the curve at the new positions

Following Steger, the hyperbolic marching equations can be cast in an alternative form

xr · xt = 0 (1)

xs · xt = 0 (2)

xr × xs · xt = ∆V (r, s, t) (3)

The first two equations specify the orthogonality conditions while the last equation specifies the local
volume of the cell, ∆V . We can solve these equations for xt and we see that the solution is defined by
locally marching along rays that move in the normal direction:

xt(r, s, t) =
xr(r, s, t)× xs(r, s, t)

‖xr(r, s, t)× xs(r, s, t)‖2
∆V

=
∆V

‖xr(r, s, t)× xs(r, s, t)‖
n(r, s, t)

n(r, s, t) =
xr(r, s, t)× xs(r, s, t)

‖xr(r, s, t)× xs(r, s, t)‖

and thus we can identify the speed function

S(r, s, t) =
∆V

‖xr(r, s, t)× xs(r, s, t)‖

If we choose ∆V (r, s, t) = c‖xr(r, s, t) × xs(r, s, t)‖, for a constant c, then the grid lines in the marching
direction will just be straight lines parallel to the normal of the original surface. Of course the grid
generated by this system may develop singularities, if any part of the original surface is concave. To avoid
this problem extra smoothing is added.

If we choose ∆V (r, s, t) = c then the grid spacing in the normal direction will be inversely proportional
to the local surface cell area. Thus the grid will grow fastest where the cells are small.

The basic marching distance depends on the type of stretching, the total distance to march D, and the
number of steps to march, N :

dn
i =

D

N
constant spacing

dn
i = D αn α− 1

αN+1 − 1
geometric stretching

The volume element appearing in the marching step is a product of the marching distance times the ratio
of the averaged area element ∆ai to the area element ∆ai

∆Vi = dn
i

∆ai

∆ai

: volume element

Parameters appearing in the code are

6

number of volume smooths : number of times we smooth ∆ai to obtain ∆ai.

uniform dissipation coefficient : ǫ, coefficient of the parabolic terms.

implicit coefficient : θ coefficient of implicit time stepping.

equidistribution : weight factor for the equidistributed approach.

arclength weight : αA weight for arclength in equidistribution weight function

curvature weight : αC weight for curvature in equidistribution weight function

curvature speed : ǫc weight factor for the curvature dependent speed function.

7

1.2 Algorithm

Here is a summary of the algorithm
Notation:

nd : domain dimension, nd ≡ 2 for 2D volume grids or 3D surface grids, nd ≡ 3 for 3D volume grids
C : starting surface (or starting curve)
R : reference surface for surface grid generation
∆ai : local surface area (arclength in 2D)

∆ai : smoothed surface area (smoothed arclength in 2D)
ni : normal
D : marching distance
N : number of steps to march
i : multi-index i = (i1, i2) for 3D volume grids, or i = (i1) for 2D grids or 3D surface grids.

Algorithm 1.1 Hyperbolic grid generator:
generate()
Purpose : Generate a volume grid in 2D or 3D or a surface grid in 3D
{

x0
i := C(ri) : evaluate the starting surface (starting curve if nd ≡ 2)

if this is a surface-grid
projectInitialCurveOntoReferenceSurface(x0,ni,xt; R)

end

hyperbolic marching steps
for n = 0, 1, ..., N

getNormalAndSurfaceArea(xn,n, ∆a,∆a,xr,xs)
getDistanceToStep(di) : get marching distance
getCurvatureDependentSpeed(di) : adjust marching distance for curvature
if n ≡ 0 and this is not a surface grid

xti := di (∆ai/∆ai) ni : linearize about this value of xt

end
form the right-hand-side:

ri := di (∆ai/∆ai) ni + ǫe∆+r∆−rx
n
i + ǫe∆+s∆−sx

n
i

A := A(xr,xs,xt) : linearized coefficient matrix for implicit time stepping
B := B(xr,xs,xt)
form implicit time stepping matrices:
M1 = I + A∆0r − ǫi∆+r∆−r

M2 = I + B∆0s − ǫi∆+s∆−s : M2 = I for nd ≡ 2

v := M−1
2

M−1
1

r : solve for the correction

xn+1

i := xn
i + vi

Next apply BC’s and optionally adjust for equidistribution.
For surface grids project xn+1 onto the reference surface:
applyBoundaryConditions(xn+1)

xti := xn+1

i − xn
i : linearize about this value of xt

end
}

8

Algorithm 1.2 Project the initial curve onto the reference surface and determine the initial normal
projectInitialCurveOntoReferenceSurface(x0,ni,xt; R)
{

: project initial curve onto the reference surface, compute normal
project(x0,ni; R)
: In case the initial curve lies on a edge in the reference surface where
: the normal is ill-defined, take a small initial step and then recompute the normal.

