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Abstract. We consider optimal-scaling multigrid solvers for the linear systems that arise from
the discretization of problems with evolutionary behavior. Typically, solution algorithms for evolu-
tion equations are based on a time-marching approach, solving sequentially for one time step after the
other. Parallelism in these traditional time-integration techniques is limited to spatial parallelism.
However, current trends in computer architectures are leading towards systems with more, but not
faster, processors. Therefore, faster compute speeds must come from greater parallelism. One ap-
proach to achieve parallelism in time is with multigrid, but extending classical multigrid methods
for elliptic operators to this setting is not straightforward. In this paper, we present a non-intrusive,
optimal-scaling time-parallel method based on multigrid reduction (MGR). We demonstrate optimal-
ity of our multigrid-reduction-in-time algorithm (MGRIT) for solving diffusion equations in two and
three space dimensions in numerical experiments. Furthermore, through both parallel performance
models and actual parallel numerical results, we show that we can achieve significant speedup in
comparison to sequential time marching on modern architectures.
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1. Introduction. One of the major challenges facing the computational science
community with future architectures is that faster compute speeds must come from
increased concurrency, since clock speeds are no longer increasing but core counts are
going up sharply. As a consequence, traditional time marching is becoming a huge
sequential bottleneck in time integration simulations in the following way: improving
simulation accuracy by scaling up the spatial resolution requires a similar (or greater)
increase in the temporal resolution, which is also required to maintain stability in
explicit methods. As a result, numerical time integration involves many more time
steps leading to long overall compute times, since parallelizing only in space limits
concurrency. Solving for multiple time steps in parallel and, therefore, increasing
concurrency would remove this time integration bottleneck.

Because time is sequential in nature, the idea of simultaneously solving for mul-
tiple time steps is not intuitive. Yet it is possible, with work on this topic going back
to as early as 1964 [33]. However, most research on this subject has been done within
the past 30 years including [2, 7–10, 14–22, 25, 28, 31, 32, 38, 40–43]. One approach to
achieve parallelism in time is with multigrid methods. The parareal in time method,
introduced by Lions, Maday, and Turinici in [25], can be interpreted as a two-level
multigrid method [16], even though the leading idea came from a spatial domain de-
composition approach. The algorithm is optimal, but concurrency is limited since
the coarse-grid solve is still sequential. Considering true multilevel (not two-level)
schemes, only a few methods exhibit full multigrid optimality and concurrency such
as [21,41,42], and most are designed for specific problems or discretizations. Further-
more, these methods are full space-time algorithms, whereas our algorithm employs a
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non-intrusive semi-coarsening strategy using coarsening only in the time dimension.
Classical multigrid methods rely on multiscale representations in space, arising

naturally by decomposing a function into a hierarchy of frequencies from global smooth
modes to local oscillations. These approaches do not extend to evolutionary variables
in a straightforward manner, because of the fundamentally local structure of the
evolution. There are two approaches for extending classical multigrid methods to
include the time dimension: multigrid only in time and space-time multigrid. In this
paper, we present a multigrid-reduction-in-time algorithm (MGRIT) that is based on
multigrid reduction (MGR) techniques [36,37]. The advantage of this approach is that
it is easily integrated into existing codes, because it only requires a routine to integrate
from one time to the next with some adjustable time step; i.e., our MGRIT algorithm
simply calls an existing time-stepping routine. However, to achieve the full benefit of
computing multiple time steps at once, space-time multigrid methods, where time is
simply another dimension in the grid, have to be considered. This approach is more
intrusive on existing codes and is a separate research topic not explored here.

This paper is organized as follows. In §2, ideas of reduction-based multigrid meth-
ods are reviewed and applied to time integration resulting in the MGRIT algorithm.
In §3, we describe the parabolic model problem for our numerical experiments and
demonstrate optimality of MGRIT for solving this model problem. Section 4 starts
with weak scaling studies emphasizing optimal choices of MGRIT components for
best overall time to solution as well as for robustness, followed by strong scaling stud-
ies comparing MGRIT with sequential time stepping. Finally, in §5, we draw some
conclusions and discuss future work.

2. Multigrid in time based on MGR. Considering the connection of time
integration methods to the solution of lower block triangular linear systems of equa-
tions allows a connection to reduction-based multigrid methods that is crucial for
our optimal-scaling, time-parallel method. In §2.1, we consider this correspondence,
which is the basis of our description of the parareal algorithm in §2.2. Note that our
presentation of the parareal algorithm as a standard residual correction scheme is not
typical (though known [28]) but it allows us to show in §2.3 how the method can be
interpreted as a two-level MGR scheme, corresponding to a two-level variant of the
MGRIT algorithm that we describe in §2.4.

2.1. Connection to linear systems. We consider a system of ordinary differ-
ential equations (ODEs) of the form

u′(t) = f(t,u(t)), u(0) = u0, t ∈ [0, T ], (2.1)

such as in a method of lines approximation of a parabolic PDE. Let ti = iδt, i =
0,1, . . . ,Nt, be a temporal mesh with constant spacing δt = T /Nt, and, for i = 1, . . . ,Nt,
let ui be an approximation to u(ti) and u0 = u(0). Then, a general one-step time
discretization method for (2.1) can be written as

u0 = u(0)
ui = Φi(ui−1) + gi, i = 1,2, . . . ,Nt.

(2.2)

In the case of a linear function f , the function Φi(⋅), corresponds to a matrix-vector
product. For simplicity, we consider a time-independent discretization, thus, func-
tion Φi(⋅) corresponds to a matrix-vector product with a fixed matrix denoted by
Φ, Φi(ui−1) = Φui−1; specific examples of Φ will be given in §3.1. Then, the time
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discretization method (2.2) is equivalent to the linear system of equations

Au ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I
−Φ I

⋱ ⋱
−Φ I

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u0

u1

⋮
uNt

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

g0

g1

⋮
gNt

⎤⎥⎥⎥⎥⎥⎥⎥⎦

≡ g, (2.3)

where g0 = u(0). Note that traditional time marching corresponds to a block forward-
solve of this system, which is not directly parallelizable. Considering the lower block
bidiagonal structure, we could apply cyclic reduction, a parallel direct factorization
method that can equivalently be viewed as a multigrid method with a block smoother
(called F -relaxation) and a Petrov-Galerkin coarse-grid operator that converges in
one V -cycle. However, although cyclic reduction is optimal for scalar systems, for
(2.3), it requires products of spatial blocks, the Φ matrices, that produce fill-in in
the spatial dimension, yielding a method that is overall non-optimal. Nonetheless,
the cyclic-reduction viewpoint can be useful in developing truly optimal and paral-
lelizable methods. In fact, there are many spatial multigrid methods that have been
designed from a similar reduction viewpoint [4, 5, 12, 23, 26, 35–37], replacing interpo-
lation and/or the Petrov-Galerkin coarse-grid operator with suitable approximations.
Using this perspective for the time dimension allows us to design an optimal-scaling
time-parallel method. Before we pursue this approach, we first describe how parareal
can be viewed as a standard residual correction scheme, laying the foundation of our
interpretation of parareal as a two-level reduction-based multigrid method, considered
in §2.3. The connection to reduction-based multigrid methods is crucial to achieve
optimality when generalizing the two-level algorithm to multiple levels.

