Multithreaded Asynchronous Graph Traversal for
In-Memory and Semi-External Memory

Roger Pearce{], Maya Gokhalef, and Nancy M. Amatof
{rpearce, amato} @cse.tamu.edu, maya@lInl.gov
1 Parasol Laboratory
Department of Computer Science and Engineering
Texas A&M University
1 Lawrence Livermore National Laboratory

Abstract—Processing large graphs is becoming increasingly
important for many computational domains. Unfortunately, many
algorithms and implementations do not scale with the demand for
increasing graph sizes. As a result, researchers have attempted
to meet the growing data demands using parallel and external
memory techniques. Qur work, targeted to chip multi-processors,
takes a highly parallel asynchronous approach to hide the
high data latency due to both poor locality and delays in the
underlying graph data storage.

We present a novel asynchronous approach to compute
Breadth First Search (BFS), Single Source Shortest Path (SSSP),
and Connected Components (CC) for large graphs in shared
memory. We present an experimental study applying our tech-
nique to both In-Memory (IM) and Semi-External Memory
(SEM) graphs utilizing multi-core processors and solid-state
memory devices. Our experiments using both synthetic and real-
world datasets show that our asynchronous approach is able to
overcome data latencies and provide significant speedup over
alternative approaches.

I. INTRODUCTION

The ability to store and efficiently search large-scale graphs
is becoming increasingly important as we seek to model
Internet-scale phenomena. Graphs are used in a wide range
of fields including Computer Science, Biology, Chemistry,
Homeland Security, and the Social Sciences. These graphs
may represent complex relationships between individuals, pro-
teins, chemical compounds, etc.

Relationships are stored using vertices and edges; a vertex
may represent an object or concept, and the relationships be-
tween them are represented by edges. The power of graph data
structures lies in the ability to encode complex relationships
between data and provide a framework to analyze the impact
of the relationships.

Fundamental to many graph search applications is graph
traversal, a process of visiting all of the vertices and edges
in the graph. In this work, we are concerned with three
basic graph traversals: Breadth First Search (BFS), Single
Source Shortest Path (SSSP), and Connected Components
(CC). These traversals are important building blocks to many
graph analysis algorithms and applications.

A. Examples of Large Graphs

Many real-world graphs are large and require significant
computational and memory resources to store and search

efficiently.

o World Wide Web (WWW) graph — Graphs that model the
structure of the web often consist of vertices representing
webpages and directed edges representing the hyperlinks
between the webpages.

e Social Networks — Graphs naturally model the relation-
ships established by social interactions. These interactions
could be on-line friendships, call-networks, etc.

o Homeland Security — It has been estimated that graphs
of interest to the Department of Homeland Security will
reach 10'° entities [1], providing a significant challenge
to analysts who wish to search such graphs. Currently,
External Memory and Parallel approaches provide tools
capable of supporting large graphs, but systems capable
of searching 10! entities remain elusive.

B. Properties of Real-world Graphs

o Power Law — A common property of many real world
graphs is a power law distribution of vertex degree. In
literature, this property is often referred to as scale-
free and can lead to significant load imbalance when
processing such a graph in parallel. An effect of the power
law degree distribution is that while the vast majority of
vertices have a low degree, a select few vertices will have
a very high degree. These high degree nodes are often
referred to as hub vertices.

e Small Diameter — Although sparse, many graphs are
connected into giant connected components with small
diameters. The diameter of a graph is the longest shortest-
path between two vertices.

o Community Structure — Vertices that group into intercon-
nected clusters are called communities. In a cluster, there
are more interconnected edges than outgoing edges. This
property leads to clusters which are highly interconnected
while having only few connections outside of the group.

C. Processing Large Graphs

While graph algorithms have received tremendous research
for the RAM computational model, many realistic datasets
are too large to fit in the memory of a single computer.
To address this problem, researchers have explored using
External Memory (EM) and Distributed Memory (DM); these

approaches are discussed in Section VI. The key challenges in
processing large graphs come from the non-contiguous access
to the data structure. Distributed Memory approaches suffer
from poor load balancing due to the intrinsic nature of power-
law distributions. External Memory approaches suffer from
poor data locality and unstructured memory accesses such that
techniques like prefetching, blocking, and pipelining provide
little improvement in the general case. Some experiments have
shown that BFS designed for the RAM computation model
runs orders of magnitude slower when forced to use external
memory [2].

D. Our Contribution

We present a novel asynchronous approach to graph traver-
sal and demonstrate the approach by computing Breadth
First Search (BFS), Single Source Shortest Path (SSSP),
and Connected Components (CC) for large graphs in shared
memory. Our approach allows the computation to proceed in
an asynchronous manner, reducing the number of costly syn-
chronizations. As clock speeds flatten and massive threading
becomes mainstream, asynchronous approaches will become
necessary to overcome the increasing cost of synchronization.

We present an experimental study applying our technique
to both In-Memory (IM) and Semi-External Memory (SEM)
graphs utilizing multi-core processors and solid-state mem-
ory devices. We provide a quantitative study comparing our
approach to existing implementations such as the Boost
Graph Library (BGL) [3], the Parallel Boost Graph library
(PBGL) [4], the Multithreaded Graph Library (MTGL) [5],
and the Small-world Network Analysis and Partitioning library
(SNAP) [6]. Our experimental study evaluates both synthetic
and real-world datasets, and shows that our asynchronous
approach is able to overcome data latencies and provide sig-
nificant speedup over alternative approaches. Our In-Memory
experiments show that our asynchronous BFS is 10-18% faster
than MTGL’s and 1.5-3 times faster than SNAP’s BFS, and our
asynchronous CC is 2-13 times faster than MTGL’s CC. Our
Semi-External Memory experiments show that for moderate
and fast SSDs, our asynchronous approach is consistently
faster than a serial In-Memory alternative like BGL, with even
the slowest SSD tested performing comparable to BGL.

II. PRELIMINARIES

In this work, we are concerned with three basic graph
traversals that are fundamental to many other areas of graph
analysis: Breadth First Search (BFS), Single Source Shortest
Path (SSSP), and Connected Components (CC).

A. Breadth First Search (BFS)

BFS is a simple traversal that begins from a starting
vertex and explores all neighboring vertices in a level-by-level
manner. Taking the starting vertex as belonging to level 0, level
1 is filled with all unvisited neighbors of level 0. Level ¢ + 1
is filled with all previously unvisited neighbors of level i; this
continues until all neighbors of level ¢ have been visited. BFS
can be also computed using a SSSP algorithm with all edge
weights equal to 1.

