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Abstract—As the percentage of wind energy on the power
grid increases, the intermittent nature of this energy source can
make it difficult to keep the generation and the load balanced.
While wind speed forecasts can be helpful, they can often be
inaccurate. In such cases, we are interested in providing the
control room operators additional relevant information they can
exploit to make well informed scheduling decisions. In this paper,
we investigate if weather conditions in the region of the wind
farms can be effective indicators of days when ramp events are
likely. Using feature selection techniques from data mining, we
show that some variables are more important than others and
offer the potential of data-driven predictive models for days with
ramp events.

Index Terms—wind energy, ramp events, weather conditions,
feature selection.

I. I NTRODUCTION

A S renewable resources, such as wind, start providing
an increasing percentage of our energy needs, we need

to understand these resources better so we can successfully
manage their integration into the grid. A key challenge with
wind energy is that it is intermittent. We can have days
when the wind does not blow, as well as time intervals when
there is a sudden sharp increase or decrease in the wind
speed over a short period of time, leading to ramp events
in the power generated. It can also be difficult to forecast
wind speed accurately using numerical weather prediction
models [1], especially in regions where the terrain is complex
and the meteorological processes controlling the wind speed
are difficult to model.

These issues are not a major problem when the percentage
of wind energy within a balancing area is small. However,
as the percentage increases, it becomes increasingly difficult
for control room operators to schedule wind energy and keep
the load balanced. The problem is further aggravated if the
energy markets levy a high penalty when a wind farm is unable
provide the energy scheduled.

In a typical scenario, a control room operator schedules
wind energy using a forecast of the energy expected in the
next hour from the wind farms in the balancing area. This
forecast is based on data from meteorological towers in the
region or derived through numerical weather prediction models
in combination with meteorological data. The forecasts are
usually provided for several hours ahead and updated hourly.
If the forecast is accurate, there are no issues in scheduling
the wind energy. When the forecast is inaccurate, the operators
might look at the actual wind generation for the previous hours
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or days, and, based on their prior experience, as well as the
current weather conditions, appropriately schedule the wind
energy for the upcoming hour. This is understandably difficult
under normal operating conditions, but more so during ramp
events.

In the case of positive ramps, where the wind energy
increases by a large amount over a short period, the operators
must reduce other generation to keep the load balanced. Thisis
a challenge if the positive ramp had not been forecast and the
other generation cannot be reduced at short notice. In case of
a negative ramp event, the operators must have enough backup
power to keep the load balanced. Having this additional back-
up might not be cost-effective, especially if a negative ramp
is predicted but does not occur.

These issues point to several ways in which we can make it
easier to schedule wind energy. For example, we can improve
the forecasts provided to the operators by using better com-
putational models, higher resolution models, or by drivingthe
models using more appropriate weather data [2]. Or, we can
provide appropriate additional information so the operators can
make better informed scheduling decisions when the forecast
is inaccurate. Typically, control room operators have access
to different meteorological data from several weather stations,
though not all of these data are useful or relevant. If we can
identify the ones which are associated with extreme events for
wind farms in a specific region, then the operators can monitor
only those data streams for use in scheduling decisions.

In this paper, we describe how we can analyze historical
data to determine if there are specific weather conditions which
are associated with ramp events. In Section II, we describe the
wind and weather data and outline the techniques for selecting
key weather variables in Section III. Section IV describes
the results using our test-bed data sets and we conclude in
Section V with a summary and ideas for future work.

II. DESCRIPTION OF THE DATA

We conduct our analysis using wind energy and weather
data from two regions - the Tehachapi Pass in Southern
California and the Columbia Basin region on the Oregon-
Washington border. The wind generation data are available at
15 minute intervals for the Tehachapi Pass and at 5 minute
intervals for the Columbia Basin region. In contrast, the
weather data are available at different temporal resolutions
from several meteorological towers in the two regions.

A key issue in our work is the temporal resolution we should
use for the analysis. If we use a very fine granularity, say
every 5-10 minutes, it has certain implications which must
be addressed for the analysis to give meaningful results. The
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meteorological towers for which weather data are available
are usually not at the site of the wind farms, but several miles
away. So, we need to account for a lag (or lead) between
the weather measurements and the ramp events, which can
be difficult as the lag or lead may vary with the weather
conditions. In addition, the weather measurements tend to
be quite noisy, and any analysis done using fine granularity
data are likely to be error-prone. So, in this initial study,we
focus on weather data available as daily averages and associate
them with days which either have or do not have ramps of
a certain magnitude occurring over a specified time interval.
The use of daily averages smooths out the error in the weather
measurements and avoids the problem of accounting for a lag
or lead between the wind speed at the site of a tower and
at the site of the wind farm. In addition, the daily weather
summary data are publicly available, while the finer temporal
granularity data are not.