2.2. Parareal. One interpretation of parareal is to solve the system (2.3) iter-
atively, instead of with a direct method, by introducing a preconditioner on a coarse
temporal mesh. Therefore, let Tj = j∆T, j = 0,1, . . . ,Nt/m, be a coarse temporal
mesh with constant spacing ∆T =mδt, where m is a positive integer (see Figure 2.1).

t0 t1 t2 t3 ⋯ tm tNt

T0 T1 ⋯

δt

∆T =mδt

Fig. 2.1: Uniformly-spaced fine and coarse time discretization meshes.

It is easy to verify that the solution, u, of (2.3) at mesh points i = jm, j =
0,1, . . . ,Nt/m, satisfies the coarse system of equations

A∆u∆ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I
−Φm I

⋱ ⋱
−Φm I

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u∆,0

u∆,1

⋮
u∆,Nt/m

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= RΦg ≡ g∆, (2.4)

where u∆,j = ujm and RΦ is the rectangular restriction operator

RΦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I
Φm−1 ⋯ Φ I

⋱
Φm−1 ⋯ Φ I

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (2.5)
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The parareal algorithm solves this coarse system iteratively, then computes the re-
maining fine values in parallel using (2.2) on each interval (tjm, tjm+m−1). To solve
the coarse system (2.4), parareal uses the simple residual correction scheme

uk+1
∆ = uk

∆ +B−1
∆ (g∆ −A∆uk

∆), (2.6)

where B∆ is some coarse-scale time discretization of (2.1) (the analog of A on the
coarse mesh),

B∆ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I
−Φ∆ I

⋱ ⋱
−Φ∆ I

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

The action of A∆ is computed in parallel, but B−1
∆ is computed sequentially, typically

on a single processor. The residual correction (2.6) is usually presented as the following
equivalent update step in the parareal literature

uk+1
∆,j+1 = Φ∆uk+1

∆,j +Φmuk
∆,j −Φ∆uk

∆,j + g∆,j , j = 1,2, . . . , (2.7)

with uk
∆,0 = g∆,0, where Φ and Φ∆ play the roles of the so-called fine and coarse

propagators.

2.3. Parareal as a two-level multigrid reduction method. The key feature
of parareal is the use of a coarse-scale time discretization that approximates the fine-
scale evolution over the coarse-scale subspace. Since this idea is similar to the idea
of MGR, it is not difficult to see how the parareal algorithm can be interpreted as a
two-level MGR method. Therefore, let us partition the temporal mesh into C-points,
given by the set of coarse time-scale points, {i = jm}, and F -points. Reordering the
fine-grid operator, A, by F -points first and using the subscripts c and f to indicate
the two sets of points, we consider the following well-known matrix decomposition,
valid for any invertible matrix A with invertible submatrix Aff ,

A = [Aff Afc

Acf Acc
] = [ If 0

AcfA
−1
ff Ic

] [Aff 0
0 Acc −AcfA

−1
ffAfc

] [If A−1
ffAfc

0 Ic
] , (2.8)

where Ic and If are identity operators. We define the operators R, P (known as
“ideal” restriction and interpolation since they define a Schur complement coarse
grid), and S by

R = [−AcfA
−1
ff Ic] , P = [−A

−1
ffAfc

Ic
] , S = [If

0
] . (2.9)

Then, since Aff = STAS and Acc − AcfA
−1
ffAfc = RAP , it is straightforward to see

from (2.8) that

A−1 = P (RAP )−1
R + S (STAS)−1

ST ,

and, thus,

0 = I −A−1A = I − P (RAP )−1
RA − S (STAS)−1

STA (2.10)

= (I − P (RAP )−1RA)(I − S(STAS)−1STA), (2.11)
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where equivalence occurs since RAS = 0. We call (2.10) the additive identity and
(2.11) the multiplicative identity. The multiplicative identity (2.11) defines the error
propagator of an exact two-level multigrid method, with the first term correspond-
ing to the error propagator of coarse-grid correction using the ideal Petrov-Galerkin
coarse-grid operator (the Schur complement), RAP , and the second term being the
error propagator of F -relaxation. To produce an iterative multigrid method, MGR
methods [12, 23, 26, 35–37], for example, replace ideal interpolation and/or the ideal
Petrov-Galerkin coarse-grid operator with various approximations and potentially add
relaxation. Other methods in the literature that are closely related to the additive
identity (2.10), such as ARMS [24,39] and multigraph [4, 5], often use ILU factoriza-
tions to approximate Aff and the Schur complement. Comparisons of the two types
of algebraic multilevel methods have been considered in [27, 29, 30, 34]. Furthermore,
as discussed in [29, 30], the order of coarse-grid correction and F -relaxation in (2.11)
can be reversed although we do not consider this here.

The parareal algorithm does something similar to MGR. Considering (2.6) at
original time scale and defining RI = [0 Ic] to be the coarse-scale injection operator,

the error propagator for parareal is given by P (I − B−1
∆ A∆)RI . With the fine-grid

operator, A, given by (2.3), the restriction operator, R, in (2.9) is the same as RΦ

in (2.5). Furthermore, the parareal coarse-grid operator, A∆, is equal to the Schur
complement and thus, satisfies the Petrov-Galerkin condition, A∆ = RAP . Hence, the
error propagator for parareal is equal to (I −PB−1

∆ RA)PRI which, using the operator
S defined in (2.9), can be written as

(I − PB−1
∆ RA)(I − S(STAS)−1STA). (2.12)

Thus, the error propagator for the parareal algorithm is given by (2.11), with A∆

replaced by the coarse-scale time discretization, B∆. To save computational work,
we can replace R with RI since RAP = RIAP . Figure 2.2 shows schematic views
of the actions of F - and C-relaxation for coarsening by a factor of four (m = 4).
Furthermore, we note that ideal interpolation, P , corresponds to F -relaxation with a
zero right-hand side.

g g g g g g

Φ Φ Φ Φ Φ Φ

(a) F -relaxation = time stepping
in coarse time interval

g g g

Φ Φ

(b) C-relaxation

Fig. 2.2: Schematic view of the actions of (a) F -relaxation and (b) C-relaxation for
coarsening by a factor of four; ○ represent F -points and ∎ represent C-points.

Another two-level multigrid interpretation of parareal was given by Gander and
Vandewalle in [16]. This interpretation is described in the full approximation storage
(FAS) framework [6] for the full nonlinear setting of (2.2) and is based on a different
choice of operators. For the linear case, it is straightforward to show that the resulting
two-level methods are the same. The advantage of the operator choice of [16] is its
simplicity, but the advantage of our operator choice is that the multigrid components
are more typical and, thus, allow us to extend the two-level method to an optimal
multilevel algorithm. Furthermore, generalizing our MGR ideas to the nonlinear
setting is straightforward in the FAS framework.
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2.4. The optimal-scaling multilevel algorithm. Parareal is normally con-
sidered as a two-level method requiring a sequential forward solve of a large coarse-grid
system. Results in §3.3 show the obvious generalization to a multilevel parareal al-
gorithm does not yield scalable performance for V -cycles. Thus, we use the MGR
viewpoint to develop an optimal multilevel algorithm. Previous research on MGR for
developing optimal spatial multilevel methods [12, 23, 26, 35–37] motivates replacing
F -relaxation in the two-level parareal method with FCF -relaxation and applying the
resulting method recursively. More precisely, we replace the second term in the two-
level method (2.12), I − S(STAS)−1STA, corresponding to the error propagator of
F -relaxation with the product

(I − S(STAS)−1STA)(I −RT
I (RIAR

T
I )−1RIA)(I − S(STAS)−1STA),

corresponding to the error propagator of FCF -relaxation. With the error propagator
of F -relaxation equal to PRI , we can write the error propagator of FCF -relaxation
as

P (I −A−1
cc (Acc −AcfA

−1
ffAfc))RI = P (I −A∆)RI ,

where equivalence occurs since Acc = I. Thus, FCF -relaxation corresponds to Ja-
cobi smoothing on the coarse time grid with the true Schur complement coarse-grid
operator, A∆ = RAP .