B. Single Source Shortest Paths (SSSP)

A SSSP algorithm computes the shortest path through a
weighted graph to each vertex from a single source vertex. In
this work, we only address non-negatively weighted graphs.
Our approach to Single Source Shortest Path (SSSP) can be
viewed as a hybrid between Bellman-Ford [7] and Dijkstra’s
[8] SSSP. Bellman-Ford is a label-correcting algorithm to
compute SSSP by making |V| — 1 loops over all vertices,
relaxing the path length of each vertex. Similarly, Dijkstra’s
SSSP algorithm iteratively relaxes vertices but proceeds in a
greedy manner, relaxing only the shortest-path vertex at each
iteration.

C. Connected Components (CC)

A connected component of an undirected graph is a sub-
graph in which all vertices can be connected to all other
vertices through pathways in the graph. In other words, if two
vertices are in the same connected component, then there exists
a pathway between them in the graph.

D. Flash Memory Technologies

Emerging technologies in persistent data storage will change
the way External Memory algorithms are designed. Flash
memory is a form of non-volatile persistent storage that
has become a commodity product through widespread use
in digital cameras, music players, phones, USB drives, etc.
An overview of the characteristics and performance of flash
memory (namely NAND Flash) with respect to algorithmic
research is given in [9], [10]. The key differences with
traditional rotating media can be summarized as:

o Significantly faster random access time than disk (mi-
croseconds instead of 100’s of milliseconds).

o Asymmetric read/write performance (writes are more
costly than reads).

An important characteristic of NAND Flash devices not
covered by [9], [10] is the ability to service multiple concurrent
I/O requests. To achieve maximum random I/O performance,
multiple threads must queue I/O requests. This requires Exter-
nal Memory algorithms to be multithreaded in order to achieve
maximum I/O performance. Figure 1 shows the multithreaded
random read performance of the three NAND Flash configu-
rations that we test in this paper. For all configurations tested,
significant improvements in I/O per second (IOPS) is seen as
an increasing number of threads issue read requests. The Flash
configuration details are discussed in Section IV-C.

III. ASYNCHRONOUS GRAPH TRAVERSAL

Using currently accepted synchronous techniques, load im-
balance may occur between the synchronization points, leading
to performance loss. The motivation behind our asynchronous
graph traversal is to overcome these performance issues caused
by load imbalance and memory latencies. This section outlines
the use of prioritized visitor queues to asynchronously com-
pute Breadth First Search, Single Source Shortest Path, and
Connected Components.

Multithreaded Random I/0 on SSDs
200000

T

FusionlO
Intel -------

Corsair «xexeeee 4

180000

160000

140000

120000

100000

80000

60000

Random reads per second (IOPS)

40000

20000

0
32 64 128 256

Number of Threads

Fig. 1. Multithreaded random read I/O performance for three NAND Flash
configurations. Configuration details discussed in Section IV-C.

A. Multithreaded Asynchronous Visitor Queue

The vertex visitor abstraction is a common way to abstract
the process in which a graph traversal visits the vertices of
a graph. Our approach uses the vertex visitor pattern with
prioritized work queues to form a visifor queue.

As the graph traversal proceeds, vertices are visited and
adjacent vertices to be visited (if needed) are queued into the
visitor queue. The traversal is complete when the visitor queue
is empty, and all visitors have completed.

In a multithreaded environment, the visitor queue can be
implemented as a set of multiple priority queues with a hash
function controlling the selection of a individual queue. Using
multiple queues with a hash function reduces lock contention
when multiple threads are inserting or removing from the
queues. In our implementation and experiments, each thread
‘owns’ a queue and the queue is selected based on a hash of
the vertex identifier. This adds an additional guarantee that
a visitor has exclusive access to a vertex when executing,
removing the need for additional vertex-level locking when
visiting a vertex. Additionally, a near-uniform hash function
may improve load balance amongst the visitor queues as high-
cost vertices will be uniformly distributed across the queues.

B. Single Source Shortest Path and BFS

Like Bellman-Ford, our approach relies on label-correcting
to compute the traversal, and completes when all corrections
are complete. Like Dijkstra’s SSSP, our approach traverses
paths in a prioritized manner, visiting the shortest path possible
at each visit. Our approach does not introduce synchroniza-
tions between steps; therefore, we cannot guarantee that the
absolute shortest-path vertex is visited at each step, possibly
requiring multiple visits per vertex. In this work, we compute
a Breadth First Search (BFS) by applying our asynchronous
SSSP algorithm with all edge weights equal to 1.

Algorithms 1 and 2 outline an asynchronous SSSP traversal
of a graph g. The traversal is started in Algorithm 1 at the

source. For each vertex visited, an instance of Algorithm 2
decides if the current path length needs to be corrected, and
queues the adjacent vertices if the path has been updated. A
visitor corrects the path length if the visitor represents a shorter
pathway than is currently assigned to the vertex. The visitor
queue is prioritized based on the visitors’ path length. After
starting the traversal, Algorithm 1 waits for all queued visitors
to complete.

Algorithm 1 Single Source Shortest Path — Main

1: INPUT: g < input graph

2: INPUT: dist_array < an array holding the path length to
each vertex, initialized to oo

3: INPUT: parent_array < an array holding the path parent
to each vertex, initialized to oo

4: INPUT: start < starting vertex for SSSP

5: pri_q_visit «— a multithreaded visitor queue, prioritized by
SSSPVertex Visitor’s cur_dist

6: pri_qg_visit.push(SSSPVertex Visitor(g,
dist_array, parent_array, start, 0, start))

7: pri_q_visit.wait() // wait for queued work to finish

pri_q_visit,

Algorithm 2 Single Source Shortest Path — SSSPVertex Visitor
1: INPUT: g < input graph
2: INPUT: pri_q_visit « a multithreaded visitor queue
3: INPUT: dist_array < an array holding the path length to
each vertex
4: INPUT: parent_array < an array holding the path parent
to each vertex
5: INPUT: v « vertex to visit
6: INPUT: cur_dist < current shortest path length to vertex
7: INPUT: cur_parent «<— current shortest path parent
8: if cur_dist < dist_array[v] then
9: dist_array[v] = cur_dist // relax vertex information
10: parent_array[v] = cur_parent
11: adj_list < g.adj_list(v)
12 for all vj € adj_list do
13: edge_weight = g.edge_weight(v,vj)
14: pri_q_visit.push(SSSPVertexVisitor(g, pri_q_visit,
dist_array, parent_array, vj, edge_weight, v))
15: end for
16: end if

1) Algorithmic Analysis: The performance of Algorithms 1
and 2 is highly dependent on the structure of the graph
traversed. If the graph has multiple shortest-path pathways
that can be independently traversed, the algorithm will have
the opportunity to proceed in parallel. However, without the
independent pathways, the algorithm will traverse the graph
in a serialized manner. Figure 2 is an example of a directed
graph with poor parallelism when traversed starting from
vertex 0. In the worst case, where the traversal is serialized,
the algorithm is bounded by Dijkstra’s SSSP performance of
O(|E|log|V|) for sparse graphs. In the best case, with at least
p parallelism in the graph traversal, the algorithm is bounded
by O((|E|/p)log(|V|/p)). From our experiments with scale-
free graphs and web-graphs, a significant amount of path

parallelism exists in these real-world graphs, giving rise to an
average case performance bounded by the best parallel case
upper bound.

