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Abstract—As the percentage of wind energy on the power or days, and, based on their prior experience, as well as the
grid increases, the intermittent nature of this energy source can current weather conditions, appropriately schedule thedwi
make it difficult to keep the generation and the load balanced. energy for the upcoming hour. This is understandably difficu

While wind speed forecasts can be helpful, they can often be d | fi diti but duri
inaccurate. In such cases, we are interested in providing the under normal operating conditions, but more So during ramp

control room operators additional relevant information they can ~ €vents.
exploit to make well informed scheduling decisions. In this paper, In the case of positive ramps, where the wind energy
we investigate if weather conditions in the region of the wind increases by a large amount over a short period, the operator
farms can be effective indicators of days when ramp events are ot reduce other generation to keep the load balancedisThis
likely. Using feature selection techniques from data mining, we . .-

a challenge if the positive ramp had not been forecast and the

show that some variables are more important than others and . )
offer the potential of data-driven predictive models for days vith ~ Other generation cannot be reduced at short notice. In dase o

ramp events. a negative ramp event, the operators must have enough backup
Index Terms—wind energy, ramp events, weather conditions, POWer to keep the load balanced. Having this additional back
feature selection. up might not be cost-effective, especially if a negative pam

is predicted but does not occur.

These issues point to several ways in which we can make it
easier to schedule wind energy. For example, we can improve
A S renewable resources, such as wind, start providifge forecasts provided to the operators by using better com-

an increasing percentage of our energy needs, we n§gflational models, higher resolution models, or by driving
to understand these resources better so we can successiybyels using more appropriate weather data [2]. Or, we can
manage their integration into the grid. A key challenge WitBrovide appropriate additional information so the opest@mn
wind energy is that it is intermittent. We can have daygake better informed scheduling decisions when the fotecas
when the wind does not blow, as well as time intervals wheg inaccurate. Typically, control room operators have asce
there is a sudden sharp increase or decrease in the WjQjifferent meteorological data from several weathericiat
speed over a short period of time, leading to ramp everffough not all of these data are useful or relevant. If we can
in the power generated. It can also be difficult to forecagientify the ones which are associated with extreme events f
wind speed accurately using numerical weather predictigfind farms in a specific region, then the operators can monito
models [1], especially in regions where the terrain is c@Rpl gnly those data streams for use in scheduling decisions.
and the meteorological processes controlling the wind gpee | this paper, we describe how we can analyze historical
are difficult to model. data to determine if there are specific weather conditioristwh

These issues are not a major problem when the percentage associated with ramp events. In Section |1, we deschiée t
of wind energy within a balancing area is small. Howeveging and weather data and outline the techniques for satgcti
as the percentage increases, it becomes increasinglyuttiffiqey weather variables in Section 1ll. Section IV describes
for control room operators to schedule wind energy and kegie results using our test-bed data sets and we conclude in

energy markets levy a high penalty when a wind farm is unable

provide the energy scheduled.

In a typical scenario, a control room operator schedules
wind energy using a forecast of the energy expected in thewe conduct our analysis using wind energy and weather
next hour from the wind farms in the balancing area. Thigata from two regions - the Tehachapi Pass in Southern
forecast is based on data from meteorological towers in ti@&ilifornia and the Columbia Basin region on the Oregon-
region or derived through numerical weather prediction eied Washington border. The wind generation data are available a
in combination with meteorological data. The forecasts ang minute intervals for the Tehachapi Pass and at 5 minute
usually provided for several hours ahead and updated houihtervals for the Columbia Basin region. In contrast, the
If the forecast is accurate, there are no issues in schefuligeather data are available at different temporal resaistio
the wind energy. When the forecast is inaccurate, the opsratfrom several meteorological towers in the two regions.
might look at the actual wind generation for the previousrsou A key issue in our work is the temporal resolution we should