A. Wind generation data

We conduct our study using actual wind generation data
from wind farms in Tehachapi Pass (Southern California) for
the years 2007-2008 and Columbia Basin (border of Oregon
and Washington) for the years 2007-2009 [3], [4]. We chose
data from the recent past as any analysis of these data is likely
to be more relevant. Also, the last few years have seen a large
increase in installed wind power, which makes this analysis
timely. For example, in the Bonneville Power Administration
(BPA) balancing area, which includes the Columbia Basin
wind farms, the installed wind capacity has increased from
700 MW in 2006-2007 to over 1300 MW in 2008 and more
than 2600 MW in 2009 [5], [6].

The Columbia Basin data available for the period 2007-
2009 are the total generation from all the wind farms in the
BPA balancing area [7], sampled at 5 minute intervals. There
are missing values in the data - if values were missing for
one or two consecutive intervals, they were filled-in using
interpolation, while longer periods were replaced by “-9999”
to indicate such values for future processing. In addition,to
reduce the noise in the wind energy data, we smoothed the
original data by two applications of a mean filter of size 3.

The Tehachapi Pass wind generation data are sampled
more coarsely than the Columbia Basin data. These data are
available at 15 minute intervals for the Vincent and Antelope
regions. As these regions are close by, their wind generation
is very similar, and we consider the sum of the generation
in our analysis. Also, the generation from the Antelope region
occasionally had small negative values which were replacedby
zero before being added to the data from the corresponding in-
terval from the Vincent region. Unlike the data from Columbia
basin, no smoothing was used, as it would have adversely
affected the calculation of 30 and 60 minute ramps [4].

For both regions, we define a ramp event, of magnitudeTr
in MW, to occur between time intervalsT and (T + ∆T ) if

max(MW [T, T + ∆T ]) − min(MW [T, T + ∆T ]) > Tr.

Thus, to identify days when ramp events have occurred, we
need to select the following:

• The time interval ∆T : We considered two cases - 30
minutes and 60 minutes as these are durations typically
considered for ramps.

• The threshold Tr: This choice was harder. We first se-
lected an absolute threshold of 120 MW and 240 MW for
the 30 minute and 60 minute ramps, respectively, for the
Columbia Basin data. An absolute threshold made sense
as it gives operators a sense of how much back-up gen-
eration they need or how much they should reduce other
generation. However, in the case of Columbia Basin, as
the installed wind capacity increased substantially during
the analysis period, use of a fixed threshold resulted in
many more ramps being identified during the latter part
of the period. So, a day with certain weather conditions
early in the analysis period may have no ramps, while a
day with similar weather conditions later in the analysis
period could have many ramps. To avoid this unintended
consequence of the increase in installed capacity on our
analysis, we used a percentage of the installed capacity
on any day as the threshold.
We considered thresholds of 10% and 12% of capacity
for 30 minute ramps and 15% and 20% of capacity for 60
minute ramps for both regions. For the Tehachapi Pass,
where the installed capacity was constant at 740 MW over
the analysis period, this results in the use of 75 MW and
90 MW thresholds for 30 minute ramps and 115 MW
and 150 MW thresholds for 60 minute ramps. For the
Columbia basin region, the installed capacity, which is
available only from October 2007 onwards, ranges from
a low of 922 MW to a high of 2617 MW at the end of the
analysis period. These percentages of installed capacity
were chosen so that the results at low capacity were not
only close to our choice of absolute thresholds, but also
led to a moderate number of days with ramps so that
we had roughly equal number of days with and without
ramps. A threshold set too low (or too high) would have
led to too many (or too few days) with ramp events.

• A way to determine if a day has ramps or not: We
considered several options. The first was to consider a day
to have a ramp event if any one of the intervals during the
day was part of a ramp event, regardless of its sign. This
option resulted in a two-class problem, where a day either
had a ramp or not. The second option considered this as
a four class problem, where a day was assigned a label
based on whether it had no ramps, only positive ramps,
only negative ramps, or both positive and negative ramps.
This, and other options with multiple classes based on
the severity or the number of ramps, were not considered
further as they led to too few examples of each of the
class labels indicating days with different types of ramps.