2) SSSP Traversal Example: To illustrate how the asyn-
chronous computation proceeds we describe SSSP as seen in
Algorithms 1 and 2. The computation is initialized by queuing
a visitor at the source with path_length = 0. Upon visiting a
vertex, each visitor evaluates if the current path length needs to
be corrected. If the visitor updates the path, the visitor queues
new visitors for the vertex’s adjacent vertices.

Figure 3 gives a pictorial example for a simple weighted
directed graph. In this example, the weights were purpose-
fully selected to require multiple visits per vertex. In a real-
world context, the weights may represent distances between
locations, strength of association between agents, or any other
domain-specific relationship information. For simplicity, the
computation is represented by 6 steps; however it is important
to note that no synchronization is introduced between the steps
and the order of the visitor queues is not guaranteed. For
clarity, a visitor queue is shown for each vertex; however in
practice, a queue may represent a large subset of vertices. The
computation in Figure 3 proceeds as follows:

(a) All vertices initialize their path length to oo.

Vertex O initializes to a path length of 0 and queues
a visitor to vertex 1 with length 2, and a visitor to
vertex 2 with length 5.

(b) Vertex 1 is visited with length 2, updates its path
length to 2, and queues a visitor to vertex 2 with
length 6, and a visitor to vertex 3 with length 9.
Vertex 2 is visited with length 5, updates its path
length to 5, and queues a visitor to vertex 3 with
length 6.

(c) Vertex 2 is visited with length 6; because length 6 is

longer than its current length 5, it does not update
its path length; no new visitors queued.
Vertex 3 has 2 visitors queued, however order is not
guaranteed and it processes length 9 first, updates its
path length to 9, and queues a visitor to vertex 0 with
length 10 and visitor to vertex 4 with length 11.

(d) Vertex 0 is visited with length 10, and does not
update its path length; no new visitors queued.
Vertex 3 is visited with length 6, updates its path
length to 6, and queues a visitor to vertex 4 with
length 8, and a visitor to vertex 0 with length 7.
Vertex 4 is visited with length 11, updates its path
length to 11, and queues a visitor to vertex 0 with
length 14.

(e) Vertex 0 is visited with length 14, and does not
update its path length; no new visitors queued.
Vertex 4 is visited with length 8, updates its path
length to 8, and queues a visitor to vertex 0 with
length 11.

® Vertex 0 is visited with length 7, and does not update
its path length; no new visitors queued. For the
subsequent time step, vertex 0 is visited with length
11, and does not update its path length; no new
visitors queued.

End: The computation terminates when all message

queues are empty.

C. Undirected Connected Components

The asynchronous computation of Connected Components
(CCO) for undirected graphs is similar to that of SSSP. To
compute CC, each vertex is labeled by the smallest vertex
descriptor that is connectable. The computation is outlined in
Algorithms 3 and 4; in Algorithm 3, a visitor for each vertex
is queued in parallel with the vertex’s descriptor as the starting
component id. When a vertex is visited, if its component id can
be updated to a smaller id, then it is updated and visitors for all
adjacent vertices are queued with the updated component id.
The computation is finished when all queued visitors complete.

Algorithm 3 Undirected Connected Components — Main

1: INPUT: g < input graph

2: INPUT: ccid_array < an array holding the component id
for each vertex, initialized to oo

3: pri_qg_visit «— a multithreaded visitor queue, prioritized by
UCCVertex Visitor’s cur_ccid

4: for all v € g.vertex_list() parallel do

5: pri_q_visit.push(UCCVertex Visitor(g,

ccid_array, v, v))
6: end for
7: pri_q_visit.wait() // wait for queued work to finish

pri_q_visit,

Algorithm 4 Undirected Connected Components — UCCVer-
tex Visitor

1: INPUT: g < input graph

2: INPUT: pri_q_visit « a multithreaded visitor queue

3: INPUT: ccid_array < an array holding the component id

for each vertex

4: INPUT: v « vertex to visit

5: INPUT: cur_ccid < current component id for vertex
6: if cur_ccid < ccid_array[v] then
7
8
9

ccid_array[v] = cur_ccid // relax vertex information
adj_list «— g.adj_list(v)
for all vj € adj_list do
10: pri_q_visit.push(UCCVertexVisitor(g, pri_q_visit,
ccid_array, vj, cur_ccid))
11: end for
12: end if

As with SSSP, the parallel performance of Algorithms 3
and 4 is highly dependent on the underlying graph structure.
A worst case graph with poor parallelism is similar to that of
SSSP in Figure 2, only undirected.

Our approach to CC can be viewed as performing parallel
BFS starting from every vertex. When two BFSs that started
from different vertices merge, the BFS that started from the
lowest vertex identifier takes over the remainder of both
traversals. The end result is that all vertices in the graph are
labeled with the smallest vertex identifier connectable to them.

IV. IMPLEMENTATION DETAILS

Our implementation and experiments were performed using
Linux computers at Lawrence Livermore National Laboratory.

cart _)a%e

Fig. 2. An example directed graph with poor parallelism for BFS and SSSP
st Yans
o @< ®
@)
3) 3 2

i 1
&

Visitor Queue Visitor Queue - \‘/lilt‘oer‘uguT .
01234 0[1]2]|3]4 —=
LI T[] L [2[s] [] s
(a)
7’! ’\ 7
5 1
3 2
Visitor Queue Visitor Queue Visitor Queue
0[1[2]3]4 &\1\2\3\: (7)\1\2\3\4
o[| el : 7
“ © ®

Fig. 3. An example of an asynchronous Single Source Shortest Path (SSSP) traversal of a simple weighted directed graph. Section III-B2 discusses the
details of this example.

Two similar implementations were created for In-Memory and
Semi-External Memory graphs.

A. Thread Oversubscription

Our implementation can benefit from using more threads
than cores. Because there is a prioritized queue per thread, with
an associated lock, having more threads and corresponding
queues than cores reduces queue lock contention. From our
experiments, using as many as 512 threads on 16 cores offers
substantial benefit.

