NUMERICAL SOLUTION OF LINEAR ELASTICITY PROBLEMS
WITH INTERSECTING SLIDE SURFACE CONSTRAINTS *

CHARLES TONG f

Abstract.

Incorporating slide surface constraints in implicit structural finite element analyses using La-
grange multipliers give rise to an indefinite linear system of equations which is difficult to solve
by iterative methods. To improve the iterative solution process, algebraic elimination that restores
positive definiteness to the discretization matrix has been shown to be effective. This paper extends
the algebraic elimination techniques to applications with intersecting slide surfaces. We present a
graph-theoretic algorithm for handling intersecting slide constraints and compare its performance
with inexact Uzawa and block preconditioned Krylov methods.

Key words. indefinite systems, preconditioning

AMS subject classifications. 65F10, 65N20

1. Introduction. The implicit solution of linear elasticity problems using finite
elements involves solving the following variational problem:

1) F(u) = %(Ku, u) — (f,u), ucRY

where the functional F(u) is to be minimized in R (IV is the degree of freedom). Here
K, u, and f are the stiffness matrix, the displacement and load vectors, respectively.

When the computational domain consists of several bodies, the “impenetrability”
condition governs that two bodies cannot occupy the same space at the same time.
To enforce this condition, an additional set of constraint equations

(2) Cu=g

is introduced, where C is the constraint matrix and g is a vector containing the
constraint values (for example, g = 0 implies the bodies are in contact).

Using the Lagrange multiplier formulation, the modified functional that includes
the constraints can be written as

A

F(u) = 5(Ku,u) ~ (£, u) + X7 (Cu— g)

where A are the Lagrange multipliers.
The minimizer of this modified functional is the solution of the indefinite system

K C7T u f
3) = :
C o0 A g
While solving this indefinite system with direct methods poses few additional nu-
merical difficulties, its computational and memory requirements becomes prohibitively

large for even moderate-sized problems. For large scale applications, the use of itera-
tive methods is inevitable. However, iterative methods suffer from significantly slower

*This work was performed under the auspices of the U.S. Department of Energy by University of
California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

TCenter for Applied Scientific Computing, Lawrence Livermore National Laboratory, L-560, Box
808, Livermore, CA 94551. E-mail : chtong@llnl.gov.

1

convergence rates (compared to similar problems but without constraints) and thus
become less attractive.

Methods for solving the indefinite systems generally fall into several categories:
iterative methods applied to the original system with special preconditioning (for
example, block preconditioning), iterative methods applied to reduced systems which
are symmetric and positive definite, projection methods, and Uzawa methods [25]. In
our previous paper [7] we have demonstrated the effectiveness of algebraic elimination
techniques for problems with simple constraints. In this paper we extend the algebraic
elimination techniques to handle problems with more complicated intersecting slide
surface constraints.

Section 2 discusses the derivation of slide surface constraints. In Section 3 we
survey solution methods for indefinite systems. Section 4 presents the new algorithm
for algebraic elimination. Section 5 describes an implementation and a performance
comparison of the method with the inexact Uzawa and block preconditioned iterative
methods. Finally, in section 6, we conclude with a few final remarks.

2. Slide Surface Constraints.

2.1. The Physics of Slide Surfaces. Slide surfaces refer to the interface be-
tween two disjoint bodies that may come into contact in a simulation. Impact and
separation of these bodies must be detected, and the bodies may slide tangentially
relative to each other, with or without friction. The slide surface boundary conditions
are different in each case of impact, separation, and sliding. Here we discuss only the
simplest case where two bodies in contact remain in contact and slide relative to each
other during the simulation (that is, g = 0 in equation 2).

Two important conditions must be satisfied at the interface: conservation of mo-
mentum and an “impenetrability” constraint preventing the structures from occupying
the same space at the same time [7]. These criteria can be satisfied by using Lagrange
multipliers at the interface. In this case, the constraint is exactly the “impenetrabil-
ity” condition, while the Lagrange multipliers themselves are the forces necessary to
maintain momentum conservation.