o _ , , use for the analysis. If we use a very fine granularity, say

C. Kamath is with the Lawrence Livermore National Laboratbiyermore,

CA 94551 USA e-mail: kamath2@linl.gov (see http://peopiediov/kam every 5-10 minutes, it has _Certain_ implicati_ons which must
ath2). be addressed for the analysis to give meaningful results. Th
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meteorological towers for which weather data are available «
are usually not at the site of the wind farms, but several snile
away. So, we need to account for a lag (or lead) between
the weather measurements and the ramp events, which ca#
be difficult as the lag or lead may vary with the weather
conditions. In addition, the weather measurements tend to
be quite noisy, and any analysis done using fine granularity
data are likely to be error-prone. So, in this initial studye
focus on weather data available as daily averages and associ
them with days which either have or do not have ramps of
a certain magnitude occurring over a specified time interval
The use of daily averages smooths out the error in the weather
measurements and avoids the problem of accounting for a lag
or lead between the wind speed at the site of a tower and
at the site of the wind farm. In addition, the daily weather
summary data are publicly available, while the finer tempora
granularity data are not.

A. Wind generation data

We conduct our study using actual wind generation data
from wind farms in Tehachapi Pass (Southern California) for
the years 2007-2008 and Columbia Basin (border of Oregon
and Washington) for the years 2007-2009 [3], [4]. We chose
data from the recent past as any analysis of these data lig like
to be more relevant. Also, the last few years have seen a large
increase in installed wind power, which makes this analysis
timely. For example, in the Bonneville Power Administratio
(BPA) balancing area, which includes the Columbia Basin
wind farms, the installed wind capacity has increased from
700 MW in 2006-2007 to over 1300 MW in 2008 and more
than 2600 MW in 2009 [5], [6].

The Columbia Basin data available for the period 2007-
2009 are the total generation from all the wind farms in the
BPA balancing area [7], sampled at 5 minute intervals. There
are missing values in the data - if values were missing for
one or two consecutive intervals, they were filled-in using
interpolation, while longer periods were replaced by “-999
to indicate such values for future processing. In additian,
reduce the noise in the wind energy data, we smoothed the
original data by two applications of a mean filter of size 3.

The Tehachapi Pass wind generation data are sampled
more coarsely than the Columbia Basin data. These data are
available at 15 minute intervals for the Vincent and Antelop
regions. As these regions are close by, their wind generatio
is very similar, and we consider the sum of the generation
in our analysis. Also, the generation from the Antelope oagi
occasionally had small negative values which were replaged
zero before being added to the data from the corresponding in
terval from the Vincent region. Unlike the data from Coluibi
basin, no smoothing was used, as it would have adversely
affected the calculation of 30 and 60 minute ramps [4].

The time interval AT: We considered two cases - 30
minutes and 60 minutes as these are durations typically
considered for ramps.

The threshold T'r: This choice was harder. We first se-
lected an absolute threshold of 120 MW and 240 MW for
the 30 minute and 60 minute ramps, respectively, for the
Columbia Basin data. An absolute threshold made sense
as it gives operators a sense of how much back-up gen-
eration they need or how much they should reduce other
generation. However, in the case of Columbia Basin, as
the installed wind capacity increased substantially dyrin
the analysis period, use of a fixed threshold resulted in
many more ramps being identified during the latter part
of the period. So, a day with certain weather conditions
early in the analysis period may have no ramps, while a
day with similar weather conditions later in the analysis
period could have many ramps. To avoid this unintended
consequence of the increase in installed capacity on our
analysis, we used a percentage of the installed capacity
on any day as the threshold.