B. Weather data

There are several weather data sources available for
use in our analysis. In our work, we used the pub-
licly available data from the Western Regional Climate
Center (http://wrcc.dri.edu). Specifically, we used the Re-
mote Automated Weather Station (RAWS) data for Oregon
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Fig. 1. The Oregon-Washington border region, where the square box
indicates the region of the wind farms in the BPA BA. The small squares
indicate the meteorological tower locations from WRCC. The four circles
indicate the specific sites chosen in our analysis, which areat the follow-
ing latitude/longitude: Locks (45.669444, 121.881667); Patjens (45.322222,
120.925); Umatilla NWR (45.916667 119.566667); Wasco (45.61,121.33).

(http://www.raws.dri.edu/orF.html) and Southern California
(http://www.raws.dri.edu/scaF.html) for the Columbia Basin
and Tehachapi Pass regions, respectively.

For each region, we started by considering weather stations
near the area of the wind farms. These stations may not be at
the most favorable locations for use in analysis of wind-related
events as the locations were not selected for this purpose.
However, since we are using rather coarse temporal granularity
of a day, we wanted to investigate if the data from these
stations could still be useful in our analysis. In addition,as
the data from weather stations are often of poor quality, with
many missing values, and the wind farms are often spread
out over a large area, it is unlikely that we will always have
access to the most appropriate weather data for our analysis.
We also observe that we use the actual weather data, though
in practice, current and forecast weather data would need to
be used as indicators of ramp events.

Appendix A gives the list of 28 variables available for
a weather station. Note that some variables, such as the
day of the year or the day of the run (that is, the row
number in the data file) are irrelevant and are removed. Some
variables (barometric pressure and the average, maximum, and
minimum soil temperature) were missing for all days and
therefore, removed as well.

Once the initial cleanup was done, the data from each site
were further analyzed to determine how many values were
missing. For the Columbia Basin region, four sites (Locks,
Patjens, Umatilla, and Wasco) had no missing values and were
considered in our analysis (see Figure 1). For the Tehachapi
Pass region, three sites (Bearvalley, Jawbone, and Piutes)met
our criterion of no missing values and were therefore used in
the analysis (see Figure 2). For each region, the variables from
the selected weather stations were appended to form one long
vector which represented the values of the weather conditions
in the region for that day.

III. FEATURE SELECTION TECHNIQUES

The basic idea in our work is to determine which of the
many weather variables at the different sites in a region are
associated with ramp events in the wind energy generated
in that region. If we can determine a small set of such
variables, then the control room operators need only monitor

Fig. 2. The Southern California region, where the white cross indicates the
Tehachapi Pass area. The small squares indicate the meteorological tower lo-
cations from WRCC. The three circles indicate the specific sites chosen in our
analysis, which are at the following latitude/longitude: Jawbone (35.294722,-
118.226389); Bearvalley (35.139722, -118.625); and Piutes (35.431667, -
118.329722), with Tehachapi Pass located at (35.102222, -118.282778).

this small set. Further, these variables can also be used to
build classification models, such as decision trees or neural
networks, which can then be used to predict days likely to
have ramp events.

The task of identifying the key weather variables associated
with ramp events is one of dimension reduction, where the
dimension, which is the number of variables, is reduced so
that only the “important” ones are retained. This topic has
been extensively studied in the data mining literature [8].
While transform-based approaches, such as principal compo-
nent analysis, are an option for reducing the dimension, the
reduced dimensional representation is in the form of linear
combinations of the original variables, making it difficultto
identify which of the original variables are the important ones.

So, we focus on feature selection techniques, where a subset
of the original variables (or features) is identified as being
relevant to the target variable or the class (in our problem,
this would be the occurrence, or lack of occurrence, of ramp
events). We consider techniques called “filter” methods in
machine learning [8]. These are independent of any classifier
which may be used subsequent to the selection of the features.
They select features based on properties we would expect
of good feature subsets, such as class separability or high
correlation with the target. They are also computationallyless
expensive than the “wrapper” methods which evaluate the
subset selected using the classifier; however, this may lead
to the filter methods producing less accurate results when the
subset of features is used in classification.