2.2. Formulating the Slide Surface Constraints. The impenetrability con-
dition can be prescribed by first selecting one side, the “slave” side, to apply the
constraint (see Figure 1).

u
Ugy 3

Ug Ugp

Fi1G. 1. Ezample of a slide surface

An iterative algorithm is then used to compute the “images” (or parametric co-

ordinates) of the slave nodes on the other side of the interface, the “master” side.
2

Next, for the image of each slave node s, the nearest face of a finite element f,; on the
master surface is identified. Let ug, ug2, us3, and uy be the vector displacements
of the four nodes defining f, for hexahedral elements. Then the displacement of the
slave node s’s image u,, is constrained by the master side to be:

Ugsx = ¢slusl + ¢52us2 + ¢53us3 + ¢s4us4

where ¢g1, @52, Ps3, and ¢4 are weights constructed from the parametric coordinates
of node s and the four nodes of f; using finite element shape functions.

Let u;s be the actual displacements of the slave node s. Then the impenetrability
condition for s is given by (gs = 0 for objects in contact):

nT(us - us*) =gs=0.

Physically, this constraint states that the displacement of the slave node and its image
on the master surface should be identical in the direction normal to the fs.

Substituting u,. into the constraint equation yields:

nT(

us — ¢slusl - ¢s2us2 - (25331133 - ¢s4us4) =0.

We point out that this constraint is in general nonlinear since the normal vector
is a function of the slave node coordinates, and the shape functions depend on both
the master and slave node coordinates. In this analysis, we linearize this constraint
by evaluating the normal and the shape functions using the displacements computed
in the previous time step.

Each constraint equation is thus a linear combination of the displacements of one
slave node and one or more master nodes, and the number of constraint equations
is the number of slave nodes to be constrained. The constraint equations can be
represented in the following matrix form:

Cu=0.

(Again we point out that the right-hand side is nonzero if the surfaces are not originally
in contact.) In three-dimensional problems, the constraint equations represents a
small percentage of the total number of equations in the system, and C is sparse.

An important observation is that for simple slide surfaces (that is, non-intersecting
ones) each column of C corresponding to a slave variable only has one nonzero in the
column, implying that no other constraints depend on or involve this variable. This
observation is the basis for the algebraic elimination described later.

2.3. Intersecting Slide Surfaces. The elegant feature of the simple slide sur-
face constraints is that we can define one of the slave displacements (z, y, or z)
as a “dependent” variable. The algebraic elimination technique can be applied in a
straightforward manner once the algebraic relationships between the dependent and
independent variables have been established.

For general constraints, it is not always possible to find a straightforward parti-
tioning of the constrained variables into disjoint dependent and independent sets. An
example is the intersecting slide surface problems where some nodes are master nodes
for one slide surface, and slave nodes for another slide surface; or it may be slave
nodes for both slide surfaces. This is illustrated in Figure 2. Arrows in the figure
indicate that a slave node is dependent on a master node. In this example, node 3

3

save

11 12 13 14 15 16

F1G. 2. Ezample of an intersecting slide surface

is a slave node on one slide surface but a master node on another, while node 8 is a
slave node on both slide surfaces.

The intersecting slide surfaces in Figure 2 has 9 constraints, since there are 8 slave
nodes, and one of them (node 8) is a slave to 2 master surfaces. The sparsity pattern
of C for this set of interface nodes is (each X and 0 are row vectors of dimension 3
for three-dimensional problem):

>

coocococooo
cCoocococoo o
cCooMOoOOoO KOO
cCooMHKOoOOoOOo O
cCoOOoCOoO M KOOo O
coococoxooo
coocoxMoooo
coxMooooo
oMoococooooo
HMoooooooo
COoO0CO0O0CO OO
OO OO M
CoococOoOoOXXO
coxooo oo
OMMOoOOoOOoOOoOOo O
Mo oooooo

3. Solution Methods for Indefinite Systems. Indefinite systems in general
are difficult to solve by iterative methods such as the class of preconditioned Krylov
subspace methods. Specifically, the efficiency of Krylov methods depends on the
use of effective preconditioners. Many effective preconditioners have been proposed
for symmetric and positive definite system, but effective preconditioners for general
indefinite systems are still relatively scarce. In this section we give a brief review of
existing methods for solving indefinite systems, with emphasis given to methods that
are amenable to parallel implementation.