We considered thresholds of 10% and 12% of capacity
for 30 minute ramps and 15% and 20% of capacity for 60
minute ramps for both regions. For the Tehachapi Pass,
where the installed capacity was constant at 740 MW over
the analysis period, this results in the use of 75 MW and
90 MW thresholds for 30 minute ramps and 115 MW
and 150 MW thresholds for 60 minute ramps. For the
Columbia basin region, the installed capacity, which is
available only from October 2007 onwards, ranges from
a low of 922 MW to a high of 2617 MW at the end of the
analysis period. These percentages of installed capacity
were chosen so that the results at low capacity were not
only close to our choice of absolute thresholds, but also
led to a moderate number of days with ramps so that
we had roughly equal number of days with and without
ramps. A threshold set too low (or too high) would have
led to too many (or too few days) with ramp events.

« A way to determine if a day has ramps or not: We

considered several options. The first was to consider a day
to have a ramp event if any one of the intervals during the
day was part of a ramp event, regardless of its sign. This
option resulted in a two-class problem, where a day either
had a ramp or not. The second option considered this as
a four class problem, where a day was assigned a label
based on whether it had no ramps, only positive ramps,
only negative ramps, or both positive and negative ramps.
This, and other options with multiple classes based on
the severity or the number of ramps, were not considered
further as they led to too few examples of each of the
class labels indicating days with different types of ramps.

For both regions, we define a ramp event, of magnitiide B. Weather data

in MW, to occur between time intervalB and (T + AT) if

max(MW[T,T + AT]) — min(MW [T, T + AT)) > Tr.

There are several weather data sources available for
use in our analysis.
licly available data from the Western Regional Climate

In our work, we used the pub-

Thus, to identify days when ramp events have occurred, @enter (http://wrcc.dri.edu). Specifically, we used the- Re

need to select the following:

mote Automated Weather Station (RAWS) data for Oregon



Fig. 1.  The Oregon-Washington border region, where the reqimx

indicates the region of the wind farms in the BPA BA. The smallasgs
indicate the meteorological tower locations from WRCC. Tharfaircles

indicate the specific sites chosen in our analysis, whichaarthe follow-

ing latitude/longitude: Locks (45.669444, 121.881667afjéhs (45.322222,
120.925); Umatilla NWR (45.916667 119.566667); Wasco (4351.33).

Fig. 2. The Southern California region, where the white srwglicates the
Tehachapi Pass area. The small squares indicate the metgoablmwer lo-
(http://www.raws.dri.edu/orF.html) and Southern Califia cations from WRCC. The three circles indicate the specifessthosen in our

. ; ; analysis, which are at the following latitude/longitudewbone (35.294722,-
(http://www.raws.dri.edu/scaF.html) for the Columbia sBa 118.226389); Bearvalley (35.139722, -118.625): and Bil@5.431667, -

and Tehachapi Pass regions, respectively. 118.329722), with Tehachapi Pass located at (35.102228,282778).
For each region, we started by considering weather stations

near the area of the wind farms. These stations may not be at
the most favorable locations for use in analysis of win@wed this small set. Further, these variables can also be used to
events as the locations were not selected for this purpobeild classification models, such as decision trees or heura
However, since we are using rather coarse temporal gratyulanetworks, which can then be used to predict days likely to
of a day, we wanted to investigate if the data from thedeave ramp events.
stations could still be useful in our analysis. In additi@s,  The task of identifying the key weather variables assodiate
the data from weather stations are often of poor qualityhwiwith ramp events is one of dimension reduction, where the
many missing values, and the wind farms are often sprediiension, which is the number of variables, is reduced so
out over a large area, it is unlikely that we will always havénhat only the “important” ones are retained. This topic has
access to the most appropriate weather data for our analybisen extensively studied in the data mining literature [8].
We also observe that we use the actual weather data, thoWghile transform-based approaches, such as principal compo-
in practice, current and forecast weather data would needrtent analysis, are an option for reducing the dimension, the
be used as indicators of ramp events. reduced dimensional representation is in the form of linear
Appendix A gives the list of 28 variables available forcombinations of the original variables, making it difficatt
a weather station. Note that some variables, such as tentify which of the original variables are the importamies.
day of the year or the day of the run (that is, the row So, we focus on feature selection technigues, where a subset
number in the data file) are irrelevant and are removed. Somethe original variables (or features) is identified as lgein
variables (barometric pressure and the average, maximuun, aelevant to the target variable or the class (in our problem,
minimum soil temperature) were missing for all days anthis would be the occurrence, or lack of occurrence, of ramp
therefore, removed as well. events). We consider techniques called “filter” methods in
Once the initial cleanup was done, the data from each siteachine learning [8]. These are independent of any classifie
were further analyzed to determine how many values wewhich may be used subsequent to the selection of the features
missing. For the Columbia Basin region, four sites (LockJhey select features based on properties we would expect
Patjens, Umatilla, and Wasco) had no missing values and wefegood feature subsets, such as class separability or high
considered in our analysis (see Figure 1). For the Tehachapirelation with the target. They are also computationklls
Pass region, three sites (Bearvalley, Jawbone, and Pimets) expensive than the “wrapper” methods which evaluate the
our criterion of no missing values and were therefore used $ubset selected using the classifier; however, this may lead
the analysis (see Figure 2). For each region, the variabdes f to the filter methods producing less accurate results when th
the selected weather stations were appended to form one lgo@set of features is used in classification.
vector which represented the values of the weather comditio We consider the following three filter methods in our