B. In-Memory Implementation

For In-Memory graph storage, we used Boost’s Compressed
Sparse Row C++ library [3]. For POSIX thread support, we
used the Boost Thread library [11]. All code was compiled
with g++ version 4.1.2 with -O3 and run on a quad core,
quad processor (16 cores) AMD Opteron(tm) 8356 with 256
GB of main memory.

C. Semi-External Implementation

For Semi-External graph storage, we used a custom file-
based storage implementing a compressed sparse row using
explicit POSIX standard I/O access. We define a semi-external
graph as having enough memory to store algorithmic informa-
tion about the vertices but not edges. The entire graph structure
is stored on the persistent storage device, and the visitor queues
and the output of the algorithm are stored in main memory.

For POSIX thread support, we used the Boost Thread library
[11]. All code was compiled with g++ version 4.1.2 with -
03 and run on a dual core, quad processor (8 cores) AMD
Opteron(tm) 2378 with 16 GB of main memory.

An additional difference from the in-memory implementa-
tion is that the prioritized visitor queues have an additional sec-
ondary sorting parameter, the vertex identifier. This increases
access locality to the storage devices by semi-sorting access
if possible. Using BFS as an example, not only will level 1’s
vertices been processed before level 2’s, the vertices in level
1 will be visited in a semi-sorted order to increase locality.

We experimented with 3 types of FLASH based storage:

e FusionlO — 4x 80GB FusionlO SLC, PCI-E cards in a
software RAID 0 configuration. Our experiments show
that this configuration is capable of close to 200,000
random reads per second. This is the fastest device that
we have tested, and much of its speed is due to its PCI-E
interface.

o Intel — 4x 80GB Intel Intel X25-M MLC, SATA SSDs
in a software RAID 0 configuration. Our experiments
show that this configuration is capable of close to 60,000
random reads per second.

e Cosair — 4x 128GB Corsair P128 MLC, SATA SSDs
in a software RAID 0 configuration. Our experiments
show that this configuration is capable of close to 30,000
random reads per second.

Our semi-external approach requires a high level of random
IOPS to achieve good performance. For this reason, we
have not studied our approach on traditional rotating media.
Figure 1 shows the multithreaded random I/O performance of
the three NAND Flash configurations that we test in this work.

V. EXPERIMENTAL STUDIES
A. Graph Types and Sizes

We performed experiments using both synthetic and real
graph inputs of various sizes. For the three algorithms tested
in this work, the input graphs were organized as follows:

¢ BFS - Directed synthetic graphs, unweighted;

o SSSP - Directed synthetic graphs, two forms of random
weights;

e CC - Undirected synthetic graphs, and undirected real
graphs.

1) Synthetic Graphs: For synthetic graphs, we used scale-
free graphs generated by the RMAT [12] graph generator. The
RMAT graph generator uses a ‘recursive matrix’ model to
create graphs that models ‘real-world’ graphs. We generated
directed graphs with unique edges ranging from 225 — 230
vertices and an average out-degree of 16. Undirected versions
of these graphs for use with Connected Components were
created by adding reverse edges. We generated 2 types of
RMAT graphs with different RMAT parameters:

e RMAT-A : a = 0.45,b = 0.15,¢ = 0.15,d = 0.25:
This creates a scale-free graph with moderate out-degree
skewness.

e RMAT-B : a = 0.57,b = 0.19,¢ = 0.19,d = 0.05:
This creates a scale-free graph with heavy out-degree
skewness.

For weighted SSSP experiments, we added edge weights to
the RMAT graphs in the following manner:

o UW - uniform weights range from [0, num_vertices)
o LUW - log-uniform weights range from [0, 2¢), where i
is chosen uniformly from [0, lg(num_vertices))

2) Real Graphs: For real graphs, we experimented with
five different web traces that were treated as undirected.

e ClueWeb09 [13]: To fit the vertex identifiers in a 32
bit integer space, we removed all vertices that had zero
incoming and outgoing edges. The trimmed graph has
1,667,267,985 vertices and 7,939,647,897 edges.

e it-2004 [14]: 41,291,595 verts, 1,150,725,436 edges.

e sk-2005 [14]: 50,636,155 verts, 1,949,412,601 edges.

o uk-union [14]: 133,633,041 verts, 5,507,679,822 edges.

e webbase-2001 [14]: 118,142,156 verts, 1,019,903,190
edges.

B. In-Memory Experiments

This section describes our experiments traversing In-
Memory graphs. For experimental comparison, we show the
performance of the Multithreaded Graph Library (MTGL) [5],
[15], the Parallel Boost Graph Library (PBGL) [4], the Small-
world Network Analysis and Partitioning (SNAP) library [6],
and the serial Boost Graph Library (BGL) [3] when available.

e MTGL [5], [15] is a shared memory parallel graph library
primarily designed for Cray’s massively multithreaded
machines. For commodity SMP systems, MTGL has
implementations of BFS and CC that use the QThreads
library [16] for threading support. It is important to note
that MTGL’s performance on SMP systems does not

reflect on its performance on the Cray XMT. Our ex-
periments use MTGL’s Subversion Trunk revision 2597.

o« PBGL [4] is a distributed memory parallel graph li-
brary. Direct comparisons between distributed memory
and shared memory implementations are not possible,
however these experiments help to compare alternative
techniques for large graph processing. Our experiments
use PBGL from version 1.41 of the Boost library.

o« BGL [3] is a serial graph library. In our experiments,
BGL is used as an efficient serial baseline to compute
speedup. Our experiments use BGL from version 1.41 of
the Boost library.

e SNAP [6] is a parallel graph library for shared memory
which utilizes OpenMP for parallelism. Our experiments
use SNAP version 0.3.

1) Breadth First Search (BFS): Table 1 shows our asyn-
chronous Breadth First Search (BFS) compared with MTGL,
SNAP, PBGL and BGL. Our approach, MTGL, SNAP and
BGL were tested on a 16-core AMD machine with 256 GB
of memory. PBGL is shown with the optimal number of cores
between 64-1024 and 128GB-2TB of memory on an AMD
cluster with 16-cores and 32 GB per compute node.

At full parallelism, our asynchronous BFS is roughly 10-
18% faster than MTGL’s and 1.5-3 times faster than SNAP’s
BFS in all our test cases. SNAP’s BFS struggles with the
highly skewed degree distribution of the RMAT-B datasets,
leading to poor scaling and speedup. MTGL’s and SNAP’s
graph data structure are implemented using 64-bit integers and
those libraries are unable to fit the 229 and 23° vertex graphs
in 256GB of memory; our implementation can be configured
to use 32 or 64-bit integers.

Using significant resources, 256-1024 cores with 512GB-
2TB of memory, PBGL can compute BFS on the 22® and 22°
vertex graphs the fastest. Like MTGL and SNAP, PBGL also
runs out of memory with the 22° and 23° vertex graphs.