3.1. Algebraic Elimination (of dependent variables) Approaches. The
constraint equations implicitly prescribe relationships between some of the displace-
ment variables, making it possible to eliminating them conveniently. The idea is to
identify a set of “dependent” variables which can be expressed as a linear function

4

of the other or “independent” variables. The elimination step gives rise to a reduced
system involving only the independent variables. With algebraic elimination the sys-
tem matrix is restored to be symmetric and positive definite if the stiffness matrix
(K in equation 1) is symmetric and semi-definite. The reduced system can be solved
efficiently by the conjugate gradient method with a wide selection of effective precon-
ditioners. For general saddle point systems, this reduction is not always possible since
a pure set of dependent variables (that is, in the absence of slave nodes that show
up on more than one slide surfaces) may not always be found. More details of this
approach will be given in Section 4.

3.2. Krylov Methods with Block Preconditioning. The linear system in
equation 1 is often called a saddle point problem, and it pervades in many scientific
and engineering applications such as incompressible fluid flow, structural analysis, con-
strained optimization, etc. One popular way of solving large-scale saddle point prob-
lems is the use of block preconditioning coupled with an indefinite Krylov solvers such
as MINRES, quasi-minimal residual (QMR), or flexible generalized minimal residual
(FGMRES) algorithms [22, 12, 26].

The main challenge is to develop effective preconditioners for the indefinite sys-
tems. Block preconditioning techniques have been considered by Murphy, Golub, and
Wathen [21]; Little and Saad [19], Keller, Gould, and Wathen [18]; Klawonn [20], Ro-
zloznik and Simoncini [23], Rusten and Winther [24]; and many others. Specifically,
block diagonal, block triangular, and block LU preconditioners in the forms of

K 0 K cT

Py, = N Pr = ”

D [0 CK-CT] T [0 CKk-lcT] and
P K 0 I K'cT
W=l c —-ck'cT ||o I

have been investigated where S = CK~'CT is the approximate Schur complement
and K—!is an approximate inverse of K (K‘l may be a different approximate inverse
different from K~!). The main difficulty with this class of preconditioners is the
formation or the inverse application of S. More accurate approximation of the Schur
complement incurs higher preconditioning costs, while less accurate approximation
may cause convergence problems. In addition, many such techniques require the
factorization of some approximates of K, which may not be efficient nor amenable to
parallel implementation.

3.3. Projection Methods. The goal of the projection methods, as with the
algebraic elimination technique, is to transform the indefinite system into a positive
definite system, with the advantage that the classical conjugate gradient algorithm
can be applied. There are various forms of the projection method. One projection
method [11, 25] computes the solution by solving the reduced system

(5) K,u, = (PTKP)u, = Pf =f,.

One choice for P is the projection operator P = I— CT(CC”) 1C where C has been
defined before in 1. The procedure for this algorithm is thus

1. Compute P =1 — CT(CC”T)1C;

2. Solve Kyu, = £, for up;

3. Recover the solution u = PTu,,.
4. Compute the solution A = (CCT)~1C(f — Ku + u).

There are other choices of the projectors (for example, [27], [15]), which are formed
by different combinations of C. Observe that computation using the projector above
may require the factorization of CCT, which may have efficiency problem especially
on parallel computers.

3.4. Uzawa Algorithms. The exact and inexact Uzawa algorithms [2, 10] are
popular for solving saddle point problems. In the following we introduce the precon-
ditioned Uzawa iteration as well as its variants.

The Preconditioned Uzawa Algorithm : Let A\° be given. Compute u™ and \"
using the recurrence: for k =0,1,2,---,n
1. Kuft!t = f — CT)*
2. AL = \F 4 oM H(Cubtl — g)
It can be shown that the preconditioned Uzawa algorithm on A is equivalent
to the classical Uzawa method applied to the Schur complement with splitting
CTK~!C = M — N for some nonsingular M.
The Inexact Uzawa Algorithm : Let A\° be given. Compute u* and A* using the
recurrence: for k =0,1,2,---,n
1. Kubt! =f — CT)*
2. MAL = Ak L oM ~1(Cuft! — g)
where K~! is an approximate inverse of K and M~! is an approximate inverse
of the Schur complement S.
The rate of convergence of this algorithm depends on how accurately the
inner iterations are solved. Specifically, the error at the (i + 1)-th iteration
e;+1 is related to e; by

o [er, I-K 'K K-'c” e] _ Ge
Gl = el || MICOI-K'K) I-M-'CK-'CT || e/ |~ 7
(6)