in the region for that day. analysis:
« Distance filter: The distance filter calculates the class
Ill. FEATURE SELECTION TECHNIQUES separability of each feature using the Kullback-Leibler

The basic idea in our work is to determine which of the  (KL) distance between histograms of feature values. For
many weather variables at the different sites in a region are each feature, there is one histogram for each class. In
associated with ramp events in the wind energy generated our two class problem, if a feature has a large distance
in that region. If we can determine a small set of such between the histograms for the two classes, then the
variables, then the control room operators need only monito  feature is likely to be an important feature. If, on the other



TABLE Il

hand, the histograms overlap, then the feature is unlikelypercentace oF bAYS WiTH RAMP EVENTS OF A SPECIFIC DURATION
to be helpful in differentiating between days with andHAT EXCEED A SPECIFIC MAGNITUDE(IN MW AS A PERCENTAGE OF THE

without ramp events.

We discretized numeric features usiRg D[/2 equally-
spaced bins, wheréD| is the size of the data. The
histograms are normalized by dividing each bin count by
the total number of elements to estimate the probability
that the j-th feature takes a value in theth bin of the
histogram given a class, p;(d = ilc = n). For each
featurej, we calculate the class separability as

Aj=2 > 8i(m.m),
m=1n=1
wherec is the number of classes (= 2 for our problem)
and §;(m,n) is the KL distance between histograms
corresponding to classes andn:

1)

b .
j\m,n) = i(d=1ilc=m)lo pj(d=ilc=m)
simm =3 _pi(a=i iog (2= =),

whereb is the number of bins in the histograms.

The features are ranked simply by sorting them in de-
scending order of the distanceés (larger distances mean
better separability).

Chi-squared filter: This filter computes the Chi-square
statistics from contingency tables for every feature. The
contingency tables have one row for every class label
and the columns correspond to possible values of the
feature (see table Ill, adapted from [9]). Numeric features
are represented by histograms, so the columns of the
contingency table are the histogram bins.

TABLE |
A 2 X 3 CONTINGENCY TABLE, WITH OBSERVED AND EXPECTED
FREQUENCIES(IN PARENTHESI9 OF A FICTITIOUS FEATURE H THAT
TAKES ON 3 POSSIBLE VALUES(=1, 2,AND 3).