getNormalAndSurfaceArea(x0,n, ∆a,∆a)
getDistanceToStep(di) : get marching distance
δ = .1 : take this fraction of a step

x1
i := x0

i + δ di (∆ai/∆ai) n0
i : take a small step

applyBoundaryConditions(x1,n) : this will also project onto the reference surface
xti := (x1

i − x0
i)/δ : linearize about this value of xt

}

9

Algorithm 1.3 Determine the normal and surface area

getNormalAndSurfaceArea(xn,n, ∆a,∆a,xr,xs)
xn : position of the front
∆ai : (output) vertex centred area element

∆ai : (output) vertex centred averaged area element
xr : (output)
xs : (input/output) : for a surface grid xs defined on input as the normal to the surface.
{

n̂i+ 1

2

:= (xi+1 − xi)× (xj+1 − xj) : unnormalized face centred normal

ni+ 1

2

:= n̂i+ 1

2

/‖n̂i+ 1

2

‖ : face centred normal

n̂i := 1

4
(ni1−

1

2
,i2−

1

2

+ ni1+
1

2
,i2−

1

2

+ ni1−
1

2
,i2+

1

2

+ ni1+
1

2
,i2+

1

2

)

ni := n̂i/‖n̂i‖ : vertex centred normal
∆ai+ 1

2

:= ‖n̂i+ 1

2

‖ : cell centred area element

vertex centred area element:
∆aij := 1

4
(∆ai− 1

2
,i2−

1

2

+ ∆ai+ 1

2
,i2−

1

2

+ ∆ai− 1

2
,i2+

1

2

+ ∆ai+ 1

2
,i2+

1

2

)

apply special boundary conditions to normals
if trailing edge boundary condition

set normal to the trailing edge direction
elsif boundary matches to an adjacent surface

project the normal at the boundary to be tangent to the boundary condition surface
nB

i : normal to the boundary condition surface
ni := ni − (ni · n

B
i)nB

i : for boundary points
ni := ni/‖ni‖

elsif boundaryCondition=fixXfloatYZ or boundaryCondition=fixYfloatXZ etc.
adjust normal to be consistent with the boundary condition

end

blend nearby normals with the boundary normal
for m = 1, 2, . . . ,numberOfLinesToBlend

ω = m/(numberOfLinesToBlend + 1)
ni+m = ωni+m + (1− ω)ni

ni+m = ni+m/‖ni+m‖
end

Compute smoothed area elements:
ω := .1625 : under-relaxation parameter

∆ai := ∆ai

for m = 1, 2, . . . ,numberOfVolumeSmoothingIterations

∆ai := (1− ω)∆ai + ω/4(∆ai1+1 + ∆ai1−1 + ∆ai2+1 + ∆ai2−1)
end
xri := 1

2
(xi1+1 − xi1−1)

if nd ≡ 2
xsi := 1

2
(xi2+1 − xi2−1)

end
}

10

Algorithm 1.4 applyBoundaryConditions(xn,n)
Purpose : Apply boundary conditions to the current front. Optionally equidsitribute lines.
For surface grids, project the front onto the reference surface
ig : Denotes the index for ghost points
ib : Denotes the index for boundary points
{

if boundaryCondition == freeFloating
xig = 2xib − xib+1 : extrapolate ghost line

elsif boundaryCondition == outwardSplay
elsif boundaryCondition == fixXfloatYZ
elsif boundaryCondition == periodic
elsif boundaryCondition == matchToMapping

Project the boundary points onto the boundary mapping
B := mapping defining the boundary that we should match to
B.project(xib)

end

equidistributeGridLines(xn+1)

if this is a surface-grid
project(x0,ni; R)

end

apply periodic boundary conditions
}

Algorithm 1.5 getDistanceToStep(d)
Purpose : Return the current suggested distance to step
n : current step number
N : number of lines to march
D : distance to march
α : geometric stretching factor
{

if constant spacing
d = D/N

elsif geometric spacing
d = Dαn α−1

αN+1
−1

end
}

11

Algorithm 1.6 equidistributeGridLines(xn)
Purpose : Adjust points based on the arclength and curvature
xn : current grid point positions
c : A curve that interpolates the points xn

ωE : equidistribution weight, 0 ≤ ωE ≤ 1
αA : equidistribution arclength weight
αC : equidistribution curvature weight
{

if nd ≡ 2 : only used for domain dimension equal to 2
: compute a weight function based on arclength and curvature
dsi1+

1

2

:= ‖xi1+1 − xi1‖ : chord length

dssi1 := ‖xi1+1 − 2xi1 + xi1−1‖
wi1+

1

2

:= αAdsi1+
1

2

/‖ds‖∞ + αCdssi1+
1

2

/‖dss‖∞

equidistribute the weight function: determine positions rE
i ∈ [0, 1] such that:

∫ rE

i+1

rE

i

wdr = 1

N

∫
1

0
wdr

xE := c(rE) : re-evaluate the curve at the new positions
: weighted average of current positions and equidistributed positions
xn := (1− ωE)xn + ωExE

end
}

2 Steger-Chan Hyperbolic Marching

The approach discussed here follows Enhancements of a Three-Dimensional Hyperbolic Grid Generation

Scheme by Chan and Steger[2] and A Hyperbolic Surface Grid Generation Scheme and Its Applications by
Chan and Buning[1].