Overall, our approach outperforms MTGL and SNAP in all
of our test cases, and performs well compared with PBGL
which uses 32-64 times the number of cores and 4-8 times
the memory. The benefit of thread oversubscription can be
seen here, as in all test cases 512 threads outperform 16
threads using our approach; this indicates that further scaling
is possible beyond 16-cores.

2) Single Source Shortest Path (SSSP): Table II shows our
asynchronous Single Source Shortest Path (SSSP) compared
with BGL on a 16-core AMD machine with 256GB of main
memory. These experiments use the same directed graphs as
the BFS experiments in Section V-B1 and add two types
of edges weights: uniform weights (UW) and log-uniform
weights (LUW).

Again, we see the benefit of thread oversubscription as
all tests perform best using 512 threads on 16 cores, which
indicates that further scaling is possible beyond 16-cores. We
see scalability of at least 10 on 16 cores with both edge weight
types.

3) Connected Components: Table III shows our asyn-
chronous Connected Components (CC) compared with MTGL,
PBGL and BGL. Our approach, MTGL and BGL were tested
on a 16-core AMD machine with 256GB of memory. PBGL is

o
=[5
32 3l=lelelx o |=[g |
g%mmmvw afed |<F [oo
2,
=
U £|E g
o
= E|E g
’r/‘\ PR L
< 2zl E] s x| E
sloo (I o S8 s =< I 0 SR =
L E [|[Q]@n|S|®|e|e||= |0 |F R[S |E
m| = 1) =
O 8|6 S
]
2|, S lolc|a o ool
(ol e =R | Yo [N el w0 =S
Sl |wn [A n (S
[
5
sl SR RS SN S
8m<r-nmocl\ < |<f [<F | [oo
2,
Z
a
on
Eé N2l (|20 n|ela|n|n|2
< ||~ |00 oo I I N S S o 1
21 2
3
5]
7
)
el
3
2l R SR = PRI S
RGN DS =
R Eal=[an Q@ QIS =T 2F
52
170 hali's)
=
S
=
S~
=1
ST Eelzl R =R E R
Q <+ |= =[R2 (S |
EES|TFR RGPS FERE
g3 =
<
-
Z B2 TR | oo |~ [T 2
Sl IBR I (2= QR[9S
E-|ITIEIFI2IQE| = RIR|=|®
o
=
S als|e e <+ [|y
Q&mc\l(\lrﬂm —_ ==
Em
<
L
21 en
5| £ lllaklels|= Bl glE
N — ===
K £l 2|
% (= ==
P S | S S S
Q%3 —|°|° <+|<«|°]|°
I =Y S e ol ek B I R R g
sl S| SISIEIZ|E||x]L =222
SIE o= [FIDIQIC|IC|NwZIRIC|C
en|'E —
d
Al
<
Z [~
5222kl | ok
Q= - v |5 Il e}
é.—‘@mg‘g‘ aln |8
o
2 2| i [oo [en S~ |
S 0|2 ?
BR|T ||| < |od <
Q%
<< | en
NER RN E R R EEE
gl R |[fwn|Se|c|g||F|F|w|S|S|S
3| 2 E|E E|8
o | O O
— == ==
S~ @ | o [
&\V;—g «|C|° w|°|°
NI el T N I I VS [S0 Rech g
Rl Sllailele|S|IZ2]|SIS|wn|R 2|2
B EN I (el e R RN Sl (o) ()
OE =
=
-
22|=lslzll | ikl
o S|~) ~|e)
< [[n O |
£~ == he atsaie
(%)
~
A2 ||wlzlal=l2<w| =22
© H NN S NN N =
B ARSI EIRIE]0
2| £ |PERRIEE|FFIEREE
2| =
@
W[DS 2 oo [oo [oo [o0 o (o
2
HRRBRERRIRRERRRRER
SIS I SIS
Z || o [0 |06 |06 |00 |08 [|96 [[\B v [en |ai
S| [S[||F|F|FIF ||
%@:—4 Mo e P H Mmoo
BTV o R e R N e N L P N <)
B[[e |en o fen|[ea [v [ou[ea e
Elke ek b b [l I~ o =)
* TSR NP RN N M
Q[[[ou [e [ea [[fea [ea [ea [ea [ea
= = =
o 8 < <
83‘ §< s /M
S0 ~ 7

TABLE I
PERFORMANCE COMPARISON OF IN-MEMORY BREADTH FIRST SEARCH (BFS). BEST PERFORMANCE FOR EACH TEST INSTANCE IS SHOWN IN BOLD. ‘SCALING’ SHOWS BEST PARALLEL PERFORMANCE

OVER SINGLE THRD. ‘SPEEDUP BGL’ SHOWS BEST PARALLEL PERFORMANCE OVER BGL’S SERIAL VERSION.

BGL Asynchronous SSSP, 16-core AMD
Graph type | Weight Type | # nodes | # edges . time (s time (s time (s . speedu
PP £ P ¢ time (s) 1 thre(azl 16 thre(a()is 512 thri;ds scaling Ii?.GLp

225 229 319.2 265.1 32.2 18.1 14.6 17.6

276 230 764.0 600.6 69.7 41.2 14.6 18.5

uw 227 231 1827.4 1340.8 151.5 93.8 14.3 19.5

278 232 5098.4 3201.1 336.1 227.2 14.1 22.4

RMAT-A 279 233 13467.6 7365.2 797.0 503.8 14.6 26.7
230 232 25286.8 OOM 4598.7 821.8 n/a 30.8

225 229 233.1 262.8 31.7 18.7 14.1 12.5

2726 230 538.5 597.7 71.9 429 13.9 12.6

LUW 227 231 1242.6 1354.5 155.9 101.4 13.4 12.3

278 232 3367.9 3153.8 345.2 229.2 13.8 14.7

229 233 8188.9 7850.3 838.3 515.4 15.2 15.9

230 234 15774.8 OOM 1297.7 863.0 n/a 18.3

225 229 185.5 129.3 16.0 12.9 10.0 14.4

2726 230 428.7 291.0 35.9 27.5 10.6 15.6

uw 227 231 1003.2 653.8 77.9 63.3 10.3 15.9

22 232 2801.4 1597.0 185.0 141.2 11.3 19.8

RMATB 229 233 6142.1 3937.0 399.4 346.0 114 17.8
230 237 11703.2 147343 1806.9 862.8 17.1 13.6

22° 229 150.7 118.1 15.5 10.3 114 14.6

226 230 341.3 269.8 324 24.7 10.9 13.8

LUW 227 23T 785.5 632.3 77.2 54.4 11.6 14.4

22 232 2168.7 1477.8 175.6 123.8 11.9 17.5

229 233 5587.8 3685.3 334.6 270.8 13.6 20.6

230 237 10642.7 6837.2 630.4 430.8 15.9 24.7

TABLE 11

PERFORMANCE COMPARISON OF IN-MEMORY SINGLE SOURCE SHORTEST PATH (SSSP). BEST PERFORMANCE FOR EACH TEST INSTANCE IS SHOWN IN
BOLD. ‘SCALING’ SHOWS BEST PARALLEL PERFORMANCE OVER SINGLE THREAD. ‘SPEEDUP BGL’ SHOWS BEST PARALLEL PERFORMANCE OVER
BGL’S SERIAL VERSION.