Class | f1=1 f1=2 f1=3 Total
0| 31(225) 20(21) 11 (18.5) 62
1| 14(225) 22(21) 26 (18.5) 62
Total | 45 42 37 124

The Chi-square statistic for featuyeis

2
2 _ (0i — ;)

. 7
7

INSTALLED CAPACITY) FOR THETEHACHAPI PASS AND COLUMBIA BASIN

REGIONS

30 min. 30 min.
10% 12%

60 min.
15%

60 min.
20%

Region

42% 28%
50% 34%

43%
54%

23%
29%

Tehachapi Pass
Columbia Basin

optimizes an impurity measure. To search for the optimal
split of a numeric feature, the feature values are sorted
(1 < 22 < ... < z,) and all intermediate valueg:; +
x;4+1)/2 are evaluated as possible splits using a given
impurity measure. The features are then ranked according
to their optimal impurity measures.

There are several options we can use for the impurity
measure. In our work, we use the Gini index [10] which
is based on finding the split that most reduces the node
impurity, where the impurity for ac class problem is
defined as follows:

Laini = 1.0 =Y (L:i/|Ty|)?
=1

Rgini = 1.0 = > (Ri/|Trl)?

=1

where|T| and|Tr| are the number of examples; and

R; are the number of instances of classand Lg;,,; and
Rgini are the Gini indices on the left and right side of
the split, respectively.

A stump is a decision tree with only the root node; the
stump filter ranks features using the same process as the
one used to create the root node.

IV. EXPERIMENTAL RESULTS

We combine the weather data for each day (described
in Section II-B) with a class label derived from the wind-
generation data (Section II-A) that indicates if the day ags
least one occurrence of a ramp event. For each of the two
regions under consideration (Tehachapi Pass and Columbia
Basin), we have four files, corresponding to 30 minute ramp
events at 10% and 12% installed capacity and 60 minute ramps

where the sum is over all the cells in the c contingency at 15% and 20% installed capacity. The Tehachapi Pass files
table, wherer is the number of rows and is the include weather data from three meteorological sites angrco

number of columnsp; stands for the observed valuethe time period 2007-2008 (731 days). The Columbia Basin
(the count of the items corresponding to the cglin  files have data from four meteorological sites and cover the
the contingency table); and is the expected frequencytime period from October 2007 through December 2009 (819
of items calculated as: days). Table IV summarizes the percentage of days in each file

(column total) x (row total) which have ramp events of a certain magnitude and duration.

P =

grand total

The variables are ranked by sorting them in descendifly Initial Processing

order of theiry? statistics. We first observed that for each of the weather sites, once
Stump filter: This filter is derived from the process ofwe removed the irrelevant variables (the first four in theilis
building a decision-tree classifier. Decision trees spkt t Appendix A), several of the remaining variables are cotesla
data by examining each feature and finding the split thidr example, the air temperature and the fuel temperature, o



TABLE Il

the two definitions of growing degree days, or the_ heating:en oF THE TORRANKED VARIABLES FOR 30 MIN RAMPS USING (TOP)
degree days and the air temperature average, maximum, and 10%AND (BOTTOM) 12% THRESHOLDS FORCOLUMBIA BASIN.

minimum. In addition, the variables could be correlatecbasr
the meteorological sites as well, for example, two nearbgssi

VARIABLES IN BOLD ARE COMMON ACROSS ALL THREE METHODS

) . Distance Chi-squared Stump
might have correlated air temperatures. filter filter filter
We addressed the issues of correlated variables by remov- \Q’-Spe‘?lg W-Speeg-g \\;VV-SPeeg-g
. - . _speedg _speed avg _speed avg
ing thgm before the feature seIecuqn. Thege_ vanab]es were W speedavg P speedg U_speedg
identified using the Pearson correlation coefficient. Gitweo w_dir W _dir P_speedg
vectors,x andy, each of lengthn, the Pearson correlation U_speedg U_speedg W_dir
fficient between them is given b P_speedavg Uspeedavg  Pspeedavg
coemcien 9 y L_dir L _dir L _dir
1" (2 —Z)(y; — @
—Z“l( ! )('% y) Distance Chi-squared Stump
n o(x) o(y) filter filter filter
s . . W _speedg W_speedg W_speedg
where z; is the_|-t_h element of th_e yectot, Z is its mean P speedg P speedg P speedg
value, ando (z) is its standard deviation. P_speedavg  U_speedg U_speedg
Once the highly correlated variables within a site were \L/JV_SPe%ClaVG VV\\;_dif J VL\J/_SPe%(lan
- . . _speedg _speedavg _speedavg
_removed, the remaining yarlables (se_e Appendix B) were used P dir P dir W_dir
in feature selection. This resulted in a total of 28 and 21 W_dir U_speedavg  L_precip
variables for the Columbia Basin and Tehachapi Pass sites,
TABLE IV

respectively.