Notation: Unit square coodinates (r, s, t) with marching direction along t.
Given a surface x(r, s, t = 0) we wish to generate a volume grid, x(r, s, t), that extends in a direction

that is nearly normal to the surface. To do this we choose xt to satisfy

xr · xt = 0 (4)

xs · xt = 0 (5)

xr × xs · xt = ∆V (r, s, t) (6)

where we have added the additional condition specifying the local volume of the cell.
To avoid a small time step in advancing the front we linearize and use an implicit time stepping method.

We can linearize about the state x0 (which we will later take to be the current time step). It is easier if
we linearize the equations in their original form of equation 6,

x0
t · xr + x0

r · xt = 0

x0
t · xs + x0

s · xt = 0

(x0
s × x0

t) · xr + (x0
t × x0

r) · xs + (x0
r × x0

s) · xt = ∆V (r, s, t) + 2∆V 0

or in matrix form
A0xr + B0xs + C0xt = f

or 


(x0

t)
T

0
(x0

s × x0
t)

T



xr +




0

(x0
t)

T

(x0
t × x0

r)
T



xs +




(x0

r)
T

(x0
s)

T

(x0
r × x0

s)
T



xt =




0
0

V (r, s, t) + 2∆V 0





12

or
xt = −C−1

0
A0xr − C−1

0
B0xs + C−1

0
f

Writing this in incremental form

A0(xr − x0
r) + B0(xs − x0

s) + C0xt = g =




0
0

V (r, s, t)





If δx = xn+1 − xn then using the approximation xt ≈ xn+1 − xn (∆t = 1)

δx = −C−1
0

A0 δxr − C−1
0

B0 δxs + C−1
0

g

Discretizing with backward Euler

[I + C−1
0

A0∆0r + C−1
0

B0∆0s] δx = C−1
0

g

approximate factorization
[I + C−1

0
A0∆0r][I + C−1

0
B0∆0s] δx = C−1

0
g

Smoothing is added to this equation

[I + C−1
0

A0∆0r − ǫi∆+r∆−r][I + C−1
0

B0∆0s − ǫi∆+s∆−s] δx = C−1
0

g

+ ǫe∆+r∆−rx
n + ǫe∆+s∆−sx

n

+ Drx
n + Dsx

n

Note that the smoothing terms have components in the normal and tangential directions. The smoothing
will increase the step size in concave regions n · (xrr +xss) > 0 and decrease the step size in convex regions.

The cell volume can be computed to be the local area of the element times a user specified step length,

∆V = ∆L(r, s, t)∆A(r, s, t)

where the step length may be chosen to stretch the grids lines in any desired way. The area ∆A(r, s, t) is
usually smoothed using a few Jacobi iterations.

The variable dissipation coefficients are defined by

Dr = ǫer(r, s, t)∆+r∆−r

ǫer(r, s, t) = ǫeRrNr

Nr = ‖xt‖/‖xr‖

Rr = Knd
r
i a

r
i

Scaling function, Kn,

Kn =

{√
(n− 1)/(nmax − 1) if 2 ≤ n ≤ ntrans√
(ntrans − 1)/(nmax − 1) if ntrans + 1 ≤ n ≤ nmax

Grid point distribution sensor,

d
r
i = max((dr

i)
2/Kn

, 0.1)

dr
i =
‖∆+rx

n−1‖+ ‖∆−rx
n−1‖

‖∆+rxn‖+ ‖∆−rxn‖

13

ntrans = max((3/4)nmax, minimum n where max
i

dr
i (n)−max

i
dr
i (n−1) < 0 or max

i
ds
i (n)−max

i
ds
i (n−1) < 0)

Grid angle distribution sensor

ar
i =

{
(1− cos2 αi)

−1 if 0 ≤ αi ≤ π/2

1 if π/2 < αi ≤ π

cos αi = n̂i · t
r
+ = n̂i · t

r
−

angle between normal and tangent

n = (tr
+ − tr

−
)× (ts

+ − ts
−
)

n̂ =
n

‖n‖
normal to surface

tr
+ =

∆+rx

‖∆+rx‖
unit tangent to the right of node i

tr
−

=
∆−rx

‖∆−rx‖
unit tangent to the left of node i

Note that

C0 =




(x0

r)
T

(x0
s)