To describe the MGRIT algorithm, we consider a hierarchy of time discretization
meshes, Ωl, l = 0,1, . . . , L = logm(Nt), with constant spacing δt on level 0, mδt on
level 1, etc., for a positive coarsening factor, m. Let Alu

(l) = g(l) be the linear system
of equations on level l = 0,1, . . . , L, where Al is the time discretization on the mesh
Ωl, characterized by the matrix Φl. For each level, l, we decompose the matrix Al

into F - and C-points and define the interpolation operator, P , as in (2.9). Then, the
MGRIT V -cycle algorithm for solving (2.1) can be written as follows:

MGRIT(l)
if l is the coarsest level, L

● Solve coarse-grid system ALu
(L) = g(L).

else
● Relax on Alu

(l) = g(l) using FCF -relaxation.
● Compute and restrict residual using injection,
g(l+1) = RI(g(l) −Alu

(l)).
● Solve on next level: MGRIT(l + 1).
● Correct using “ideal interpolation”, u(l) ← u(l) + Pu(l+1).

end

Note that as in the spatial MGR context [37], W - and F -cycle versions of the
MGRIT algorithm can be defined. Assuming exact arithmetic, one iteration of F -
relaxation computes the exact solution at all F -points in the first coarse-scale time
interval, (T0, T1), whereas one iteration of FCF -relaxation computes the exact solu-
tion at all F -points in the first two coarse-scale time intervals, (T0, T1) and (T1, T2),
as well as at T1 corresponding to the first C-point. Each additional iteration of F -
relaxation or FCF -relaxation computes the exact solution at all points of one or
two additional coarse-scale time interval(s), respectively. Thus, parareal and MGRIT
solve for the exact solution in Nt/m or Nt/(2m) iterations, respectively, correspond-
ing to the number of points on the first coarse grid or to half the number of points on
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the first coarse grid. This is an interesting property of the two algorithms; however,
in practice, the fact that they converge to some error tolerance in O(1) iterations is
more relevant.

3. Numerical results. To test the MGRIT approach developed in §2.4, we
consider a parabolic model problem, the diffusion equation in d space dimensions. In
§3.1, we describe implicit and explicit discretizations of this model problem and their
correspondence to Φ in (2.3), followed by a brief description about implementation
details in §3.2. Optimality of MGRIT for solving the model problem in two space
dimensions with implicit and explicit time discretization is then demonstrated in §3.3.

3.1. The parabolic model problem. We consider the diffusion equation in d
space dimensions,

ut − κ∆u = b(x, t), κ > 0, x ∈ Ω = [0, π]d, t ∈ [0, T ], (3.1)

subject to an initial condition and homogeneous Dirichlet boundary conditions,

u(x,0) = u0(x), x ∈ Ω (3.2)

u(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ]. (3.3)

We transform our model problem to a system of ODEs of the form (2.1) by
using central finite differences for discretizing the spatial derivatives and first-order
methods for the time derivative. In the following, we consider only the case d = 2; the
operators for d = 1 and d = 3 are defined analogously. Let (xj = j∆x, yk = k∆y, ti =
iδt), j = 0,1, . . . ,Nx, k = 0,1, . . . ,Ny, i = 0,1, . . . ,Nt, be a uniform space-time mesh
with spacing ∆x = π/Nx, ∆y = π/Ny, and δt = T /Nt, respectively. Furthermore, for
i = 0,1, . . . ,Nt, let ui be an approximation to u(x, ti) with u0 = u0(x) using the initial
condition, (3.2). If we use backward Euler for the time discretization, we obtain

(I + δtM)ui − δtbi = ui−1, i = 1,2, . . . ,Nt,

defining a one-step method of the form (2.2) with Φ = (I + δtM)−1 and gi = (I +
δtM)−1δtbi for i = 1,2, . . . ,Nt, where M is the usual central finite-difference dis-
cretization of −κ∆u,

M =
⎡⎢⎢⎢⎢⎢⎣

−ay
−ax 2 (ax + ay) −ax

−ay

⎤⎥⎥⎥⎥⎥⎦
with ax = κ

δt

(∆x)2
, ay = κ

δt

(∆y)2
.

If we use forward Euler for the time discretization, then Φ = I − δtM and gi = δtbi−1

for i = 1,2, . . . ,Nt. Thus, for our simple model problem using an implicit time dis-
cretization, the time integrator Φ corresponds to a spatial solve, whereas it coincides
with a matrix-vector product in the explicit case. We use the same discretization
technique (with adjusted time step size) to define the discrete operators on all levels.

In the following, we report on tests of solving the model problem on the space-
time domain [0, π]d × [0, T ] with a zero right-hand side, κ = 1, and subject to the
initial condition u(x, y,0) = sin(x) sin(y), 0 ≤ x, y ≤ π, in the case that d = 2 or
u(x, y, z,0) = sin(x) sin(y) sin(z), 0 ≤ x, y, z ≤ π, if d = 3. Choosing a zero right-hand
side allows us to easily verify that MGRIT computes a good approximation to the
true solution. However, we emphasize that a non-zero right-hand side does not change
our algorithm, since it only defines the right-hand side, g, of the linear system (2.3).
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On the finest grid, the initial condition is used as the initial guess for t = 0, and a
random initial guess for all other times. Choosing a random initial guess for all times
t > 0 corresponds to not using any knowledge of the right-hand side that could affect
convergence. However, in practice, a random initial guess is not recommended.

Notation. We present results for a variety of discretizations of the model problem
in two and three space dimensions. To facilitate readability, in general, only the
space-time grid size is specified in the caption of tables and figures, and the following
labels are used

Implicit2D(T = ⋅) model problem in two space dimensions with backward Euler
time discretization

Implicit3D(T = ⋅) model problem in three space dimensions with backward Euler
time discretization

Explicit2D(T = ⋅) model problem in two space dimensions with forward Euler time
discretization

Explicit3D(T = ⋅) model problem in three space dimensions with forward Euler time
discretization

Note that the space-time grid size and the final time, T , of the time inter-
val uniquely define the step sizes of the discretization using the relationships ∆x =
π/Nx, ∆y = π/Ny, ∆z = π/Nz, and δt = T /Nt.

3.2. Implementation details. We have implemented the MGRIT algorithm
described in §2.4 in parallel using C and Message Passing Interface (MPI). The code
decomposes the original temporal grid such that each processor owns a time interval of
roughly the same size, and coarse grids are distributed in the usual multigrid fashion
according to their parent fine grids. As a result, the first (likewise, last) point on
a processor on any given level could be an F -point or a C-point, and a processor
may not own any points at all on some coarse levels. The code attempts to overlap
communication and computation by computing on the rightmost F -interval first and
sending information downstream as soon as possible. Also, to save on memory, only
solution values at C-points are stored.