We consider the following three filter methods in our
analysis:

• Distance filter: The distance filter calculates the class
separability of each feature using the Kullback-Leibler
(KL) distance between histograms of feature values. For
each feature, there is one histogram for each class. In
our two class problem, if a feature has a large distance
between the histograms for the two classes, then the
feature is likely to be an important feature. If, on the other
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hand, the histograms overlap, then the feature is unlikely
to be helpful in differentiating between days with and
without ramp events.
We discretized numeric features using

√

|D|/2 equally-
spaced bins, where|D| is the size of the data. The
histograms are normalized by dividing each bin count by
the total number of elements to estimate the probability
that thej-th feature takes a value in thei-th bin of the
histogram given a classn, pj(d = i|c = n). For each
featurej, we calculate the class separability as

∆j =

c
∑

m=1

c
∑

n=1

δj(m,n), (1)

wherec is the number of classes (= 2 for our problem)
and δj(m,n) is the KL distance between histograms
corresponding to classesm andn:

δj(m,n) =
b

∑

i=1

pj(d = i|c = m) log

(

pj(d = i|c = m)

pj(d = i|c = n)

)

,

(2)
whereb is the number of bins in the histograms.
The features are ranked simply by sorting them in de-
scending order of the distances∆j (larger distances mean
better separability).

• Chi-squared filter: This filter computes the Chi-square
statistics from contingency tables for every feature. The
contingency tables have one row for every class label
and the columns correspond to possible values of the
feature (see table III, adapted from [9]). Numeric features
are represented by histograms, so the columns of the
contingency table are the histogram bins.

TABLE I
A 2 × 3 CONTINGENCY TABLE, WITH OBSERVED AND EXPECTED

FREQUENCIES(IN PARENTHESIS) OF A FICTITIOUS FEATURE F1 THAT

TAKES ON 3 POSSIBLE VALUES(=1, 2,AND 3).

Class f1=1 f1=2 f1=3 Total
0 31 (22.5) 20 (21) 11 (18.5) 62
1 14 (22.5) 22 (21) 26 (18.5) 62

Total 45 42 37 124

The Chi-square statistic for featurej is

χ2
j =

∑

i

(oi − ei)
2

ei

,

where the sum is over all the cells in ther×c contingency
table, wherer is the number of rows andc is the
number of columns;oi stands for the observed value
(the count of the items corresponding to the celli in
the contingency table); andei is the expected frequency
of items calculated as:

ei =
(column total) × (row total)

grand total

The variables are ranked by sorting them in descending
order of theirχ2 statistics.

• Stump filter: This filter is derived from the process of
building a decision-tree classifier. Decision trees split the
data by examining each feature and finding the split that

TABLE II
PERCENTAGE OF DAYS WITH RAMP EVENTS OF A SPECIFIC DURATION

THAT EXCEED A SPECIFIC MAGNITUDE(IN MW AS A PERCENTAGE OF THE

INSTALLED CAPACITY) FOR THETEHACHAPI PASS AND COLUMBIA BASIN

REGIONS.

Region 30 min. 30 min. 60 min. 60 min.
10% 12% 15% 20%

Tehachapi Pass 42% 28% 43% 23%
Columbia Basin 50% 34% 54% 29%

optimizes an impurity measure. To search for the optimal
split of a numeric featurex, the feature values are sorted
(x1 < x2 < ... < xn) and all intermediate values(xi +
xi+1)/2 are evaluated as possible splits using a given
impurity measure. The features are then ranked according
to their optimal impurity measures.
There are several options we can use for the impurity
measure. In our work, we use the Gini index [10] which
is based on finding the split that most reduces the node
impurity, where the impurity for ac class problem is
defined as follows:

LGini = 1.0 −

c
∑

i=1

(Li/|TL|)
2

RGini = 1.0 −
c

∑

i=1

(Ri/|TR|)
2

Impurity = (|TL| ∗ LGini + |TR| ∗ RGini)/n

where|TL| and|TR| are the number of examples,Li and
Ri are the number of instances of classi, andLGini and
RGini are the Gini indices on the left and right side of
the split, respectively.
A stump is a decision tree with only the root node; the
stump filter ranks features using the same process as the
one used to create the root node.