T

NT
0





N0 = x0
r × x0

s = ‖x0
r × x0

s‖n0

det(C0) = x0
r × x0

s ·N0 = N0 ·N0 = ‖N0‖
2

and C−1
0

is given explicitly by

C−1
0

=
[
(xs ×N0)/‖N0‖

2 (−xr ×N0)/‖N0‖
2 N0/‖N0‖

2
]

In particular

C−1
0

g = V (r, s, t)
x0

r × x0
s

‖x0
r × x0

s‖
2

3 The Osher-Sethian Level Set (Hamilton-Jacobi) Marching Equations

Reference Level Set Methods by J. Sethian[6].
Another way to generate a hyperbolic grid, suggested by Sethian as an application of level-set methods

is to solve the equations

xt = (1− ǫκ)n(x) = V (x)n

κ = curvature

If ǫ > 0 then we are guaranteed that grid lines will not locally cross. Here the curvature κ causes the grid
to move faster where the curvature is negative and slower where it is positive.

For grid generation we do not want to march backwards so we must not let the speed function V
become negative. Sethian also adds smoothing in the tangential direction.

The curvature of a curve x(r) is k = xss where s is the arclength or in terms of a general parameteri-
zation:

k =
xr × xrr

‖xr‖3
= xss

The curvature has dimensions of one over a length.

14

I prefer to use a non-dimensional form for the curvature

kr(x) =
n · xrr

‖xr‖

with the speed function
V (x) = max(Vmin, 1 + ǫ max(kr, ks))

4 Distributing points by equidistribution of a weight function

For 2D grids or 3D surfaces (i.e. domainDimension==2) the grid lines in the tangential direction (i.e. not
the marching direction) can be distributed to place more points where the curvature or arclength is large.
This option can be combined, in a weighted fashion, with the other marching methods. Here is how this
is done:

1. Take a step with the hyperbolic generator to give positions x.

2. Equidistribute the points x using a weighted combination of arclength and curvature,

xE = Equidistribute(x)

This equidistribution is performed by the ReparameterizationTransform, described elsewhere.

3. Choose the new positions to be a weighted average of the original positions and the equidistributed
points

xn+1 = (1− α)x + αxE

α = equidistributionWeight

Notes:

• weighting by arclength is quite useful in many situations. It can be used to build a nice surface grid.

• weighting by curvature doesn’t work very well; this needs some work to make the correct defintion
of the curvature.

5 Boundary conditions

The enum BoundaryCondition defines the available boundary conditions,

freeFloating boundary values obtained by extrapolation. u−1 = 2u0 − u1.

outwardSplay This boundary condition causes the boundary of the grid to splay outwards or inwards in
proportion to the distance marched. Choose a value of

splayFactor=0. : no splay

splayFactor=.1 : small amount or splay.

splayFactor=1. : a large splay (generates a nearly circular boundary ??).

splayFactor=-.2 : negative for inward splay (doesn’t woork too well)

15

The splay is computed as

d = ‖xn
0 − xn−1

0
‖ (marching distance)

v = x0 − x1 (vector along ouwtard tangent)

x−1 = 2x0 − x1 + λd
v

‖v‖

x0 = .5x0 + .25(x−1 + x1)

λ = splayFactor

fixXfloatYZ : the x values of the boundary points are kept constant.

fixYfloatXZ : the y values of the boundary points are kept constant.

fixZfloatXY : the z values of the boundary points are kept constant.

floatXfixYZ : the y, z values of the boundary points are kept constant.

floatYfixXZ : the x, z values of the boundary points are kept constant.

floatZfixXY : the x, y values of the boundary points are kept constant.

floatCollapsed ??

periodic

xSymmetryPlane

ySymmetryPlane

zSymmetryPlane

singularAxis

matchToMapping : project the boundary values to lie on a given Mapping (or CompositeSurface). The
projection is done so that the grid lines hitting the boundary are nearly orthogonal. This projection
is defined by taking the predicted positions xi and changing the boundary value x0 and the ghost
value by

x0 ← P(θx1 + (1− θ)x0) (project onto the BC mapping)

x−1 ← 2x0 − x1

x−1 ← x−1 + (n0 · (x1 − x−1))n

With θ = 1 the boundary value would be the projection of x1 onto the boundary.

matchToPlane : like matchToMapping except that you will be prompted to define an arbitrary plane to
use as the mapping to match to.

5.1 Boundaries, Ghost Points and the BoundaryOffset

The HyperbolicMapping adds an extra line of points outside the grid; these are called ghost points.
Ghost points are used to make it easier to apply boundary conditions and will likely be used when the grid
is used in a PDE solver.