shown with the optimal number of cores between 64-1024 and
128GB-2TB of memory on an AMD cluster with 16-cores and
32 GB per compute node. Our asynchronous CC is roughly
2 times faster than MTGL’s CC in all synthetic cases tested.
For the real web-graphs, our asynchronous CC is 4-13 times
faster than MTGL’s CC.

At 16 threads, our approach is consistently better than
MTGL in our experiments. Oversubscribing to 512 threads
further improves performance in all cases, which again indi-
cates that further scaling is possible beyond 16-cores.

PBGL very slightly outperforms our approach in two cases
while using 32-64 times the number of cores and 4-8 times
the memory.

C. Semi-External Memory Experiments

This section describes our experiments traversing Semi-
External Memory (SEM) graphs stored on solid state FLASH
devices on an 8-core AMD machine with 16GB of main
memory. We compare performance to the serial Boost Graph
Library (BGL) running In-Memory on a 16-core AMD ma-
chine with 256GB of main memory. The In-Memory BGL
performance numbers are used as a baseline to evaluate the
Semi-External performance.

The ability to process large graphs in semi-external memory
at comparable or better to in-memory performance is impor-
tant. The cost of solid state devices like NAND Flash SSDs can
be significantly less than DRAM costs, and offers persistent
data storage. Our SEM experiments show that for moderate
and fast SSDs, our asynchronous approach is consistently

faster than a serial In-Memory alternative like BGL, with even
the slowest SSD tested performing comparable to BGL.

1) Breadth First Search: Table IV shows our Semi-External
asynchronous BFS compared with the In-Memory BGL BFS.

Using the FusionlO or Intel SSDs, we typically outperform
the serial BGL which requires a larger amount of memory
to store the graph in-memory. The FusionlO drive offers the
highest random I/O access speed and typically outperforms
other SSDs we have tested. Even the Corsair, the slowest of the
SSDs we tested, shows a comparable performance to BGL’s
in-memory performance.

2) Connected Components: Table V shows our Semi-
External asynchronous CC compared with the In-Memory
BGL CC.

As with BFS, our semi-external approach to connected com-
ponents can outperform BGL’s in-memory using the FusionlO
and Intel SSDs. Again, the FusionlO drive typically offers the
highest semi-external performance.

VI. RELATED WORK
A. HPC and Graphs

Processing of large graphs is receiving increasing attention
by the HPC community as datasets quickly grow past the
capacity of commodity workstations. Significant challenges
arise for traditional HPC solutions because of the nature
of these datasets. These challenges can be summarized into
unstructured memory access and poor data locality [17], [18].

A popular approach to graph processing in HPC has been
with the use of Distributed Memory computer clusters. Such

Semi-External Asynchronous BFS, 8-core AMD
Size FusionlO Intel Corsair

graph # nodes | # edges on EM time (s) speedup time (s) speedup time (s) speedup
directed device 256 threads | IM BGL | 256 threads | IM BGL | 256 threads | IM BGL

227 231 9 GB 134.4 2.2 306.1 1.0 400.5 0.7

228 232 18 GB 352.0 2.1 578.8 1.3 876.8 0.8

RMAT-A 229 233 36 GB 947.1 1.7 1368.8 1.2 1852.7 0.9

230 23% 72 GB 2138.2 1.8 2805.2 1.3 3966.8 0.9

227 231 9 GB 78.1 2.5 82.5 2.4 132.5 1.5

228 232 18 GB 176.8 2.9 189.2 2.7 2459 2.1

RMAT-B 229 233 36 GB 4823 3.0 477.0 3.0 852.4 1.7

230 23% 72 GB 1199.7 2.8 1284.0 2.6 1949.8 1.7

TABLE IV

PERFORMANCE COMPARISON OF SEMI-EXTERNAL MEMORY BREADTH FIRST SEARCH (BFS) ON THREE FLASH MEMORY CONFIGURATIONS. BEST
PERFORMANCE FOR EACH TEST INSTANCE IS SHOWN IN BOLD. ‘SPEEDUP BGL’ SHOWS BEST PARALLEL PERFORMANCE OVER IN-MEMORY BGL’S

SERIAL VERSION. SEMI-EXTERNAL EXPERIMENTS PERFORMED ON AN 8-CORE AMD SYSTEM WITH 16 GB MEMORY.

Semi-External Asynchronous Connected Components, 8-core AMD
Size FusionlO Intel Corsair

graph # nodes # edges on EM time (s) speedup time (s) speedup time (s) speedup
undirected device 256 threads | IM BGL | 256 threads | IM BGL | 256 threads | IM BGL

227 23T 17 GB 174.6 2.9 245.1 2.0 225.1 2.2

228 232 34 GB 371.7 3.9 408.1 3.6 501.4 2.9

RMAT-A 229 233 68 GB 947.2 3.8 1236.8 2.9 1470.9 2.5

230 234 136 GB 2776.4 3.0 4029.3 2.1 9118.9 0.9

227 231 17 GB 300.0 1.3 2779 1.4 191.8 2.0

228 232 34 GB 659.5 1.8 554.4 2.1 537.3 22

RMAT-B 229 233 68 GB 1673.0 1.7 2017.9 1.4 6318.7 0.4

230 231 136 GB 4354.7 15 5972.6 1.1 10209.8 0.6

sk-2005 50M 3.6B 14 GB 13.2 3.7 30.9 1.6 48.3 1.0

uk-union 133M 9.4B 36 GB 126.3 1.0 119.7 1.0 134.5 0.9

TABLE V

PERFORMANCE COMPARISON OF SEMI-EXTERNAL MEMORY CONNECTED COMPONENTS (CC) ON THREE FLASH MEMORY CONFIGURATIONS. BEST
PERFORMANCE FOR EACH TEST INSTANCE IS SHOWN IN BOLD. ‘SPEEDUP BGL’ SHOWS BEST PARALLEL PERFORMANCE OVER IN-MEMORY BGL’S
SERIAL VERSION. SEMI-EXTERNAL EXPERIMENTS PERFORMED ON AN 8-CORE AMD SYSTEM WITH 16 GB MEMORY.

clusters distribute the graph data amongst its processors and
memory and process the graph by exchanging messages during
computation phases. This approach works well when the graph
exhibits nice load balancing properties (regular or uniformly
random) [19] but suffers from significant load imbalance when
processing power-law graphs [4]. Our approach addresses the
load imbalance challenge by using an asynchronous approach.