IV. EXPERIMENTAL RESULTS

We combine the weather data for each day (described
in Section II-B) with a class label derived from the wind-
generation data (Section II-A) that indicates if the day hasat
least one occurrence of a ramp event. For each of the two
regions under consideration (Tehachapi Pass and Columbia
Basin), we have four files, corresponding to 30 minute ramp
events at 10% and 12% installed capacity and 60 minute ramps
at 15% and 20% installed capacity. The Tehachapi Pass files
include weather data from three meteorological sites and cover
the time period 2007-2008 (731 days). The Columbia Basin
files have data from four meteorological sites and cover the
time period from October 2007 through December 2009 (819
days). Table IV summarizes the percentage of days in each file
which have ramp events of a certain magnitude and duration.

A. Initial Processing

We first observed that for each of the weather sites, once
we removed the irrelevant variables (the first four in the list in
Appendix A), several of the remaining variables are correlated,
for example, the air temperature and the fuel temperature, or
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the two definitions of growing degree days, or the heating
degree days and the air temperature average, maximum, and
minimum. In addition, the variables could be correlated across
the meteorological sites as well, for example, two nearby sites
might have correlated air temperatures.

We addressed the issues of correlated variables by remov-
ing them before the feature selection. These variables were
identified using the Pearson correlation coefficient. Giventwo
vectors,x and y, each of lengthn, the Pearson correlation
coefficient between them is given by

1

n

∑n

i=1
(xi − x̄)(yi − ȳ)

σ(x) σ(y)

where xi is the i-th element of the vectorx, x̄ is its mean
value, andσ(x) is its standard deviation.

Once the highly correlated variables within a site were
removed, the remaining variables (see Appendix B) were used
in feature selection. This resulted in a total of 28 and 21
variables for the Columbia Basin and Tehachapi Pass sites,
respectively.

In addition, we could have pre-processed the data further
to remove potential outliers and variables correlated across
sites. This was not done as we wanted to ensure that small
scale weather phenomena, which might affect one site, but
not another nearby site, would be included in the analysis.
Also, some variable values which appeared as outliers, were
not really outliers, such as the few days when precipitationat
a site was high.

We also introduced into each dataset a column containing a
random noise variable which is uniformly distributed in thein-
terval [0,1]. Variables ranked lower than the noise variable are
discarded as they are unlikely to be relevant. In addition, the
noise variable can also serve as an indicator of the confidence
we can have in the results of a feature selection algorithm -
an algorithm which ranks the noise variable relatively high,
while other algorithms rank it much lower for the same data
set, might indicate the inappropriateness of the algorithmfor
that data set.

B. Results for Columbia Basin

Tables III and IV list the top seven variables identified by
each of the three methods for the Columbia Basin region for
30 and 60 minute ramps, respectively. The variables associated
with the four weather sites of Locks, Patjens, Umatilla and
Wasco, are represented using the prefixes L, P , U , and
W , respectively.

We make several observations on these tables. First, all three
methods find certain common variables to be important (these
are indicated by bold letters in the tables). The number of these
variables can range from 4 to 6, depending on the duration and
strength of the ramp event. Of the remaining variables, often
two of the methods rank them in the top seven. Second, we
observe that most of the top seven variables are quantities
related to wind speed, representing the average wind speed,
the speed gusts, and the wind direction. Third, certain weather
sites tend to occur more frequently in the top seven variables;
these are Wasco and Patjens, with Locks occurring rarely.

TABLE III
SEVEN OF THE TOP-RANKED VARIABLES FOR 30 MIN RAMPS USING (TOP)

10% AND (BOTTOM) 12% THRESHOLDS FORCOLUMBIA BASIN.
VARIABLES IN BOLD ARE COMMON ACROSS ALL THREE METHODS.

Distance Chi-squared Stump
filter filter filter
W speed g W speed g W speed g
P speed g W speed avg W speed avg
W speed avg P speed g U speed g
W dir W dir P speed g
U speed g U speed g W dir
P speedavg U speedavg P speedavg
L dir L dir L dir

Distance Chi-squared Stump
filter filter filter
W speed g W speed g W speed g
P speed g P speed g P speed g
P speedavg U speed g U speed g
W speed avg W dir W speed avg
U speed g W speed avg U speedavg
P dir P dir W dir
W dir U speedavg L precip

TABLE IV
SEVEN OF THE TOP-RANKED VARIABLES FOR 60 MIN RAMPS USING (TOP)

15% AND (BOTTOM) 20% THRESHOLDS FORCOLUMBIA BASIN.
VARIABLES IN BOLD ARE COMMON ACROSS ALL THREE METHODS.