When a grid is generated with the hyperbolic grid generator one has a choice of which line to use as
the ghost line. Let’s say we are building a grid starting from a curve and that we put N + 1 points on the
curve, xi, i = 0, . . . , N . Normally the points i = 0 and i = N will be the boundary points and the points

16

i = −1 and i = N + 1 will be the ghost points. The boundaryOffset(side,axis) array can be used to
change the position of the boundary. By seting boundaryOffset(0,0)=1 then the point i = 1 will become
the boundary point and the point i = 0 will be the ghost point.

It may be important to choose a boundaryOffset(0,0)=1 when growing a surface grid since one may
want to be able to precisely place the last grid line (next to a crease in the surface, for example). (Appears
in the asmo example).

The last line generated by the marching algorithm is always treated as a ghost point, since we do
not want to create an extra line by extrapolation say. Thus boundaryOffset(1,domainDimension)≥ 1
where domainDimension equals 2 for a a grid in two dimensions or a surface grid in three dimensions, and
domainDimension equals 3 for a 3d volume grid.

5.2 Normal Blending

When a boundary condition is specified so that the grid must match to some specified Mapping at the
boundary then the normals near the boundary are blended with the direction taken by the boundary. This
is necessary when the direction of the boundary is not normal to the starting surface.

The blending is done with a simple linear function for points

ωi =
i− b

N − b

ni = ωini + (1− ωi)nb i = 0, 1, . . . , N

The number of points to be blended can be specified.

5.3 Projection of boundary points on surfaces

For surface grids we project all ghost point values onto the reference surface. This always includes points
on the ghost lines in the non-marching direction but also the ghost lines in the marching direction if the
boundary condition in that direction is set to 0 (i.e. interpolation). In the latter case the ghost points are
obtained first by extrapolation and then these extrapolated points are projected.

To prevent the projection of boundary use the project ghost points menu option to turn off the
projection of ghost points on specified sides.

5.4 Heuristic Comments on Hyperbolic Parameters

There are many parameters to the hyperbolic grid generator. Here are some heuristics that you can use
to help you choose the right values.

uniform dissipation coefficient : This term wants to make the front flat. This is the coefficient of the
smoothing term ∆ru. In concave corners it will cause the front to move faster since this is what
happens when the front in straightened out. At convex corners the front will move slower and could
move in the wrong direction if it is flattened out too much.

volume smoothing iterations : This term wants to make the grid spacing along the front become
uniform. It will tend to make the outer surface become a spherical shape. As the number of these
smoothing iterations is increased the speed of the front will become inversely proportional to the
cell area. Small cells will move faster than large cells. This term will never cause the front to move
backward.

17

5.5 Hints to making a grid

If you are having trouble making a grid

take a few small steps : first try to make a grid very close to the starting surface.

increase the number of steps : for a fixed marching distance. This will allow the grid more time to
deal with difficult situations. After building a grid will lots of points you can change the resolution
at the very end by using the ‘lines’ option. This will cause the fine resolution grid to be interpolated
on a coarser grid using the interpolation defined in the DataPointMapping.

6 Creating a surface grid on another Mapping or CompositeSurface

A surface grid can be grown on any Mapping defining a surface or on a CompositeSurface which consists
of a set up sub-surfaces.

To grow a new hyperbolic surface grid on another surface:

1. Define an initial curve to start from:

User defined : before entering the HyperbolicMapping menu you may define an initial curve using
any available Mapping.

curve from edges : Create an initial curve as the union of edges from the reference surface. You
can interactively choose edges of surfaces or sub-surfaces.

curve from a coordinate line : choose a coordinate line from the reference surface.

project a line : define a line segement in 3D which is projected onto the reference surface.

project a spline : define a spline in 3D which is projected onto the reference surface.

2. Create the hyperbolic surface patch by growing the grid from the initial curve in either direction or
in both directions.

7 Examples

Parameters appearing in the figure titles

vs : number of volume smooths

eps : coefficient of the dissipation term

imp : coefficient of the implicit time stepping. imp = 1. is fully implicit, imp = 0. is explicit.

cs : curvature speed coefficient.

uw : coefficient of the upwind method.

eq : coefficient of the equidistribution.

18

An overlapping grid (bottom) generated on a portion of the CAD surface (top). Most of the component
grids that make up the overlapping grid were generated with the hyperbolic grid generator.