Convergence of the method requires that the magnitude of all eigenvalues
of the iteration matrix G be smaller than 1. Many convergence proofs
have been given previously for the inexact Uzawa algorithm and its variants
[3, 4, 28, 10, 6]. Practical application of the Uzawa algorithm often requires
the approximation of the extreme eigenvalues of the Schur complement, which
may be expensive to compute. Other approaches solves the exact Schur com-
plement with the conjugate gradient method to a prescribed accuracy, and
convergence proofs have been established [10, 17]. However, each conjugate
gradient iteration for solving the Schur complement requires an exact solve
with K, and thus the overall cost may become prohibitive. Next, we describe
a modified Uzawa algorithm as a preconditioner to FGMRES, in which case
convergence criterion is less stringent.
Krylov Method with Modified Uzawa Algorithm : use FGMRES with the fol-

lowing preconditioning step: [17]

1. ubtl/2 = ub 4 K1(f — Au; — CT)F),

2. /\k+1/2 =\k 4 M—I(Cuk+1/2 _ g)7

3. ubt! = uf + K~1(f — Au; — CTAFH1/2),

4. NFHL = Z\KH1/2 L M-L(CuFt! — g).
It was observed that using this modified Uzawa preconditioner gives faster
convergence for our test problems. It can be shown that this preconditioner is

6

equivalent to the following block preconditioner (with the Schur complement
approximated by a scaled identity al):

@ pot _[K'I+aCTCR) _ oK
wsawe = | qCK (21 —aCTCK!) o?CK !CT - (1 +a)L.

4. Algebraic Eliminations for Slide Surface Constraints. With the slide
surface constraints, the linear system to be solved in each implicit solution step is:

K CT u f
® w=le S]] le] e
Since this paper concerns the simple case where the bodies are always in contact,
the right hand side for the constraint equations g = 0. Since A is indefinite, this
linear system is in general difficult to solve using iterative methods. In this section
we first review an algebraic solution method for reducing equation 8 into a positive
definite system. More details can be found in [7]. The main focus, however, is on

how to apply the algebraic elimination technique to problems with intersecting slide
surfaces.

4.1. Algebraic Elimination for Simple Slide Surfaces. We define a set of
M dependent variables consisting of one displacement variable (z, y, or z) from each
slave node by u,. All the other variables are denoted u,,. We then partition A
into three blocks containing the set of independent variables, the set of dependent
variables, and the Lagrange multipliers variables, respectively, giving

Kinm Kuns Cgl Um fm
(9) Ksm Ky CST Ug = f,
C,. GC; 0 A 0

Using the constraint equations, the slave variables can be expressed in terms of
the master variables by

u; = —CS_ICmum.

Substituting this relationship into the master and the slave equations and then elim-
inating the Lagrange multiplier variables yields:

Anuy = [Kpm — KnsC, 'Cp — CTC, Ky, + CLC,TK,C, ' Cpi]
=f, - CLc 1t
= by,.

This reduced system has the property that A,, is symmetric and positive definite
if K is symmetric and positive definite. Another property is that A,, is relatively
sparse if A is sparse and C; ! is also sparse. For linear systems arising from simple
slide surfaces, C; is a diagonal matrix, and we have shown [7] that the corresponding
reduced system is only slightly denser than A.

In matrix notation, this reduction is equivalent to forming the Schur complement
KSS CS]

with respect to [cT o

-1
K C K
(10) Am =Ko — [Koms C"‘][CZTS 05] [Cf]
A critical observation is that the matrix inverse in equation 10 can be formed
analytically by

K, C,1 ' [0 c.; T
cT o | Gt —CIKCIT |

and, with C; a diagonal matrix for simple constraints, this inverse is both easy to
compute and sparse. After the reduced system is solved for u,,, u; and A can be
recovered by back substitution using

u, = —CS_TCmum7 and

A=C;(f, - K,pu,) + C7'K,,C;TCLu,,.

An important step in the algebraic elimination is to identify a set of slave variables
to be eliminated along with the Lagrange multiplier variables. While this information
is available from a finite element software package, it is often not available when only
the matrix and right hand side vector are provided to the solver package. Fortunately,
using the fact that the slave candidates can be selected from the columns of C having
only one nonzero entry, we can easily identify M slave variables.