Distance Chi-squared Stump
filter filter filter
W speed g W speed g W speed g
P speed g W speed avg W speed avg
W speed avg W dir W dir
W dir P speed g P speed g
U speed g U speed g U speed g
P speedavg L dir U speedavg
L dir U speedavg L dir

Distance Chi-squared Stump
filter filter filter
W speed g W speed g W speed g
W speed avg P speed g P speed g
P speed g U speed g U speed g
P speedavg W speed avg W speed avg
U speed g P dir L precip
L speedavg U speedavg U speedavg
U atemp avg W dir W dir

We also observed that certain variables such as solar radi-
ation are usually ranked low, indicating that they do not need
to be monitored closely.

As we considered the top-ranked variables that are associ-
ated with ramp events of various durations and magnitudes, it
was obvious to ask if we could build a predictive model (such
as a decision tree or neural network) which could predict if a
day was likely to have ramp events. Figures 3 and 4 show how
the error rate of a decision tree, created using the Gini impurity
measure, changes for the three feature selection algorithms as
we use only the topk important variables to build the tree.
This error rate was obtained using 10-fold cross-validation.

These results show that as the number of variables is
increased, the error rate first reduces as the important dis-
criminative variables are added to the subset considered. It
then often increases with the addition of the less relevant
variables. The noise variable (indicated by the large purple dot)
is usually the lowest ranked variable. These plots also indicate
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Fig. 3. Error rates for a decision tree created using the top kvariables for 30 min ramps using (a) 10% and (b) 12% thresholds for the Columbia Basin
data. The purple dot is the noise variable.
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Fig. 4. Error rates for a decision tree created using the top kvariables for 60 min ramps using (a) 15% and (b) 20% thresholds for the Columbia Basin
data. The purple dot is the noise variable.

that the lowest error rate is usually obtained with far fewer
variables than available, implying that control room operators
need to monitor only these variables. Further, a decision tree
can result in lower error rate in predicting ramp events than
random guessing (50% error rate) or assigning the majority
label based on the training set. For example, 34% of the days
have 30 minute ramps at 12% threshold in Columbia Basin.
So, a prediction that every day is a non-ramp day would be
wrong 34% of the time. However, a decision tree using 5 of
the 21 variables would give an error rate of around 26.5%.
This error can be reduced further through the use of more
sophisticated models, such as ensembles of trees, or by using
better quality weather data at more appropriate locations.

C. Results for Tehachapi Pass

Tables V and VI list the top seven variables identified by
each of the three methods for the Tehachapi Pass region for
30 and 60 minute ramps, respectively. The variables associated
with the three weather sites of Bearvalley, Jawbone, and Piutes,
are represented using the prefixes B, J , and P , respectively.

As in the case of the Columbia Basin data, we observe
that all three methods find certain common variables to be
important (these are indicated by bold letters in the tables). The

TABLE V
SEVEN OF THE TOP-RANKED VARIABLES FOR 30 MIN RAMPS USING (TOP)

75MW AND (BOTTOM) 90MW THRESHOLDS FORTEHACHAPI PASS.
VARIABLES IN BOLD ARE COMMON ACROSS ALL THREE METHODS.

Distance Chi-squared Stump
filter filter filter
J speed g B rhumidity avg J rhumidity avg
B rhumidity avg J rhumidity avg B rhumidity avg
J rhumidity avg J speed g J speed g
B atemp avg B atemp avg B atemp avg
J precip J atemp avg J atemp avg
J atemp avg P speed g B precip
P speed g P dir P speed g

Distance Chi-squared Stump
filter filter filter
J speed g B rhumidity avg J rhumidity avg
J speedavg J rhumidity avg B rhumidity avg
B rhumidity avg J speed g J speed g
J rhumidity avg B atemp avg B atemp avg
B atemp avg J atemp avg J atemp avg
J dir P dir B precip
J atemp avg P speedavg P speedavg

number of these variables can range from 5 to 6, depending on
the duration and strength of the ramp event. Of the remaining
variables, often two of the methods rank them in the top seven.
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TABLE VI
SEVEN OF THE TOP-RANKED VARIABLES FOR 60 MIN RAMPS USING (TOP)
115 MW AND (BOTTOM) 150 MW THRESHOLDS FORTEHACHAPI PASS.