Massive Multithreaded machines address the challenges
of unstructured memory accesses and poor data locality by
using little or no memory hierarchy. The Cray XMT has
been successful at processing large graph datasets; these
specialized supercomputers rely on massive multithreading to
mask memory latency without using complex memory caches.
The development of the Multithreaded Graph Library (MTGL)
for this specialized computing platform as been shown to
address many of the issues related to memory latency [15].
Our approach addresses the memory latency issues using
commodity hardware and storage devices (NAND Flash) that
are relatively slow compared with main memory.

B. External Memory Graph Algorithms

Many real world graphs are too large to fit into main mem-
ory of modern computers, necessitating the use of external
storage devices such as disk. Due to the significant difference

in access times between main memory and disk, many effi-
cient in-memory algorithms become impractical when using
external storage. To analyze the I/O complexity of algorithms
using external storage, the Parallel Disk Model (PDM) [20]
has been developed. PDM’s main parameters are N (problem
size), M (size of internal memory), B (block transfer size),
D (number of independent disks), and P (number of CPUs).
When designing 1/O efficient algorithms, the key principles are
locality of reference and parallel disk access. For an in-depth
survey of EM Algorithms, see [21].

Graph traversal (e.g., Breadth First Search) is an algorithm
that is efficient when computing in-memory, but becomes im-
practical in external memory. In-memory BFS incurs Q(n+m)
I/Os when using external memory, and it has been reported
that the in-memory BFS performs orders of magnitude slower
when forced to use external memory [2].

For general undirected graphs, Munagala and Ranade [22]
improve the worst-case /0 of BFS to O(n + sort(m)) by
exploiting the fact that for a node in BFS level ¢ can only
have edges to nodes in level ¢ — 1 or ¢ + 1, removing the
need to check all previous BFS levels. The O(n) term in
Munagala and Ranade’s algorithm is due to an non-contiguous
access to the adjacency lists, hence every adjacency list must
be accessed separately. An improvement on the adjacency list

BGL
32
4.3
8.2
9.6
0.9
0.5
0.5
0.1

speedup
6.7

[

28.9
48.3
74.7
177.4
378.7
Out of Memory
73.9
Error
Error
Error
Error
Out of Memory
59.3
104.1
405.1

time (s)
Out of Memory
Out of Memory

[

PBGL CC, AMD cluster

cores
256
756
512
1024
1024
256
756
756 |
64

BGL
56
6.0
66
84
92
99
4.4
57

6.9
7.8

8.1
6.8
7.2
8.4
8.4
5.0

speedup
4.7

9.0
11.0
11.7
11.4
11.7
8.2
8.4
9.6
9.5
10.2
9.5
16.9
20.3
18.9
21.1
29.0

scaling
9.7

time (s)
512 thrds
16.8
34.2
752
174.0
391.3
832.3
15.6
32.7
68.6
167.3
363.6
793.3
276.3
3.7
5.8
14.4
7.0

time (s)
16 thrds
223
98.9
223.7
497.0
879.1
18.9
39.4
86.6
199.7
437.2
905.1
502.6
7.9
123
31.6
17.1

Asynchronous CC, 16-core AMD
45.6

time (s)
1 thrd
150.8
332.3
825.1

2034.5

4479.8

9775.4
127.5
274.3
660.7
1582.6
3714.0
7535.9
4661.4
75.7
110.5
303.8
201.6

speedup
BGL
2.3
2.3
2.6
1.9
2.3
3.1
0.5
1.2
1.1
1.1

TABLE III

3.7
3.7
PERFORMANCE COMPARISON OF IN-MEMORY CONNECTED COMPONENTS (CC). BEST PERFORMANCE FOR EACH TEST INSTANCE IS SHOWN IN BOLD. ‘SCALING’ SHOWS BEST PARALLEL PERFORMANCE

43
3.6

44
39

4.2

Out of Memory

Out of Memory
79

11.7

scaling
6.1
4.1
4.0

Out of Memory
Out of Memory

35.6
Out of Memory

time (s)
16 thrds
40.9
90.3
190.2
331.5
62.9
170.9
379.8
48.8
41.8
114.3
33.0

MTGL CC, 16-core AMD

time (s)
1 thrd
142.9
549.5
1194.6

2209.0
121.2
474.9
1043.2
1947.8
201.2
168.8
905.2
386.4

‘SPEEDUP BGL’ SHOWS BEST PARALLEL PERFORMANCE OVER BGL’S SERIAL VERSION.

time (s)
93.3
206.6
498.0
1458.2

3618.1

8281.0
68.7
154.7
388.1
1158.6

2827.4

6433.0
1872.5
26.8
49.3
120.6
35.1

BGL CC

|

OVER SINGLE THRD.

CCs
34,008
72,647
154,179

327,072
689,979
1,448,438
13,739,228
28,448,613
58,757,785
121,037,055
249,937,778
510,267,039
3,149,668
979
126
2,097,197
2,721,051

edges
229
2\50
2.51
252
QJJ
254
229
2\50
2.51
2.52
255
2.54
7.9B
1.2B
1.9B
5.5B
1B

#
verts
525
21()
527
578
579
330
525
21(::
217
578
579
330
1.7B
41M
50M
133M
118M

graph
type
RMAT-A
RMAT-B
ClueWeb09

it-2004

sk-2005
uk-union

webbase-2001

access was made by Mehlhorn and Meyer [23] which pre-
processes the graph into subgraphs of low diameter and stores
their adjacency list contiguously, leading to sub-linear 1/O
complexity.

For general directed graphs, improvements over in-memory
BFS and DFS have not been made, their I/O complexity is
O((n 4+ m/B)lg(n/B) + sort(m)) [24]. This is considered
impractical for general sparse directed graphs. For an in-depth
survey of EM graph traversal algorithms, see [24].

VII. CONCLUSIONS

In this work, we present a novel asynchronous approach to
graph traversal and demonstrate the approach by computing
Breadth First Search (BFS), Single Source Shortest Path
(SSSP), and Connected Components (CC) for large graphs
in shared memory. Our approach allows the computation to
proceed in an asynchronous manner, reducing the number of
costly synchronizations. As clock speeds flatten and massive
threading becomes mainstream, asynchronous approaches will
become necessary to overcome the increasing cost of synchro-
nization.