4.2. Algebraic Elimination for Intersecting Slide Surfaces. In cases where
slide surface intersect, we can no longer identify a set of slave variables

u, = —C;lCmum

such that C; is a diagonal matrix. In the following we will show that it is possible to
identify a set of dependent variables such that C; is block diagonal with small block
sizes. In this case, the inverse and therefore the Schur complement in equation 10 are
still sparse, although they will be denser than if Cs is diagonal.

Several implementation details of slide surfaces contribute to the feasibility of
this approach. First, in many practical problems, the number of slide surfaces that
intersect each other is no more than three so that each slave variable appears in at
most two constraints. This will ensure that the long-chained master-slave relationship,
which can result in large connected sets of slave variables and thus large blocks, cannot
occur (in fact, it can be shown that this will also imply that each subgraph consisting
of a connected set of selected variables will have the longest path length between any
two vertices to be no more than 3). Secondly, the “master” side is typically chosen
to be the side that is more rigid or more densely gridded. This selection criterion has
the advantage that the number of slave variables that depend on the same master
variable is small (at most four in our implementation) and bounded, implying that
relatively small block sizes can be achieved. Finally, for three-dimensional problems,
each slave node has three displacement variables, allowing more flexibility in selecting
slave variables.

In the following subsections we address the problem of identifying a set of M slave
variables given a (N + M) x (N + M) matrix A with M constraint equations at the
bottom of the matrix.

4.2.1. A Graph Theoretic Algorithm for Slave Selections. In this section,
we develop a graph theoretic framework for partitioning C such that C; is block
diagonal with small blocks.

Define a M x N binary matrix Q such that (Q);; =1 if C;; # 0 (that is, for the
example given in equation 4, form Q by replacing all X’s with 1’s). Next construct
a binary graph G = Q7Q (that is, G;; = 1 if >p_, Q(k,71)Q(k,j) # 0.) Several
remarks can be made about G.

1. Gy; # 0 if and only if vertex ¢ and j are involved in the same constraint.

2. There are M cliques in G, each representing one constraint.

3. If an independent set of M vertices exists in G, then Q can be partitioned
into [Q1Qz] such that Q2 is a diagonal matrix.

The objective is to select a total of M vertices, and at least one vertex from each
clique as slaves, while minimizing the sizes of each connected set of selected vertices.
This can be achieved by solving an 0-1 nonlinear integer programming problem which
is both complicated to formulate and solve. Fortunately, the problem can be much
simplified by incorporating one realistic assumption given before, namely that each
selected subtree has the longest path between any two vertices of no more than 3.
This simplified case can be cast into the following integer programming problem: let
v be a binary vector of size N. Find v € {0,1}" such that

(11) min || GV ||
N
subject to Zvi =M, and
i=1

N
Y Qivi>1, i=1-M
j=1

This simplified problem is still expensive to solve. In the following subsections we
use heuristics to find an approximate solution to this problem by incrementally search
the solution space for a suboptimal solution. We first present the overall algorithm.

Algorithm findSlaves

isSize = 1, initial independent set I = ()
while cardinality(I) < M do
FindConstrMaximallndepSet(G, I, M ,isSize++)
end while
Here the function FindConstrMaximallndepSet takes the graph G and an existing in-
dependent set I, and attempt to find or modify I so that the maximum value of Gv
is no more than isSize. The arithmetic complexity of the algorithm is O(N).

4.2.2. Selection of a Constrained Maximally Independent Set. The first
step in the algorithm is the selection of a constrained maximally independent set
(MIS), meaning a maximal set consisting of vertices that are not adjacent to each
other in G and one vertex per constraint. This can be achieved by first identifying
all columns of Q that have a single nonzero entry in the corresponding columns as
candidates, and then examine each candidate to determine if it should be added to
the set I. Tt is straightforward to verify that with this choice the entries of the vector
Gv has a maximum value of 1. In the case of a single slide surface, this step would
have been enough to find an independent set of cardinality M.

9

To maintain numerical stability, the criterion for determining the slave variable
to a given constraint is that its corresponding matrix entry has the largest magnitude
among all slave candidates available for the constraint.