Since MGRIT is a non-intrusive approach, the time integrator Φ in MGRIT is
essentially the same as in an algorithm with sequential time stepping. We have imple-
mented Φ for both time integration approaches in parallel using C and the hypre [1]
package. In the implicit time discretization case, the spatial systems are solved us-
ing the hypre solver PFMG [3, 11]. PFMG is a parallel alternating semicoarsening
multigrid V -cycle solver that automatically determines the direction of semicoarsen-
ing minimizing problem anisotropies. For our experiments, we use V (1,1)-cycles with
red-black Gauss-Seidel relaxation, full coarsening (skip = 1), and coarse-grid operators
formed algebraically by the non-Galerkin process described in [3]. The convergence
tolerance is based on the relative residual and chosen to be 10−9 unless otherwise
specified.

3.3. Optimality of MGRIT. To demonstrate optimality of MGRIT, we con-
sider iteration counts for solving the model problem in two space dimensions with
implicit and explicit time discretizations. The iteration counts are based on achiev-
ing an absolute space-time residual norm of less than 10−9, measured in the discrete
L2-norm. For the implicit case, we perform domain-refinement studies commonly
used for multigrid methods, whereas, for the explicit case, studies focus on the CFL
condition.
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3.3.1. Implicit time integration schemes. We consider a domain-refinement
study for two-level and true multilevel, L = log2(Nt), variants of MGRIT V - and
F -cycle algorithms with factor-2 coarsening and various relaxation schemes. For
this purpose, we fix a space-time domain and simultaneously scale up the spatial
and temporal resolutions. More precisely, the time step on the finest grid is cho-
sen to be δt = (∆x)2 = (∆y)2, and the time step on each coarse grid is given by
2l−1δt, l > 0. Hence, we quadruple the number of points in time when doubling the
number of points in space. The following three relaxation schemes are considered:
F -relaxation, FCF -relaxation, and F -FCF -relaxation defined as F -relaxation on the
finest grid and FCF -relaxation on all other levels, l > 0. F -relaxation corresponds
to the parareal method and the obvious generalization to a multilevel parareal algo-
rithm, FCF -relaxation is motivated by the MGR viewpoint and F -FCF -relaxation
is chosen for efficiency reasons. Both V - and F -cycle variants are considered, knowing
added coarse-grid work in an F -cycle better approximates the two-level method.

Table 1 shows that for MGRIT V -cycles using FCF or F -FCF -relaxation, the
iteration counts appear to be bounded independently of the problem size. While the
same holds true for two-level MGRIT V -cycles with F -relaxation, i.e., the parareal
method, iteration counts increase in the multilevel case. Thus, the obvious gener-
alization of parareal to multiple levels does not produce an optimal algorithm. Put
another way, the additional full FC relaxation sweep on the fine grid is necessary to
achieve optimality in the multilevel V -cycle algorithm.

N2
x ×Nt = (24)2× (25)2× (26)2× (27)2× (28)2×

25 27 29 211 213

FCF -relax. two-level 7 8 8 7 7

(all levels) multilevel 7 9 9 10 10

V - F -relax. (level 0), two-level 10 11 10 10 10

cycle FCF (level > 0) multilevel 10 11 11 11 11

F -relax. two-level 10 11 10 10 10

(all levels) multilevel 12 17 24 29 31

FCF -relax. two-level 7 8 8 7 7

(all levels) multilevel 7 8 7 7 7

F - F -relax. (level 0), two-level 10 11 10 10 10

cycle FCF (level > 0) multilevel 10 11 10 10 10

F -relax. two-level 10 11 10 10 10

(all levels) multilevel 10 10 10 10 10

Table 1: Number of two-level and multilevel MGRIT iterations for solving
Implicit2D(T = π2/8) on (Nx + 1)2 × (Nt + 1) space-time grids using factor-2 coarsen-
ing. The top half of the table shows results for the V -cycle variant of MGRIT and
the bottom half for the F -cycle variant.

Considering F -cycles, all three relaxation schemes lead to optimal algorithms. In
particular, the additional full FC relaxation sweep is not necessary when using F -
cycles. Note, however that F -cycles require more communication than V -cycles. For
optimizing parallel performance, there is a tradeoff that we discuss in §4.1.

Tests also indicate that the above results are largely independent of the coarsening
factor, i.e., the number of iterations does not change significantly when coarsening
by larger factors. However, there is another parallel performance tradeoff with this
apparent reduction in work that we also discuss in §4.1.
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3.3.2. Accuracy of spatial solves. Using an implicit time discretization
method, the function Φ(⋅) corresponds to a spatial solve. In particular, for our model
problem, Φ = (I + δtM)−1. In practice, however, these spatial problems are solved
with an iterative method such as multigrid. As a consequence, instead of solving the
linear system of equations (2.3), we actually solve

Âu ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I

−Φ̂ I
⋱ ⋱

−Φ̂ I

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u0

u1

⋮
uNt

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

g0

g1

⋮
gNt

⎤⎥⎥⎥⎥⎥⎥⎥⎦

≡ g, (3.4)

where Φ̂ ≈ Φ and g0 = u(0).
Considering an iterative method for the spatial solves at each time step raises the

question of how to choose a good initial guess for these solves. In traditional time
marching, typically the solution from the previous time step is used. Note that this is
a good choice if the solution is smooth in time. MGRIT solves the linear system (3.4)
iteratively and thus, each MGRIT iteration computes a better approximation of the
solution at each time step. Therefore, a good initial guess for the spatial solve at a
particular time step is the current approximation of the solution at this time step, i.e.,
the solution at the time step obtained in the previous MGRIT iteration. As discussed
in §3.2, in order to achieve some degree of efficient memory use, our implementation
stores only the solution at the C-points of each grid. Thus, we cannot use the current
approximation of the solution as the initial guess for the spatial solve.

Similarly to time-stepping algorithms, we use the solution from the previous time
step of the current MGRIT iteration as the initial guess. This choice is optimal with
respect to the constraint of efficient memory use. However, when not using the current
approximation of the solution for the spatial solves, the accuracy of the spatial solves
becomes crucial, particularly for optimizing parallel performance. More precisely,
choosing an approximation Φ̂ ≈ Φ raises two questions: first, should we use the same
approximation for all MGRIT iterations? And second, how accurately should we solve
the spatial problems on coarse time grids? To answer these questions, we consider the
effect on iteration counts for a heuristic choice for the accuracy of the approximation.
Since our goal is to reduce overall compute time, in addition to considering iteration
counts, we also look at runtimes in a weak scaling study in §4.1.

In general, there are two simple strategies for choosing the accuracy of the spatial
solves: a stopping tolerance-based accuracy, i.e., solving the spatial problems to a
given stopping tolerance, and a fixed iteration-based accuracy, i.e., using a fixed num-
ber of iterations to solve the spatial problems. We choose a combination of these two
strategies: on the finest grid, we use a stopping tolerance-based accuracy and on all
other levels, l > 0, we use a fixed iteration-based accuracy. With this choice, we limit
computational work on the coarse grids, and we approximate Φ on the finest grid as is
typically done in time marching schemes. Furthermore, to save some computational
work on the finest grid, we start with a loose stopping tolerance for the spatial solves
and tighten it as we converge in time. More precisely, our choice for the stopping
tolerance, tolx, for the spatial solves on the finest grid is based on the norm of the
residual of the previous MGRIT iteration, acct = ∥rk−1∥, as follows: we pick a loose
and a tight spatial stopping tolerance,

tol(loose)
x = 10−loose and tol(tight)

x = 10−tight,
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where tol(tight)
x is the same stopping tolerance we would use for time stepping. Fur-

thermore, we define an accuracy, acc
(close)
t = 10−close, characterizing “being close” to

converging in time. If acct ≤ acc
(close)
t , tol(tight)

x is used as the stopping tolerance
for the spatial solves. Note that this ensures that we solve the same linear system

that we solve with time stepping. If acct > acc
(close)
t , we use a linear function of the

logarithm of the residual norm to determine the logarithm of the stopping tolerance
for the spatial solves, as depicted in Figure 3.1.