We present an experimental study applying our technique
to both In-Memory (IM) and Semi-External Memory (SEM)
graphs utilizing multi-core processors and solid-state mem-
ory devices. We provide a quantitative study comparing our
approach to existing implementations such as the Boost
Graph Library (BGL) [3], the Parallel Boost Graph library
(PBGL) [4], the Multithreaded Graph Library (MTGL) [5],
and the Small-world Network Analysis and Partitioning library
(SNAP) [6]. Our experimental study evaluates both synthetic
and real-world datasets, and shows that our asynchronous
approach is able to overcome data latencies and provide sig-
nificant speedup over alternative approaches. Our In-Memory
experiments show that our asynchronous BFS is 10-18% faster
than MTGL’s and 1.5-3 times faster than SNAP’s BFS, and our
asynchronous CC is 2-13 times faster than MTGL’s CC. Our
Semi-External Memory experiments show that for moderate
and fast SSDs, our asynchronous approach is consistently
faster than a serial In-Memory alternative like BGL, with even
the slowest SSD tested performing comparable to BGL.

Overall, we have shown that our asynchronous approach
overcomes the cost of synchronization and data latencies in
shared memory. Our technique works with both In-Memory
and Semi-External Memory graphs, and shows scaling po-
tential as the number of cores on a processor continues to
increase.

REFERENCES

[1] T. Kolda, D. Brown, J. Corones, T. Critchlow, T. Eliassi-Rad, L. Getoor,
B. Hendrickson, V. Kumar, D. Lambert, C. Matarazzo, K. McCur-
ley, M. Merrill, N. Samatova, D. Speck, R. Srikant, J. Thomas,
M. Wertheimer, and P. C. Wong, “Data sciences technology for home-
land security information management and knowledge discovery: Report
of the dhs workshop on data sciences,” Jointly released by Sandia
National Laboratories and Lawrence Livermore National Laboratory,
Tech. Rep. UCRL-TR-208926, September 2004.

[2] D. Ajwani, R. Dementiev, and U. Meyer, “A computational study
of external-memory bfs algorithms,” in SODA ’06: Proceedings of
the seventeenth annual ACM-SIAM symposium on Discrete algorithm.
New York, NY, USA: ACM, 2006, pp. 601-610. [Online]. Available:
http://doi.acm.org/10.1145/1109557.1109623

[3]
[4]

[5]

[6]

[7]
[8]
[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

The boost graph library: user guide and reference manual. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2002.

D. Gregor and A. Lumsdaine, “The parallel bgl: A generic library for
distributed graph computations,” in In Parallel Object-Oriented Scientific
Computing (POOSC), 2005.

B. W. Barrett, J. W. Berry, R. C. Murphy, and K. B. Wheeler, “Imple-
menting a portable multi-threaded graph library: The mtgl on gthreads,”
Parallel and Distributed Processing Symposium, International, vol. 0,
pp. 1-8, 2009.

D. A. Bader and K. Madduri, “Snap, small-world network analysis
and partitioning: An open-source parallel graph framework for the
exploration of large-scale networks,” in /PDPS, 2008, pp. 1-12.

T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction
to Algorithms, 2nd edition. MIT Press and McGraw-Hill, 2001.

E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, pp. 269-271, 1959.

D. Ajwani, A. Beckmann, R. Jacob, U. Meyer, and G. Moruz, “On
computational models for flash memory devices,” in Experimental
Algorithms, 2009, pp. 16-27. [Online]. Available: http://dx.doi.org/10.
1007/978-3-642-02011-7_4

D. Ajwani, I. Malinger, U. Meyer, and S. Toledo, “Characterizing
the performance of flash memory storage devices and its impact on
algorithm design,” in Experimental Algorithms, 2008, pp. 208-219.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-68552-4_16
“Boost threads,” www.boost.org/doc/libs/release/libs/thread/.

D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model
for graph mining,” in Fourth SIAM International Conference on Data
Mining, April 2004.

“Clueweb09 dataset,” http://boston.Iti.cs.cmu.edu/Data/clueweb09/.

P. Boldi and S. Vigna, “The WebGraph framework I: Compression
techniques,” in Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004). Manhattan, USA: ACM Press, 2004, pp.
595-601.

J. W. Berry, B. Hendrickson, S. Kahan, and P. Konecny, “Software
and algorithms for graph queries on multithreaded architectures,”
in Parallel and Distributed Processing Symposium, 2007. IPDPS
2007. IEEE International, March 2007, pp. 1-14. [Online]. Available:
http://dx.doi.org/10.1109/IPDPS.2007.370685

K. B. Wheeler, R. C. Murphy, and D. Thain, “Qthreads: An API for
programming with millions of lightweight threads,” in IPDPS, 2008,
pp- 1-8.

B. Hendrickson and J. W. Berry, “Graph analysis with high-performance
computing,” Computing in Science and Engineering, vol. 10, no. 2,
pp. 14-19, 2008. [Online]. Available: http://dx.doi.org/10.1109/MCSE.
2008.56

A. Lumsdaine, D. Gregor, B. Hendrickson, and J. W. Berry, “Challenges
in parallel graph processing,” Parallel Processing Letters, vol. 17,
no. 1, pp. 5-20, 2007. [Online]. Available: http://dx.doi.org/10.1142/
S0129626407002843

A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson,
and U. Catalyurek, “A scalable distributed parallel breadth-first search
algorithm on bluegene/l,” in SC ’05: Proceedings of the 2005 ACM/IEEE
conference on Supercomputing. Washington, DC, USA: IEEE Computer
Society, 2005, p. 25.

J. S. Vitter and E. A. Shriver, “Algorithms for parallel memory i: Two-
level memories,” Algorithmica, vol. 12, no. 2-3, pp. 110-147, 1994.

J. S. Vitter, “Algorithms and data structures for external memory,”
Found. Trends Theor. Comput. Sci., vol. 2, no. 4, pp. 305-474, 2008.
[Online]. Available: http://dx.doi.org/10.1561/0400000014

K. Munagala and A. Ranade, “I/o-complexity of graph algorithms,” in
SODA ’99: Proceedings of the tenth annual ACM-SIAM symposium on
Discrete algorithms. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics, 1999, pp. 687-694.

“External-memory breadth-first search with sublinear i/0,” in ESA '02:
Proceedings of the 10th Annual European Symposium on Algorithms.
London, UK: Springer-Verlag, 2002, pp. 723-735.

D. Ajwani and U. Meyer, “Design and engineering of external
memory traversal algorithms for general graphs,” in Algorithmics of
Large and Complex Networks, 2009, pp. 1-33. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-02094-0_1