4.2.3. Modification of the Constrained MIS. Subsequent steps create max-
imally independent sets of connected vertices such that the size of each connected set
is bounded (by isSize). This can be achieved by first identifying all columns of Q that
have isSize or less nonzero entries and which are adjacent to some selected vertices.
Each unprocessed constraint will have its slave candidates examined to see if its in-
clusion into existing connected sets will keep sizes of the set to be bounded by isSize.
This process goes on until one slave vertex is identified for each constraint.

Again numerical stability is an important consideration here. Therefore, when
a slave candidate is examined for inclusion into the selected set, the resulting block
diagonal matrix is examined to see if it is singular or near singular, and the candidate
that gives the largest departure from singularity is selected.

4.2.4. Hybrid Approach to Saddle Point Problems. It will be demon-
strated algebraic elimination gives much faster convergence than the block methods
applied directly to the indefinite system. However, we recognize that this algebraic
elimination has its own limitations. Specifically, for more general constraints it may
not be possible to form block diagonal Cg with small block size. In such cases algebraic
elimination can be combined with other approaches (for example, block-precondtioned
Krylov method) to achieve better performance.

5. Numerical Experiments. We have implemented a sequential version of our
algebraic elimination method. In this section we present numerical results demon-
strating the effectiveness of this method compared to the block-preconditioned and
Uzawa-preconditioned Krylov methods. We have not included the projection algo-
rithms in our experiment due to the difficulties in constructing efficient precondition-
ers for the composite operator K, (equation 5).

5.1. Implementation Details. To take advantage of the fast multigrid meth-
ods we replace the eliminated variables with identity rows and columns so that the
degree of freedom at each grid node is preserved. Our implementation sets the default
maximum block size to be 100, but allows users to adjust it. The algorithm declares
a failure if one or more constraint-slave pairs cannot be found with a given maxi-
mum block size. To maintain numerical stability in the elimination process, diagonal
blocks in C; are allowed only if the conditioning of the blocks are within a prescribed
tolerance, which is 10° in our implementation.

For the block-preconditioned Krylov methods, we use the flexible generalized
minimal residual method (FGMRES) since using Krylov methods for inner iterations
gives a variable preconditioner, and the preconditioners are in general nonsymmetric.
For the inner iterations, a wide selection of preconditioners are available for the (1,1)
block. The convergence tolerance can be relaxed for the inner solves (we use a relative
tolerance of 10™2 to 1071). Since the Schur complement CK~'C7 is too expensive
to form explicitly, we approximate K—! by the inverse of its diagonal. We have also
implemented the capability to compute an approximate inverse of K with different
sparsity patterns, but our numerical experience points to diagonal approximation as
often being the most efficient.

For the Uzawa-preconditioned Krylov methods, we also need to use the FGM-
RES method. Similar considerations in prescribing looser convergence tolerance for
the inner iterations, using different preconditioners, and approximating the Schur

10

complement are needed here. We use a scaled identity matrix as an approximation
to the Schur complement, and we vary the scaling factor to obtain better overall
efficiency.

5.2. Test Problems. The test problem used in our experiment is a three-
dimensional elasticity problem generated by an implicit hydrodynamics code at LLNL.
The domain has 3 blocks which are in contact, as depicted in Figure 3. There are
three slide surfaces intersecting each other at an edge. We vary the size of each block
in our numerical investigations. All experiments are run on a Compaq alpha-based
machine running at 1 GHz.

F1G. 3. 8D Elasticity Problem with Intersecting Slide Surfaces

5.3. Numerical Comparisons. The objective of the first set of experiment is to
investigate the relative performance of different methods on a moderate-size problem.
The best performing methods will be used subsequently for problems of various sizes.
In all numerical tests, a relative tolerance of 1079 is used in the convergence criterion.

5.3.1. Comparisons of Different Methods. For solving the reduced system
from algebraic elimination, we use the classical conjugate gradient method with dif-
ferent preconditioners. Specifically, we use diagonal, sparse approximate inverse (the
ParaSails software package [8]), the classical algebraic multigrid (the BoomerAMG
software package [16]), and the smoothed aggregation algebraic multigrid (SAAMG
[29] in the HYPRE [16] linear solver library). The parameters used for ParaSails are
Nlevels= 1, Threshold= 0.1 — 0.3, and Filter= 0.1 and 0.2 (denoted, for example,
ParaSails(1,0.1,0.1)). The parameters used for BoomerAMG are 2 sweeps of sym-
metric Gauss Seidel smoothings, different coarsening threshold ranging from 0.5 to
0.99, and a system size of 3 (denoted, for example, BoomerAMG(SGS,2,0.5,3)). The
parameters used for SAAMG are 1 or 2 sweeps of symmetric Gauss Seidel smoothings
and a null space dimension of 3 or 6 (for example, SAAMG(SGS,2,3)).