− log(acct)stopclose

− log(tolx)

loose

tight

Fig. 3.1: Defining the stopping tolerance for the spatial solves on the finest grid,
tolx, as a function of the norm of the residual of the previous MGRIT iteration,
acct = ∥rk−1∥.

Note that changing the tolerance of the spatial solves changes the approximation,
Φ̂ and, thus, the problem that we consider. Large changes in the tolerance might
result in an increase of the residual norm, acct. In that case, instead of loosening the
tolerance again, the same tolerance of the spatial solves is kept until the residual norm
decreases enough such that the tolerance is tightened further. Put another way, we
never decrease the accuracy of spatial solves from one MGRIT iteration to the next.

To demonstrate that MGRIT computes a good approximation of the true discrete
solution when using the heuristic choice for the accuracy of the spatial solves, we
compare the solution obtained by time stepping with the solution obtained by several
MGRIT variants using a stopping tolerance-based accuracy with loose = 2 and tight =
9 on the finest grid and two V -cycles on all coarse grids. We look at the norm of the
error to the true discrete solution. More precisely, let s denote the time integration
scheme used to solve the discrete space-time problem, i.e., s is either time stepping or

an MGRIT variant. Furthermore, for each time step ti, let es = ∣∣e(s)i ∣∣ denote the norm

of the error to the true discrete solution using the scheme s, and let emin = mins ∣∣e(s)i ∣∣
be the minimum of these norms over all time integration schemes. Then, Figure 3.2
plots es as well as es − emin for each scheme at each time step. The norm of the error
to the true discrete solution is of the same order independent of the time integration
scheme used for the numerical computation. In particular as demonstrated in the
right plot, for our choice of the accuracy of the spatial solves, the solution obtained
by all MGRIT variants corresponds to the solution obtained by time stepping within
some tolerance. We emphasize that only the fact that all schemes compute the same
solution up to some tolerance is important. The scheme with minimum error can vary
from time step to time step and as a result of parameter choices.

In Table 2, we look at the effects of our heuristic choice for the accuracy of the
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Fig. 3.2: Comparison of norms of errors to the true discrete solution of Implicit2D(T =
π2/8) on a 1292 × 2049 space-time grid at each time step, ∣∣e(s)i ∣∣, using different time

integration schemes, s. At left, ∣∣e(s)i ∣∣, and at right, difference between ∣∣e(s)i ∣∣ and the

minimum error norm at each time step over all time integration schemes, mins ∣∣e(s)i ∣∣.
spatial solves on iteration counts. We consider the same parameters as in Table 1
with the exception that instead of solving all spatial problems to 10−9 accuracy, we
use our heuristic. Compared to Table 1 we see an increase in iteration counts, but
the number of iterations still appears to be bounded independently of the problem
size. While two-level V -cycles as well as two-level and multilevel F -cycles perform
only a little worse, we observe some degradation for multilevel V -cycles. However, this
degradation is not critical, especially since parallel time-to-solution is more important
than iteration counts.

N2
x ×Nt = (24)2× (25)2× (26)2× (27)2× (28)2×

25 27 29 211 213

FCF -relax. two-level 12 12 11 11 12

V - (all levels) multilevel 13 16 16 15 18

cycle F -relax. (level 0), two-level 13 13 13 13 14

FCF (level > 0) multilevel 17 17 17 19 17

FCF -relax. two-level 12 12 11 11 12

(all levels) multilevel 12 12 11 11 12

F - F -relax. (level 0), two-level 13 13 14 13 14

cycle FCF (level > 0) multilevel 13 13 14 13 14

F -relax., two-level 13 13 13 13 14

(all levels) multilevel 13 13 13 13 14

Table 2: Results similar to those in Table 1, but using a stopping tolerance-based
accuracy for the spatial solves on the finest grid as depicted in Figure 3.1 (with
loose = 2 and tight = 9) and fixed iteration-based accuracy (2 iterations) for spatial
solves on all other levels, l > 0, instead of solving all spatial problems to 10−9 accuracy.

3.3.3. Explicit time integration schemes. For explicit time discretization
schemes, considering parallel time integration is highly relevant because the number
of time steps in these methods is usually quite large. However, stability issues on
coarse grids render the straightforward application of our approach infeasible. One
possibility for circumventing this problem is to use an implicit discretization on coarse
grids. Using this approach in conjunction with aggressive coarsening on the finest grid
to reduce the cost of the implicit coarse solve makes this a worthwhile approach to
achieve speedup in comparison to traditional time-marching methods. The downside
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from a user perspective is that both explicit and implicit time-stepping routines are
needed.

The explicit-implicit approach allows us to avoid stability issues on the coarse
grids, but it raises the question of robustness. To answer this question, we consider
the model problem in two space dimensions with explicit time discretization on the
space-time domain [0, π]2 × [0, π2/8]. For simplicity, we assume that we use the same
spatial mesh size in both dimensions, ∆y = ∆x. Thus, the CFL condition is given
by 0 < δt < (∆x)2/4. Table 3 shows iteration counts for the two-level variant of our
MGRIT algorithm for different CFL numbers, c = δt/(∆x)2, and coarsening factors.
Note that since we consider a fixed time interval, we have to decrease the number of
time steps when increasing the time step size with the CFL number. Table 3 shows
that iteration counts for the case that δt is away from the CFL limit (small values of
c), are independent of the CFL number. However, as δt approaches the CFL limit,
iteration counts increase, especially for factor-2 coarsening.

c = 0.15 0.2 0.22 0.23 0.24 0.245 0.249 0.2499

m = 2 11 11 13 19 37 71 283 472

m = 16 9 9 9 9 9 12 47 65

Table 3: Number of two-level V -cycle MGRIT iterations with FCF -relaxation for
solving Explicit2D(T = π2/8) for different CFL numbers, c = δt/(∆x)2 with ∆x = π/64
fixed, coarsening by a factor of 2 or 16, forward Euler on the fine temporal grid and
backward Euler on the coarse grid.

The increase in iteration counts as δt approaches the CFL limit results from
properties of the discrete solution. For the discretization considered in our nu-
merical experiments, the discrete solution can be expressed in terms of eigenval-
ues and eigenvectors of the discrete Laplacian. If we denote the eigenvectors and
corresponding eigenvalues of the negative discrete Laplacian, M , by vj,k and λj,k,
j = 1, . . . ,Nx − 1, k = 1, . . . ,Ny − 1, respectively, we can write the initial condition,
u0(x), as a linear combination of the vj,k,

u0(x) = ∑
j,k

αj,kvj,k.

The discrete solution at time ti is then given by

ui = ∑
j,k

αj,k (1 − δtλj,k)i vj,k.

For modes that are oscillatory in both space dimensions, we have that λj,k ≈ 8/(∆x)2.