In addition, we could have pre-processed the data furth&r”

EN OF THE TOPRANKED VARIABLES FOR 60 MIN RAMPS USING (TOP)
15%AND (BOTTOM) 20% THRESHOLDS FORCOLUMBIA BASIN.

to remove potential outliers and variables correlated $£r0  VARIABLES IN BOLD ARE COMMON ACROSS ALL THREE METHODS

sites. This was not done as we wanted to ensure that small

scale weather phenomena, which might affect one site, but 'fﬁitztrance ﬁﬁgri'sq“ared ﬁltgﬁump
not another nearby site, would be included in the analysis. W_speedg W_speedg W_speedg
Also, some variable values which appeared as outliers, were P_speedg W_speedavg ~W_speedavg
f P W_speedavg W_dir W _dir
not really outliers, such as the few days when precipitaéibn J
. . W _dir P_speedg P_speedg
a site was high. U_speedg U_speedg U_speedg
We also introduced into each dataset a column containing a P_speedavg  L_dir U_speedavg
random noise variable which is uniformly distributed in the L_dir U_speedavg  L_dir
terval [0,1]. Variables ranked lower than the noise vagadne _ ,
discarded as they are unlikely to be relevant. In additibe, t piotance ﬁﬁgr"sq“ared oump
noise variable can also serve as an indicator of the confedenc W_speedg W_speedg W_speedg
we can have in the results of a feature selection algorithm - W_speedavg P speedg P_speedg
an algorithm which ranks the noise variable relatively high P_speedg Uspeedg — U._speedg
. . . P_speedavg W_speedavg W_speedavg
while other algorithms rank it much lower for the same data U_speedg P_dir L_precip
set, might indicate the inappropriateness of the algoritbm L_speedavg  Uspeedavg U speedavy
that data set. U_atempavg  W._dir W_dir

B. Results for Columbia Basin We also observed that certain variables such as solar radi-

Tables IIl and IV list the top seven variables identified bytion are usually ranked low, indicating that they do notdhee
each of the three methods for the Columbia Basin region ftor be monitored closely.
30 and 60 minute ramps, respectively. The variables agsocia As we considered the top-ranked variables that are associ-
with the four weather sites of Locks, Patjens, Umatilla anated with ramp events of various durations and magnitudes, i
Wasco, are represented using the prefixes B, U_, and was obvious to ask if we could build a predictive model (such
W_, respectively. as a decision tree or neural network) which could predict if a

We make several observations on these tables. First, at thday was likely to have ramp events. Figures 3 and 4 show how
methods find certain common variables to be important (these error rate of a decision tree, created using the Gini fitypu
are indicated by bold letters in the tables). The numberegeh measure, changes for the three feature selection algaidsm
variables can range from 4 to 6, depending on the duration and use only the tog: important variables to build the tree.
strength of the ramp event. Of the remaining variables,noftd his error rate was obtained using 10-fold cross-validatio
two of the methods rank them in the top seven. Second, weThese results show that as the number of variables is
observe that most of the top seven variables are quantitiesreased, the error rate first reduces as the important dis-
related to wind speed, representing the average wind speetininative variables are added to the subset consideted. |
the speed gusts, and the wind direction. Third, certain knerat then often increases with the addition of the less relevant
sites tend to occur more frequently in the top seven var&gblezariables. The noise variable (indicated by the large mudpolt)
these are Wasco and Patjens, with Locks occurring rarely. is usually the lowest ranked variable. These plots alsaatdi
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that the lowest error rate is usually obtained with far fewese\en or tHE ToRRANKED VARIABLES FOR 30 MIN RAMPS USING (TOP)

variables than available, implying that control room opers:
need to monitor only these variables. Further, a decisiea tr