For the unreduced system, we use FGMRES with Uzawa and block precondition-
ers. The conjugate gradient method is used to solve the (1,1) block (namely, K), and
smoothed aggregation multigrid with the same parameter settings as above is used
as preconditioner. The convergence criterion for the (1,1) block solve is a relative
tolerance of 10~! or 10~2. The approximate Schur complement for the Uzawa pre-

11

conditioner is the scaled identity with scaling factor 0.01 and C[diag(K)]~!C” for the
block triangular (blockT) preconditioner.

Numerical results are given in Table 1. Here we observe that algebraic elimination
is significantly more efficient (a factor of more than 10 is observed here) than Krylov
methods applied directly to the indefinite system. In addition, less parameter selection
is needed to tune its performance. The algebraically reduced system is relatively easy
to solve so that diagonal preconditioner gives very good overall timings. Smoothed
aggregation multigrid gives the best timings. The classical algebraic multigrid gives
the best iteration counts, but the computational cost per iteration is very high so
that the overall cost is relatively high. Reducing the number of relaxations from 2
to 1 results in much higher iteration counts. The best sparse approximate inverse
uses a relatively high threshold of 0.3. As the threshold gets closer to 1.0, it becomes
closer to a diagonal preconditioner. This implies that the simple diagonal scaling may
already be a very efficient preconditioner.

TABLE 1
Numerical Results for the 18K Element Problem

| Reduction | Krylov method | Preconditioner | Tterations | Time |
No FGMRES Uzawa(itol=10"1) 39 | 470 sec
No FGMRES Uzawa(itol=10~2) 32 | 597 sec
No FGMRES blockT(itol=10"1) 48 | 222 sec
No FGMRES blockT(itol=102) 34 | 270 sec
Yes CG diagonal 594 27 sec
Yes CG ParaSails(1,0.1,0.1) 330 77 sec
Yes CG ParaSails(1,0.1,0.2) 663 93 sec
Yes CG ParaSails(1,0.2,0.1) 599 42 sec
Yes CG ParaSails(1,0.3,0.1) 648 40 sec
Yes CG BoomerAMG(SGS,2,0.5,3) 17 | 278 sec
Yes CcG BoomerAMG(SGS,2,0.75,3) 28 | 148 sec
Yes CG BoomerAMG(SGS,2,0.99,3) 71 | 159 sec
Yes CG SAAMG(SGS,1,3) 63 21 sec
Yes ca SAAMG(SGS,2,3) 51| 27 sec
Yes CG SAAMG(SGS,1,6) 59 | 24.5 sec
Yes ca SAAMG(SGS,2,6) 48 | 32 sec

note: itol - tolerance for the (1,1) block solve |

5.3.2. Different preconditoners on the reduced systems. Having demon-
strated the effectiveness of our algebraic elimination method, we investigate the ef-
ficiency of different preconditioners on the algebraic reduced systems in this section.
Only the more efficient preconditioners such as diagonal and smoothed aggregation
multigrid preconditioners are studied here. The numerical results are given in Table
2.

We observe that the reduction time can be as much as 50% of the overall solution
time. The irregularities in the reduction time with different problem size is due to the
different maximum block sizes generated in each case. We found that the maximum
block sizes required for algebraic elemination are 11 for the largest and smallest (66K
and 452K) problems, but 60 for the other two. Further study into how to better
control the maximum block size and how to improve the algebraic elimination time

12

TABLE 2
Comparison of Different Preconditioners

| Problem Information | diag precond || SAAMG(SGS,1,3) |
| Size | NNZ | NNZ ratio | RTime || iter | time || iter | time |
66404 | 4.5 M 1.14 8 sec 594 | 27 sec 63 21 sec
104780 | 7.2 M 1.14 | 38 sec 848 | 62 sec || 122 63 sec
235053 | 13.3 M 1.11 | 110 sec 951 | 175 sec 93 113 sec
452166 | 32.9 M 1.08 | 54 sec || 1197 | 385 sec || 109 251 sec
NNZ ratio - ratio of NNZ for reduced system versus A
RTime - algebraic elimination time

are needed.