If we write the damping factor, (1 − δtλj,k)i, at time ti in terms of the CFL number

c, we obtain (1 − 8c)i. Close to the CFL limit, i. e., c ≈ 0.25, we have 1 − 8c → −1.
Thus, the space-time solution contains a component that is oscillatory in time with an
amplitude that gets damped very slowly in time. As a consequence, as δt approaches
the CFL limit, convergence of MGRIT depends on the number of time steps, Nt,
which controls the magnitude of the oscillations at the end of the time interval. For
large Nt, MGRIT cannot effectively reduce this oscillatory component of the error
since FCF -relaxation is not a good smoother for this component, especially if we
consider small coarsening factors. Furthermore, coarse-grid correction does not help
since oscillatory modes are not visible on the coarse grid. Therefore, close to the CFL
limit sequential time stepping should be used. For MGRIT, we would have to consider
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large coarsening factors relative to the number of time steps which limits the amount
of parallelism in relaxation and, thus, the benefits of our approach. However, since
the existence of a component that is oscillatory in time is not physical, this is not a
real restriction for using the MGRIT algorithm. A domain refinement study similar
to that in Table 1 for fixed c (away from the CFL limit) shows that iteration counts
for the multilevel explicit-implicit approach appear to be bounded independently of
the problem size.

4. Parallel results. In this section, we compare the time to solution using
MGRIT to the time to use sequential time stepping. In particular, we are inter-
ested in answering three questions. First, is it beneficial to use MGRIT on modern
architectures? Second, considering the time to solution with both methods as func-
tions of the number of processors, where is the crossover point? And third, what
speedup can we expect from using MGRIT?

All numerical results in this section were generated on Cab, a Linux cluster at
Lawrence Livermore National Laboratory consisting of 1,296 compute nodes, with
two eight-core 2.6 GHz Intel Xeon processors per node. The nodes are connected by
an InfiniBand QDR interconnect. Since particular choices of various components of
the MGRIT algorithm effect parallel performance, we first aim at optimizing choices
for best overall time to solution, as well as for robustness. In §4.1, we consider the
effect of our heuristic choice for the accuracy of the spatial solves described in §3.3.2
on time to solution and compare various relaxation schemes for MGRIT V - and F -
cycles. In §4.2, we look at iteration counts and computation times as functions of the
coarsening factor to determine a good coarsening strategy. We then use these results
in Sections 4.3 and 4.4 to choose a set of MGRIT variants for strong scaling studies
and comparison to sequential time stepping. In §4.5 we briefly review a simple parallel
performance model that allows predictions for larger computational scales, followed
by a comparison of MGRIT to sequential time-stepping using this model.

4.1. Optimizing MGRIT cycling. The results in §3.3.2 show that our heuris-
tic choice for the accuracy of the spatial solves preserves optimality but increases
iteration counts slightly compared to solving all spatial problems to high accuracy.
Since we are interested in the best overall time to solution, we look at the effect of
the accuracy of the spatial solves on compute time in a weak scaling study. More
precisely, we fix the domain size and choose δt = (∆x)2 = (∆y)2 as in the domain-
refinement study in §3.3.1. Halving the spatial step size ∆x requires quadrupling the
number of time steps and, thus, for proper weak scaling we increase the number of
processors by factors of 16.

Figure 4.1 shows weak scaling results for MGRIT V - and F -cycles with factor-2
coarsening and various relaxation schemes. The time curves show that the MGRIT
algorithm scales well for both choices of the accuracy of the spatial solves. Note
that the log-linear scaling of the axes shows a growth in time roughly proportional to
log(P ), where P denotes the number of processors. Furthermore, comparing overall
compute times, we see that it is beneficial to use our heuristic choice by as much as
a factor of about two.

4.2. Optimizing MGRIT coarsening. So far, we have only presented results
for factor-2 coarsening. To determine the effect of other coarsening factors on parallel
performance, we consider solving Implicit2D(T = π2/8) on a 1292 × 2049 space-time
grid with the MGRIT V - and F -cycle algorithms using 32 processors for parallelizing
only in time. Note that for this particular problem size and number of processors, the
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Fig. 4.1: Time to solve Implicit2D(T = π2/8) using MGRIT V - and F -cycles with
factor-2 coarsening and various relaxation schemes. The problem size per processor
is about (24)2 × 25. Solid lines are results for solving all spatial problems to 10−9

accuracy and dashed lines represent runtimes for using our heuristic choice for the
accuracy of the spatial solves.

local temporal problem size on each processor is about 64. Figure 4.2 shows iteration
counts (dashed lines) and compute times (solid lines) as functions of the coarsening
factor for various MGRIT variants. In all cases, iteration counts are bounded inde-
pendently of the coarsening factor. More precisely, for V -cycles using F -relaxation on
the finest grid and FCF -relaxation on all other levels, l > 0, as well as F -cycles using
FCF - or F -relaxation on all levels, the iteration counts increase slightly, stagnate,
and then decrease. Considering V -cycles with FCF -relaxation on all levels, iteration
counts are non-increasing. One argument for this behavior is that more aggressive
coarsening leads to stronger relaxation, and MGRIT looks more like time stepping.
In particular, using a coarsening factor of 2048, we have two time levels and thus,
considering FCF -relaxation on the fine grid, MGRIT converges in one iteration. For
F -relaxation on the fine grid, it converges in two iterations. Note that with a coars-
ening factor of 2049, all variants converge in exactly one iteration.

Compute time behaves in the opposite manner of iteration counts. Generally,
compute time decreases in the beginning, since MGRIT requires less communication.
At some point, we lose parallelism in relaxation, which causes the time to solution to
increase even though iteration counts decrease. More precisely, when the number of
time levels decreases, which is the case for coarsening factors 4, 8, 16, 64, and 2048,
we generally see a drop in compute time. When the number of levels does not change,
as for coarsening factors 32 and 128 through 1024, we lose parallelism in relaxation
resulting in an increase in compute time.

Summarizing the above results, aggressive coarsening with m > 2 reduces the
cost of coarse-grid solves. However, relaxation is expensive when the number of time
points on each processor is small since, in that case, F -relaxation requires sequential
communication for all processors in a given interval of F -points. A coarsening strategy
that aims to balance these two effects is to use aggressive coarsening in conjunction
with factor-2 coarsening on coarse grids on which the local problem size is small. We
consider weak scaling again to look at the effect of such a coarsening strategy on overall
time to solution in comparison to coarsening strategies with a fixed coarsening factor
on all time levels. For larger coarsening factors to be meaningful, we distribute the
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Fig. 4.2: Number of iterations and overall compute time for solving Implicit2D(T =
π2/8) on a 1292 × 2049 space-time grid using MGRIT V - and F -cycles with various
relaxation schemes, 32 processor for parallelizing only in time, all spatial solves to
10−9 accuracy.

space-time domain such that the local space-time domain on each processor consists
of nx = 27 points in each space dimension and nt = 28 time points (instead of nx = 24

and nt = 25 in our first weak scaling study).

Figure 4.3 shows weak scaling results for MGRIT V -cycles and three different
coarsening strategies: factor-2 coarsening on all levels, factor-16 coarsening on all lev-
els, and a combination of factor-16 and factor-2 coarsening. For the latter coarsening
strategy, we used factor-16 coarsening on all levels on which the number of time points
on each processor is 16 or greater, and factor-2 coarsening on all other levels. The
results show that aggressive coarsening in conjunction with factor-2 coarsening min-
imizes overall compute time. Note that this coarsening strategy could be optimized
further by considering even more aggressive coarsening on the first time levels if the
local problem size on each processor is very large, and instead of using factor-2 coars-
ening on all other levels we could gradually decrease the coarsening factor. Comparing
the three coarsening strategies for MGRIT F -cycles, the time curves look similar to
those in Figure 4.3.