75MW AND (BOTTOM) 90MW THRESHOLDS FORTEHACHAPI PASS.
VARIABLES IN BOLD ARE COMMON ACROSS ALL THREE METHODS

can result in lower error rate in predicting ramp events than

’ B oe Distance Chi-squared Stump
random guessing (50% error rate) or assigning the majority filter filter filter
label based on the training set. For example, 34% of the days J-speedg B_rhumidity _avg  J_rhumidity _avg

have 30 minute ramps at 12% threshold in Columbia Basin.

B_rhumidity _avg

J_rhumidity _avg

B_rhumidity _avg

o . J_rhumidity _avg  J speedg J_speedg
So, a prediction that every day is a non-ramp day would be B_atemp_avg B_atemp_avg B_atemp_avg
wrong 34% of the time. However, a decision tree using 5 of »J]_PfteC'p é_atemz_avg é_atem_p_avg
. . 0 _atemp_avg ) _speedg _precip
the_ 21 variables would give an error rate of around 26.5%. P_speedg P_dir P speedg
This error can be reduced further through the use of more
sophlstlcatgd models, such as ensembles of trees, or by USin —ssiance Chi-squared Stump
better quality weather data at more appropriate locations. filter filter filter
J_speedg B_rhumidity _avg  J_rhumidity _avg
J_speedavg J_rhumidity _avg B_rhumidity _avg
C. Results for Tehachapi Pass B_rhumidity _avg  J_speedg J_speedg
J_rhumidity _avg B _atemp_avg B_atemp_avg
Tables V and VI list the top seven variables identified by ?_dé}temp_avg g_gt_emp_avg Ig_atem_lo_avg
. . ) dir > dir _precip
each of the three methods for the Tehachapi Pass region for 3 atemp.avg P speedavg P speedavg

30 and 60 minute ramps, respectively. The variables ageacia
with the three weather sites of Bearvalley, Jawbone, ang&jiu
are represented using the prefixes B , and P, respectively.

As in the case of the Columbia Basin data, we obsermimber of these variables can range from 5 to 6, depending on
that all three methods find certain common variables to lee duration and strength of the ramp event. Of the remaining
important (these are indicated by bold letters in the tgblEse variables, often two of the methods rank them in the top seven



TABLE VI

SEVEN OF THE TOPRANKED VARIABLES FOR 60 MIN RAMPS USING (TOP)
115 MW AND (BOTTOM) 150 MW THRESHOLDS FORTEHACHAPI PASS.
VARIABLES IN BOLD ARE COMMON ACROSS ALL THREE METHODS

APPENDIXA

LIST OF WEATHER VARIABLES FROM EACH

METEOROLOGICAL STATION

Distance Chi-squared ~Stump The WRCC weather stations provide summary information

filter filer filer on the following twenty-eight variables (along with unifsy

J_speedg B_rhumidity _avg  B_rhumidity _avg h dav:

B_rhumidity _avg  J_rhumidity _avg  J_rhumidity _avg eac ay.

J_rhumidity _avg  J_speedg J_speedg

J_dir J_dir J_speedavg 1 Dat e

J_speed avg B atemp_avg J dir 2 Year

B_dir B_dir B_atemp_avg 3 Day of year

B_atemp_avg J_speedavg J_atempavg 4 Day o f run

Distance Chi-squared Stump > Sol ar Rad. total kWhr/mne

filter filter filter 6  Speed average nis

J_speedg B_rhumidity _avg  B_rhumidity _avg 7 Wnd dir vector deg

B_atemp_avg J_rhumidity _avg ~ J_rhumidity _avg 8 Speed Qust ni's

B_rhumidity _avg  B_atemp_avg B_atemp_avg .