VARIABLES IN BOLD ARE COMMON ACROSS ALL THREE METHODS.

Distance Chi-squared Stump
filter filter filter
J speed g B rhumidity avg B rhumidity avg
B rhumidity avg J rhumidity avg J rhumidity avg
J rhumidity avg J speed g J speed g
J dir J dir J speed avg
J speed avg B atemp avg J dir
B dir B dir B atemp avg
B atemp avg J speed avg J atemp avg

Distance Chi-squared Stump
filter filter filter
J speed g B rhumidity avg B rhumidity avg
B atemp avg J rhumidity avg J rhumidity avg
B rhumidity avg B atemp avg B atemp avg
J rhumidity avg J speed g J atemp avg
J atemp avg J atemp avg J speed g
J speedavg P atemp avg P atemp avg
P atemp avg P dir B precip

However, unlike the data from the Columbia Basin, not all the
top ranked variables are related to wind speed. For example,
the average relative humidity at the Jawbone and Bearvalley
sites are considered important variables, as are the average air
temperatures at the three sites.

In addition, we observed that wind speed variables at
the Jawbone site are considered important, though the same
variables at the Bearvalley site do not occur in the top-ranked
variables. A further investigation indicated that the speed gust
at Bearvalley was usually the lowest ranked variable, often
even below the noise variable. We found that this variable had
many erroneous values - for example, of the total of 731 days
in the study, 112 days had speed gusts in Bearvalley of 44.70
m/s, indicating perhaps an inoperative sensor. And finally,as
in the case of Columbia Basin, solar radiation was typicallya
low ranked variable.

Figures 5 and 6 show the error rates for a decision tree
created using the top-ranked variables. The observations made
for the Columbia Basin data are valid in this case as well.

V. CONCLUSIONS AND FUTURE WORK

In this paper we used feature selection techniques from data
mining to identify important weather variables associatedwith
ramp events in wind generation in two regions - Tehachapi
Pass and Columbia Basin. We showed that certain variables
were identified by the three methods as being important
indicators of days with ramp events. In addition, using a
simple decision tree model, we showed that we could use these
important variables to predict days with ramp events.

Our future work involves a more careful analysis of the
weather data to understand why specific variables at specific
sites are considered important as well as the use of better
quality weather data from more appropriate locations. We will
also investigate better models to determine if they can make
more accurate predictions of days with ramp events.

APPENDIX A
L IST OF WEATHER VARIABLES FROM EACH

METEOROLOGICAL STATION

The WRCC weather stations provide summary information
on the following twenty-eight variables (along with units)for
each day:

1 Date
2 Year
3 Day of year
4 Day of run
5 Solar Rad. total kW-hr/m2
6 Speed average m/s
7 Wind dir vector deg
8 Speed Gust m/s
9 Air temp Average deg C
10 Air temp Maximum deg C
11 Air temp Minimum deg C
12 Fuel Temp Average deg C
13 Fuel Temp Maximum deg C
14 Fuel Temp Minimum deg C
15 Soil temp Average deg C
16 Soil temp Maximum deg C
17 Soil temp Minimum deg C
18 Relative humidity Average percent
19 Relative humidity Maximum percent
20 Relative humidity Minimum percent
21 Barometric Pressure Average mbar
22 ASCE Et. total mm
23 Penman Et. total mm
24 Heating Degree Days
25 Cooling Degree Days
26 Growing Degree Days Base 40
27 Growing Degree Days Base 50
28 Precipitation Total mm

APPENDIX B
UNCORRELATED WEATHER VARIABLES FROM EACH

METEOROLOGICAL STATION

The following seven weather variables were used for each
meteorological site:

1 Solar Rad. total kW-hr/m2
2 Speed average m/s
3 Wind dir vector deg
4 Speed Gust m/s
5 Air temp Average deg C
6 Relative humidity Average percent
7 Precipitation Total mm
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Fig. 5. Error rates for a decision tree created using the top kvariables for 30 min ramps using (a) 75 MW and (b) 90 MW thresholds for the Tehachapi
Pass data. The purple dot is the noise variable.
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Fig. 6. Error rates for a decision tree created using the top kvariables for 60 min ramps using (a) 115 MW and (b) 150 MW thresholds for the Tehachapi
Pass data. The purple dot is the noise variable.
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