4.3. Parallel performance (2D space). The above results show that partic-
ular choices for various components of the MGRIT algorithm lead to a more effective
time-parallel method than other choices, but we would also like to know when it is
beneficial to use MGRIT and how much speedup we can achieve over traditional par-
allel algorithms with sequential time stepping. To answer these questions, we consider
strong scaling for a set of MGRIT variants and a parallel algorithm with sequential
time stepping with an emphasis on comparing these time integration approaches. We
consider the model problem in two space dimensions with implicit time discretization
and choose the set of MGRIT variants based on the results in Sections 4.1 and 4.2.
We use the heuristic described in §3.3.2 for the accuracy of the spatial solves and the
factor-16/factor-2 aggressive coarsening strategy described above.

Figure 4.4 shows compute times for a strong-scaling study on a 1292×16,385 space-
time grid using a parallel algorithm with sequential time stepping and three MGRIT
variants. For the sequential time stepping case, the spatial domain is distributed such



Parallel time integration with multigrid 17

1 16 256 40960

10

20

30

40

50

60

# processors

tim
e 

[s
ec

on
ds

]

 

 

m = 2
m = 16
m = 16 / 2

Fig. 4.3: Time to solve Implicit2D(T = π2/64) using the MGRIT V -cycle algorithm
with our heuristic choice for the accuracy of the spatial solves, various relaxation
schemes, and different coarsening strategies. The problem size per processor is about
(27)2 × 28. Solid lines are results for using FCF -relaxation on all time levels and
dashed lines represent runtimes for using F -relaxation on the finest grid and FCF -
relaxation on all coarse grids.

that each processor contains approximately a square in space. Since considering 16
processors for distributing the spatial domain minimizes the overall compute time
when parallelizing only in space, for MGRIT, the space-time domain is distributed
across 16Pt processors such that each processor owns a space-time hypercube of ap-
proximately (25)2×16,384/Pt. Considering a smaller number of processors, sequential
time stepping is both faster and uses less memory (for sequential time stepping, one
has to store data from one time step only, whereas for the MGRIT approach, a whole
space-time subdomain, i.e., data from several time steps, needs to be stored). On a
larger number of processors, however, MGRIT is faster. The choice of which algo-
rithm to use, therefore, depends primarily on the available computational resources.
More precisely, for this particular problem, the crossover point at which it becomes
beneficial to use the MGRIT algorithm is at about 256 processors. Increasing the
number of processors to 4096 results in a speedup of up to a factor of 10 compared to
sequential time stepping.
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Fig. 4.4: Time to solve Implicit2D(T = π2) on a 1292 × 16,385 space-time grid using
sequential time stepping and three MGRIT variants.

In the explicit case, where the discrete solution possesses the same physical prop-
erties as the continuous solution, i.e., δt is chosen sufficiently away from the CFL
limit, the explicit-implicit approach of MGRIT scales well and it can be beneficial to
use this approach over parallel algorithms with sequential time stepping. Comparing
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MGRIT to sequential time stepping, the time curves look similar to those in Figure
4.4, but the crossover point and speedup benefits change since the cost of the ex-
plicit time integrator is small relative to the cost of the implicit coarse solves. Thus,
for a small number of time steps, sequential time stepping is faster and requires less
computational resources. For a large number of time steps, however, the sequential
approach is slow and thus, adding parallelism in time becomes beneficial.

4.4. Parallel performance (3D space). Comparing the two time integra-
tion approaches for solving the model problem in three space dimensions with im-
plicit time discretization, the time curves look similar to those in Figure 4.4, but
the crossover point changes. Increasing the number of processors decreases the lo-
cal problem size and, consequently, increases the ratio of boundary to domain or,
equivalently, decreases the computation/communication ratio. For a particular com-
putation/communication ratio, we need a much larger number of processors when
considering three space dimensions instead of two since local problem sizes are larger.

One possibility to benefit from the MGRIT approach at small scales is to consider
a smaller spatial problem size. Figure 4.5 shows the compute times for a strong-scaling
study on a 333 × 4097 space-time grid using a parallel algorithm with sequential time
stepping and three MGRIT variants. Analogously to the two-dimensional case, for the
sequential time stepping approach, the spatial domain is distributed evenly such that
each processor holds approximately a cube in space. Considering two processors for
each spatial dimension yields a reasonable spatial domain and results in close to min-
imum overall compute time when parallelizing only in space. Therefore, for MGRIT
the space-time domain is distributed across 8Pt processors such that each processor
owns a space-time hypercube of approximately (24)3 × 4096/Pt. The crossover point
for which it becomes beneficial to use MGRIT for this particular problem size is at
about 256 processors. Increasing the number of processors to 4096 results in a speedup
of up to a factor of six compared to sequential time stepping.
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Fig. 4.5: Time to solve Implicit3D(T = 4π2) on a 333 × 4097 space-time grid using
sequential time stepping and three MGRIT variants.

4.5. Parallel performance models. With current trends in computer archi-
tectures leading towards more processors, the MGRIT algorithm looks promising to
speed up computations by adding parallelism in time. To gain insight about what
level of parallelism in time is needed to break even with time stepping, we can com-
pare the number of time-stepping routine calls for both time integration approaches.
Recall that for implicit time discretizations, these function calls correspond to spatial
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solves and thus, are the dominant cost. Since sequential time stepping requires one
spatial solve at each time step, the number of time-stepping routine calls is Nt. For
MGRIT V -cycles with FCF -relaxation, we consider a hierarchy of time levels. For
simplicity, we first assume that we use the same accuracy for all spatial solves on
all grid levels. Since relaxation and interpolation correspond to C-relaxation and F -
relaxation, respectively, the number of time-stepping routine calls in MGRIT taking
the grid hierarchy into account is approximately νt(2m/(m−1)+1)Nt, where m is the
coarsening factor and νt denotes the number of MGRIT iterations necessary to solve
to a given accuracy. Thus, for MGRIT to break even with sequential time stepping,
we need about a factor of νt(2m/(m − 1) + 1) more processors to add parallelism in
time. For the model problem in two space dimensions with implicit time discretiza-
tion considered in Table 1, for example, the number of MGRIT iterations for factor-2
coarsening is about 10 and thus, for this particular problem we need about 50 times
as many processors for MGRIT to break even with sequential time stepping.

If we consider a specific problem and, thus, a specific time integrator, Φ, and if we
choose a specific method for solving the spatial problems, we can better approximate
the level of parallelism needed to break even with time stepping. For the model
problem in three space dimensions with implicit time discretization, we assume that we
solve the spatial problems in parallel using spatial multigrid V -cycles with coarsening
by a factor of two in each dimension. Instead of counting time-stepping routine calls,
we now count the number of spatial V -cycles. If we fix an accuracy for the spatial
solves in the time stepping approach, the number of spatial V -cycle calls is given by
the number of time steps multiplied by the number of spatial V -cycle iterations, νx,ts,
necessary to solve to this accuracy. For the MGRIT approach, we assume that we
use a fixed number of spatial V -cycles for approximating each spatial solve within
relaxation and restriction on the coarse grids as well as within interpolation on all
grids. If we use a fixed coarsening factor, m, on all time levels, the number of spatial
V -cycle calls for all approximate spatial solves in the time grid hierarchy is about
2(m + 1)/(m − 1) multiplied by the number of time steps and the number of MGRIT
iterations, νt, necessary to solve to a given space-time accuracy. Within relaxation
and restriction on the finest grid, we consider solving the spatial problems to high
accuracy. The number of spatial V -cycle calls for these spatial solves is about 2Nt

multiplied by the number of MGRIT iterations and the number of spatial V -cycle
iterations, νx,MGRIT, necessary to solve to the high accuracy. Thus, the number of
spatial V -cycle calls for the two time integration approaches is given by

νx,tsNt (time stepping)

and

(νx,MGRIT + m + 1

m − 1
)2νtNt (MGRIT V -cycle with FCF -relaxation).