19

20

7.1 Bump

These figures show a hypebolic grid generated in both directions from a smooth spline. The effect of chang-
ing various parameters is demonstrated. See the command file Overture/sampleMappings/hypeBump.cmd

21

7.2 Flat Plate

A spline is built to define a ’flat plate’ with rounded edges. The shape preserving option is used with
the spline which allows only a few knots to define the spline. A hypebolic grid is grown starting from
the spline. The figures show the resulting grids as various parameters are changed. See the command file
Overture/sampleMappings/hypeLine.cmd

22

7.3 Mast for a sail

This example shows the use of the ‘match to a mapping’ boundary condition. In this case the boundary
condition for the hyperbolic marching is that the boundary points should lie on some other specified
Mapping. See the command file Overture/sampleMappings/mastSail2d.cmd

Mapping defining a mast
A hyperbolic grid is marched starting from the

mast and matching to the sail

Hyperbolic grids created for a mast attached to a sail

23

7.4 Airfoil grids

The AirfoilMapping can be used to generate various types of airfoil shapes. These shapes can be used
as starting curves for the hypebolic grid generator. Some care must be taken at the trailing edge since
the curvature is so large. The boundary condition ‘trailing edge’ is specified so the grid generator can
choose a good marching direction at the trailing edge.

See the command file Overture/sampleMappings/hypeNaca.cmd

NACA0012, geometric stretching
NACA0012, geometric stretching, blowup of the

trailing edge

NACA1012, geometric stretching
NACA1012, geometric stretching, blowup of the

trailing edge

24

7.5 Surface grid generation on a CompositeSurface for a soup can

In this example we first build a CompositeSurface for a soup can consisting of two subsurfaces. A surface
grid is then generated around the edge. A volume grid is grown outward from the surface grid. See the
command file Overture/sampleMappings/hypeCan.cmd

Reference surface is a CompositeSurface
Surface grid grown in both directions from the

corner.

Volume grid grown outward from the surface grid.

25

7.6 Surface and Volume Grid Generation on a CAD model for an Automobile.

Figure (2) show an overlapping grid for the ASMO prototype automobile. The geometry of the asmo is
defined by a CAD model and saved in an IGES file.

Creating an overlapping grid for this geometry requires some experience in using the various tools -
rap for CAD fixup, mbuilder for building mappings and hyperbolic grids and ogen, the overlapping grid
generator.

Here are the steps taken to build the grid for the asmo. The steps will use the command files
asmoNoWheels.cmd, asmoBody.cmd, asmoFrontWheel.cmd, asmoBackWheel.cmd and asmo.cmd found in
the Overture/sampleGrids directory. They will also use the rap, mbuilder and ogen programs found
in the Overture/bin directory. The IGES file defining the asmo CAD geometry is found in Overture/-

sampleMappings/asmo.igs.
Step 1. CAD cleanup with rap: The rap program is used to build a version of the asmo without any
wheels by running “rap asmoNoWheels.cmd”. This program will pause at various stages so you can see
what it does. It will create the file asmoNoWheels.hdf. The CAD model has duplicate surfaces which are
deleted. After deleting the wheels the holes in the body are filled in by deleting trimming curves. After
cleanup the connectivity is determined and a global triangulation is built. Refer to publications[4, 5] for
further details of the CAD fixup and connectivity algorithms. These are available from the Overture web
page, under publications.
Step 2. Grids for the body: Running “mbuilder asmoBody.cmd” will generate grids around the body
of the asmo. The file asmoNoWheels.hdf built in step 1. will be read in. The file asmoBody.hdf will be
created. The mbuilder program will use the MappingBuilder class to coordinate the construction of
grids on the CAD surface. Body fitted grids are built by choosing a starting curve on the surface, growing
a surface grid from this start curve and then generating a volume grid from the surface grid. The aim was
to build a few number of high quality grids. We also build a large cartesian box to place the car in.
Step 3. Grids for the wheels: Running “mbuilder asmoFrontWheel.cmd” and “mbuilder asmoBack-
Wheel.cmd” will generate grids for the front wheel and back wheel and create the files asmoFrontWheel.hdf
and asmoBackWheel.hdf. These command files will directly read the asmo IGES file asmo.igs and select
a subset of the surfaces to work on since it is faster to work with a smaller geometry. The trimmed surfaces
near the rear wheel do not match very well and the surface has to be repaired.
Step 4. Overlapping grid: Running “ogen asmo.cmd” will build the overlapping grid for the asmo. It
will read the component grids generated by the previous steps. When the asmo grid was made for the first
time, the wheels were left off in order to simplify the grid generation. The wheels were then added, one
at a time. This is in general a good approach to use: slowly build up the grid for a complicated geometry
starting from a simplified version.

26

Figure 2: Top left: CAD geometry for a car consisting of a patched surface. Top right: after the CAD
representation is repaired a global triangulation is built. Bottom left: overlapping grid for the front.
Bottom right: overlapping grid for the geometry.

27

7.7 Grid Generation for a Truck.

In this case study we illustrate the use of the hyperbolic grid generator and mappingBuilder to construct
grids on a truck. This ‘truck’ is actually a wind-tunnel model.

Figure 3: Overlapping grid for the cab of a truck.

7.7.1 Front

Figure (4) shows the surface grid for the front of the truck. The starting curve for the grid was generating
by cutting the CAD model with a plane. The surface grid was grown, stretched and smoothed.