J_rhumidity _avg  J_speedg J_atemp_avg 9 A!r tenp Aver age deg C

J_atemp_avg J atemp_avg J_speedg 10 Air tenp Maxi mum deg C

J_speedavg P_atemp_avg P_atemp_avg 11 Air tenmp Mninumdeg C

P_atemp_avg P_dir B_precip 12 Fuel Tenp Average deg C

13 Fuel Tenp Maxi num deg C
14 Fuel Tenp M ni mum deg C

However, unlike the data from the Columbia Basin, not all the15 Soi| tenp Average deg C
top ranked variables are related to wind speed. For exampla,6  Soi | tenp Maxi num deg C
the average relative humidity at the Jawbone and Bearvalley7 Soi| tenp M ni numdeg C

sites are considered important variables, as are the avaiag 18
temperatures at the three sites. 19

In addition, we observed that wind speed variables a0
the Jawbone site are considered important, though the san®d
variables at the Bearvalley site do not occur in the top-egnk 22
variables. A further investigation indicated that the spgast 23
at Bearvalley was usually the lowest ranked variable, ofterp4
even below the noise variable. We found that this variablk ha25

Rel ative hum dity Average percent
Rel ative hum dity Maxi num percent
Rel ative humidity M ni num percent
Baronetric Pressure Average nbar
ASCE Et. total mm

Penman Et. total nm

Heati ng Degree Days

Cool i ng Degree Days

many erroneous values - for example, of the total of 731 day26 G owi ng Degree Days Base 40
in the study, 112 days had speed gusts in Bearvalley of 44.797 G owi ng Degree Days Base 50
m/s, indicating perhaps an inoperative sensor. And finaly, 28 Precipitation Total nm

in the case of Columbia Basin, solar radiation was typically

low ranked variable. APPENDIXB

Figures 5 and 6 show the error rates for a decision tree UNCORRELATED WEATHER VARIABLES FROM EACH
created using the top-ranked variables. The observatiauem METEOROLOGICAL STATION

for the Columbia Basin data are valid in this case as well. The following seven weather variables were used for each
meteorological site:

V. CONCLUSIONS AND FUTURE WORK 1 Solar Rad. total
2 Speed average m's
In this paper we used feature selection techniques from datd W nd dir vector deg
mining to identify important weather variables associatéith Speed Gust ni's
ramp events in wind generation in two regions - Tehachapp ~ Al T tenp Average deg C
Pass and Columbia Basin. We showed that certain variablds ~ Rel ative humdity Average percent
were identified by the three methods as being importanf ~ Precipitation Total nm
indicators of days with ramp events. In addition, using a
simple decision tree model, we showed that we could use these ACKNOWLEDGMENT
important variables to predict days with ramp events. This work was funded through the Renewable System Inter-
Our future work involves a more careful analysis of theonnect Program in the DOE Office of Energy Efficiency and
weather data to understand why specific variables at specienewable Energy. We thank Min-Lin Cheng (SCE), Robert
sites are considered important as well as the use of betiarber (SCE), John Pease (BPA), and the Western Regional
quality weather data from more appropriate locations. Weé wiClimate Center for access to the data used in this study.
also investigate better models to determine if they can makeLLNL-CONF-457176: This work performed under the
more accurate predictions of days with ramp events. auspices of the U.S. Department of Energy by Lawrence

kW hr/ n2
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Fig. 5. Error rates for a decision tree created using the tarables for 30 min ramps using (a) 75 MW and (b) 90 MW threshdtit the Tehachapi
Pass data. The purple dot is the noise variable.
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Fig. 6. Error rates for a decision tree created using the tepriables for 60 min ramps using (a) 115 MW and (b) 150 MW thré&héor the Tehachapi
Pass data. The purple dot is the noise variable.
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