For the problem in §4.4, we have νx,ts = 12, νt = 26, νx,MGRIT = 8, and m = 16
(under some simplifying assumptions such as assuming that we coarsen by a factor
of 16 on all levels). In this case, the number of spatial V -cycle calls is 12Nt for the
time-stepping approach and about 468Nt for the MGRIT approach. If we denote the
number of processors used for temporal parallelism in MGRIT by Pt, the number of
spatial V -cycle calls per processor is about 468Nt/Pt. Thus, the sequential cost of
12Nt spatial V -cycle calls in time stepping and the parallel cost of 468Nt/Pt spatial
V -cycles in MGRIT are equal for this problem if we use about 39 processors for
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adding parallelism in time in the MGRIT approach. The results in §4.4 show that
for eight-way parallelism in space, the crossover point at which it becomes beneficial
to use MGRIT is at about 256 processors, corresponding to using 32 processors for
parallelizing in time for each spatial subdomain. Thus, counting the spatial V -cycle
calls gives a good estimate for this problem.

The above argument allows us to estimate the level of parallelism in time needed
to break even with time stepping, but we would also like to know how much speedup
we can expect to achieve over traditional parallel algorithms with sequential time-
stepping on larger scales. To answer this question, we developed parallel performance
models based on the standard communication and computation models

Tcomm = α + nβ, Tcomp = nγ, (4.1)

where α and β represent communication costs and γ is computation cost on a given
machine. The numbers in [13, Table 2] can be used as the basis for choosing two
parameter sets characterizing modern machines: a “computation dominant” set con-
sisting of the parameters

α = 1 µs, β = 10 ns/double, γ = 8 ns/flop, (4.2)

and a “communication dominant” set defined by

α = 1 µs, β = 0.74 ns/double, γ = 0.15 ns/flop. (4.3)

The ratios α/β and α/γ are assumed to be “small” in the computation dominant set
and “large” in the communication dominant set. To define the parameter sets (4.2)
and (4.3), we have set α = 1 µs and chosen β and γ such that the ratios α/β and α/γ
are equal to the minimum or maximum ratios from [13, Table 2], respectively.

Based on the two parameter sets (4.2) and (4.3), we compare the two time integra-
tion approaches. Analogously to the numerical experiments in §4.4, for the sequential
time-stepping approach, we assume that the spatial domain is equally distributed
such that each processor holds approximately a cube in space, and that the number
of processors is increased only up to the point at which the spatial subdomain consists
of about 23 points per processor. We consider a domain refinement of the problem in
§4.4 meaning that instead of a space-time grid of size 333 × 4097 we assume a space-
time grid of size 653 × 16,385. Assuming that nx = 24 is a reasonable local problem
size in each space dimension, we assume that the space-time domain is distributed
across 64Pt processors such that each processor owns a space-time hypercube of about
(24)3×16,384/Pt. Furthermore, we assume that we use a fixed coarsening factor on all
levels that depends on the local number of time points on the finest grid as follows: if
16,384/Pt ≥ 16, we assume coarsening by a factor of 16, otherwise we consider factor-2
coarsening.

Figure 4.6 shows the predicted time to solve Implicit3D(T = 4π2) on a 653×16,385
space-time grid using sequential time stepping parallelized only in space and the pre-
dicted time to solution for applying MGRIT as functions of the number of processors
used for the computations. The left plot shows the expected behavior based on the
computation dominant parameters (4.2), and the right plot presents the expected be-
havior based on the communication dominant parameters (4.3). The time curves for
both parameter sets show similar trends to those in numerical experiments, but as
Figure 4.6 demonstrates, the expected crossover point and expected speedup depend
on the parameter choices and, hence, the type of machine being used. In the compu-
tation dominant regime, the model predicts a speedup of up to a factor of about three,
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whereas in the communication dominant regime it is up to a factor of about 27. This
result is attractive since, on future architectures, we expect the parameters to be most
likely in the more communication dominant regime. Furthermore, comparing model
predictions to numerical results for the problem in §4.4, the communication dominant
model corresponds better to numerical results than the computation dominant model.
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Fig. 4.6: Predicted time to solve Implicit3D(T = 4π2) on a 653 × 16,385 space-time
grid using sequential time-stepping or MGRIT. At left, expected behavior based on
the computation dominant parameters (4.2) and at right, expected behavior based on
the communication dominant parameters (4.3).

5. Conclusions. With current trends in computer architectures leading towards
systems with more, but not faster, processors, faster compute speeds must come from
increased concurrency. Motivated by this challenge, a non-intrusive, optimal-scaling,
time-parallel method is proposed. Being a non-intrusive approach which only uses
an existing time propagator, this multigrid-reduction-in-time algorithm easily allows
one to exploit substantially more computational resources than standard sequential
time stepping. This is particularly important when moving to exascale, but it also
enables benefits on smaller scales. For example, for problems that involve a large
number of time steps, effective speedup is limited when allowing only spatial paral-
lelism. Numerical results show that already on modern machines adding parallelism in
time can sometimes significantly speedup computations when sufficient computational
resources are available.

The parareal time integration method is equivalent to an optimal two-level vari-
ant of our MGR-based algorithm, MGRIT. However, the obvious generalization of
parareal to multiple levels does not produce an optimal method. The MGR view-
point makes it possible to see that replacing F -relaxation in the two-level parareal
method with FCF -relaxation and applying the resulting method recursively produces
an optimal multilevel algorithm.

For explicit time discretization schemes, stability issues on coarse grids can be
circumvented while preserving optimality and non-intrusiveness by using an implicit
discretization on coarse grids. However, a more general approach to time paralleliza-
tion is to consider the space and time variables together by thinking of time as just
another dimension of the problem. The drawback of space-time multigrid is that it
will be more intrusive compared to MGRIT. On the other hand, space-time methods
should have better performance properties and smaller memory requirements.

In this paper, only problems that yield constant-coefficient one-step time dis-
cretization methods are considered meaning that the time integration operator Φi(⋅)
in (2.2) corresponds to a matrix-vector product with a fixed matrix, Φi(ui−1) = Φui−1.
Future work includes considering methods for variable-coefficient problems such that
Φi(ui−1) = Φiui−1. The generalization to this case is straightforward, but coefficient
variability often creates additional difficulties for multigrid solvers. We will investigate
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the sensitivity of our methods to variations in Φi.

If the problem (2.1) is nonlinear, MGR ideas can be generalized to the full ap-
proximation storage (FAS) setting [6]. Future work also includes extending the MGR
approach to the nonlinear setting. In fact, the parallel implementation of MGRIT is
already based on the FAS approach. One interesting problem area we will consider
is moving and/or adaptive meshes for which the F -cycle variant of MGRIT should
prove useful.

Finally, future work includes broadening the applicability of MGRIT to hyperbolic
problems. To this end, we have explored the simple linear advection equation in one-
dimensional space cross time. Here, initial results are promising when running a
study analogous to Table 1, where we observe slowly growing iteration counts for F -
cycles and FCF -relaxation. Future work will focus on scalability and more difficult
problems, e.g., shocks.
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