Remarks:

• The equidistribution weight was turned on to generate the surface grid. This allowed the grid to
march more cleanly over the surface.

• The CAD surface grid bends sharply in a small region on top of the bumper. The grid was smoothed
in this region without projecting onto the CAD surface so as to smooth this indentation out a little
bit.

28

Cut plane is used to generate starting curve.

Stretching is added after marching.

Bumper indentation smoothed.

Figure 4: Grids for the front of the cab. Top left: starting curve is generated by intersecting a plane
with the surface. Top right: surface grid is grown. Bottom: surface grid is stretched and smoothed. The
identation over the bumper is smoothed slightly by locally smoothing without projecting onto the CAD
surface.

29

7.7.2 Wheel

Each wheel is covered with two grids as shown in figure (5). The tricky part here is to have a grid line
follow all the corners.

Remarks:

• The surface grid for the wheel-body join was generated by matching to ‘interior matching curves’.
This causes grid lines to follow the edges of the wheel.

Starting curve.

Grid is grown matching to interior curves. Stretching added.

Volume grid grown and matched to body surface.

Starting curve.

Figure 5: Wheel Grids. Top left: Surface grid is generated by matching to ‘interior matching curves’. Top
right: surface grid is stretched and smoothed. Bottom left: volume grid for wheel-body-join is grown by
matching to body surface. Bottom right: Surface grid for wheel.

30

7.7.3 Cab tender

The grid for the cab tender was built by projecting a transfinite interpolation (TFI) mapping onto the CAD
surface. This option is available from the MappingBuilder. This gave a nicer grid than the hyperbolic
grid generator. Two curves were defined for the TFI mapping by intersecting the CAD surface with planes.

Plane cuts surface to create end curve for TFI.

TFI built from two end curves.

TFI before projecting onto the surface.

Projected and stretched TFI.

Figure 6: Cab Tender Grids.

31

8 Class member functions

8.1 Constructor

HyperbolicMapping()

Purpose: Create a mapping that can be used to generate a hyperbolic volume grid.

8.2 Constructor

HyperbolicMapping(Mapping & surface)

Purpose: Create a mapping that can be used to generate a hyperbolic volume grid.

surface (input): Generate the grid starting from this curve (2D) or surface (3D)

8.3 Constructor

HyperbolicMapping(Mapping & surface , Mapping & startingCurve)

Purpose: Create a hyperbolic surface grid.

surface (input): Generate the grid on this surface in 3D.

startingCurve :

8.4 isDefined

bool
isDefined() const

Description: return true if the Mapping has been defined.

8.5 printStatistics

int
printStatistics(FILE *file =stdout)

Description: Print timing statistics.

8.6 setBoundaryConditionMapping

//===
int
setBoundaryConditionMapping(const int & side,

const int & axis,
Mapping & map,
const int & mapSide =-1,
const int & mapAxis =-1)

Purpose: Supply a mapping to match a boundary condition to.

side,axis (input) : match to this boundary of the hyperbolic grid.

32

map (input): Match the boundary values of the grid to lie on this surface or match the boundary values
to lie on the face of this Mapping defined by (mapSide,mapAxis).

mapSide,mapAxis (input) : use this face of the Mapping ‘map’. Supply these values if the hyperbolic
grid is to be matched to a face of ’map’, rather than map itself.

8.7 setSurface

int
setSurface(Mapping & surface , bool isSurfaceGrid =true */, bool init /* = true)

Purpose: Supply the curve/surface from which the grid will be generated.

surface (input): Generate the grid starting from this curve (2D) or surface (3D)

isSurfaceGrid (input) : set to true if a surface grid should be built, set to false if a volume grid should
be created.

init (input) : if true, initialize hyperbolic parameters such as the distance to march etc. If false, keep
parameters as they are.

8.8 setIsSurfaceGrid

void
setIsSurfaceGrid(bool trueOrFalse)

Purpose: Indicate whether a surface grid or volume grid should be built.

trueOrFalse (input) : set to true if a surface grid should be built, set to false if a volume grid should
be created.

8.9 setStartingCurve

int
setStartingCurve(Mapping & startingCurve, bool init = true)

Purpose: Supply a starting curve for a surface grid.

startingCurve (input):

init (input) : if true, initialize hyperbolic parameters such as the distance to march etc. If false, keep
parameters as they are.

8.10 saveReferenceSurfaceWhenPut

int
saveReferenceSurfaceWhenPut(bool trueOrFalse = true)

Purpose: Save the reference surface and starting curve when ’put’ is called.

init (input) : if true, initialize hyperbolic parameters such as the distance to march etc.

33

8.11 setup

int
setup()

Access: protected.

Purpose: Define properties of this mapping

8.12 setParameters

int
setParameters(const HyperbolicParameter & par,
const IntegerArray & ipar = Overture::nullIntArray(),
const RealArray & rpar = Overture::nullRealDistributedArray(),

const Direction & direction = bothDirections)

Purpose: Define a parameter for the hyperbolic grid generator.

par (input): The possible value come from the enum HyperbolicParameter:

growInBothDirections : grow the grid in both directions.

growInTheReverseDirection : grow the grid in the reverse direction (this will result in a left
handed coordinate system.

numberOfRegionsInTheNormalDirection

stretchingInTheNormalDirection

linesInTheNormalDirection : specify the number of lines to use in the normal direction.

distanceToMarch : ipar(0) = region number, rpar(0) = distance

spacing : ipar(0) = region number, rpar(0) = dz0, rpar(1)=dz1

boundaryConditions

dissipation

volumeParameters

barthImplicitness

axisParameters

THEtargetGridSpacing : rpar(0) gives the target grid spacing when choosing the number of grid
points in the tangential direction (i.e. for the start curve and for marching on surfaces). A
negative value means use a best guess.

THEinitialGridSpacing : rpar(0) gives the target grid spacing when choosing the number of grid
points for marching volume grids (e.g. the spacing of the first grid line for volume grids). A
negative value means use a best guess.

THEspacingType : a value from SpacingType enum

THEspacingOption : a value from SpacinOptionEnum

THEgeometricFactor : the geometric spacing factor

value (input):

direction (input) : The hyperbolic surface can be grown in two possible directions (or both directions).
direction indicates which direction the new parameter values should apply to: (enum Direction)

direction=bothDirections : parameters apply to both the forward and reverse directions.

direction=forwardDirection : parameters apply to the forward direction.

direction=reverseDirection : parameters apply to the reverse direction.

34

8.13 setPlotOption

int
setPlotOption(PlotOptionEnum option, int value)

Description: set a plot option.

choosePlotBoundsFromGlobalBounds: if true use global bounds for plotting, allows calling program
to set the view

8.14 smooth

int
smooth(GenericGraphicsInterface & gi, GraphicsParameters & parameters)

Access: protected

Description: Smooth the hyperbolic grid using the elliptic grid generator.

8.15 inspectInitialSurface

int
inspectInitialSurface(realArray & xSurface, realArray & normal)

Purpose: Inspect the initial surface for corners etc.

8.16 generate

int
generateOld()

Purpose: Generate the hyperbolic grid. *** OLD VERSION ***

Return value: 0 on success, 1=hypgen not available

35

References

[1] W. M. Chan and P. Buning, A hyperbolic surface grid generation scheme and its applications, paper
94-2208, AIAA, 1994.

[2] W. M. Chan and J. L. Steger, Enhancements of a three-dimensional hyperbolic grid generation

scheme, Applied Mathematics and Computation, 51 (1992), pp. 181–205.

[3] W. D. Henshaw, Mappings for Overture, a description of the Mapping class and documentation for

many useful Mappings, Research Report UCRL-MA-132239, Lawrence Livermore National Laboratory,
1998.

[4] , An algorithm for projecting points onto a patched CAD model, Research Report UCRL-JC-144016,
Lawrence Livermore National Laboratory, 2001. To appear in Engineering with Computers.

[5] N. A. Petersson and K. K. Chand, Detecting translation errors in CAD surfaces and preparing

geometries for mesh generation, in Proceeding of the 10th International Meshing Rountable, 2001.

[6] J. A. Sethian, Level Set Methods, Cambridge University Press, 1996.

36

Index

algorithm, 8

equidistribution, 15

37

	HyperbolicMapping
	Hyperbolic Marching Equations
	Algorithm

	Steger-Chan Hyperbolic Marching
	The Osher-Sethian Level Set (Hamilton-Jacobi) Marching Equations
	Distributing points by equidistribution of a weight function
	Boundary conditions
	Boundaries, Ghost Points and the BoundaryOffset
	Normal Blending
	Projection of boundary points on surfaces
	Heuristic Comments on Hyperbolic Parameters
	Hints to making a grid

	Creating a surface grid on another Mapping or CompositeSurface
	Examples
	Bump
	Flat Plate
	Mast for a sail
	Airfoil grids
	Surface grid generation on a CompositeSurface for a soup can
	Surface and Volume Grid Generation on a CAD model for an Automobile.
	Grid Generation for a Truck.
	Front
	Wheel
	Cab tender

	Class member functions
	Constructor
	Constructor
	Constructor
	isDefined
	printStatistics
	setBoundaryConditionMapping
	setSurface
	setIsSurfaceGrid
	setStartingCurve
	saveReferenceSurfaceWhenPut
	setup
	setParameters
	setPlotOption
	smooth
	inspectInitialSurface
	generate