6. Concluding remarks. Algebraic elimination presents a promising technique

to handle linear elasticity problems with simple and intersecting slide surface con-
straints. The elimination is efficient to perform and only increases the sparsity of
the matrix slightly. The restoration of positive definiteness greatly improves the effi-
ciency of the solution process, as demonstrated in our numerical experiments. Further
work includes its optimization, its parallel implementation, and its extension to more
general constraints.

REFERENCES

J. F. Abel and M. S. Shephard, An Algorithm for Multipoint Constraints in Finite Element
Analysis, Int. J. Num. Meth. Engrg. 14, 464-467, 1979.

K. Arrow, L. Hurwicz, and H. Uzawa, Studies in Nonlinear Programming, Stanford University
Press, Stanford, CA 1958.

R. E. Bank, B. D. Welfert, and H. Yserentant, A Class of Iterative Methods for Solving Saddle
Point Problems, Numer. Math. 56, pp. 645-666, 1990.

J. Bramble, J. Pasciak, and Vassilev, Analysis of the Inexact Uzawa Algorithm for Saddle Point
Problems, SIAM J. Numer. Anal. 32, No. 3, pp. 1072-1092, June 1997.

N. J. Carpenter and R. L. Taylor and M. G. Katona, Lagrange Constraints for Transient Finite
Element Surface Contact, Int. J. Num. Meth. Engrg. 32, 103-128, 1991.

X. L. Cheng and J. Zou, An Inezact Uzawa-Type Iterative Method for Solving Saddle Point
Problems, manuscript, Mathematics Department, Chinese University of Hong Kong.

E. Chow, T. A. Manteuffel, C. Tong, and B. K. Wallin, Algebraic Elimination of Slide Surface
Constraints in Implicit Structural Analysis, manuscript.

E. Chow, T. ParaSails User’s Guide, Tech. Report UCRL-MA-137863, Lawrence Livermore
National Laboratory, Livermore, CA, 2000.

J. I Curiskis and S. Valliappan, A Solution Algorithm for Linear Constraint Equations in Finite
Element Analysis, Computers and Structures, 8, 117-124, 1978.

H. C. Elman and G. H. Golub, Inezact and Preconditioned Uzawa Algorithms for Saddle Point
Problems, STAM J. Numer. Anal. 31, pp. 1645-1661, 1994.

R. Fletcher and C. M. Reeves, Function Minimization by Conjugate Gradients, Comput. J. 7,
pp. 149-154, 1964.

R. W. Freund and N. M. Nachtigal, QMR: a Quasi-minimal Residual Method for non-
Hermitian Linear Systems, Numer. Math. 60, pp. 315-339, 1991.

P. E. Gill and W. Murray, Numerical Methods for Constrained Optimization, Academic Press,
London, 1974.

G. H. Golub and A. J. Wathen, An [teration For Indefinite Systems and Its Application to the
Navier Stokes Equations, STAM J. Sci. Comput. 21, No. 6, pp. 1969-1972.

N. I. M. Gould, M. E. Hribar, and J. Nocedal, On the Solution of Equality Constrained
Quadratic Programming Problems Arising in Optimization, Technical Report RAL-TR-
1998-069, Rutherford Appleton Laboratory, 1998.

Henson, V.E. and U.M. Yang, BoomerAMG: o Parallel Algebraic Multigrid Solver and Pre-

13

conditioner, Technical report UCRL-JC-141495, Lawrence Livermore National Laboratory,
2000.

Q. Y. Hu and J. Zou, Two New Variants of Nonlinear Inexact Uzawa Algorithms for Saddle
Point Problems, to appear in Numerische Mathematik.

C. Keller, N. I. M. Gould, and a. J. Wathen, Constraint Preconditioning for Indefinite Linear
Systems, SIAM J. Matrix Anal. Appl. 21, pp. 1300-1317, 2000.

L. Little and Y. Saad, Block LU Preconditioners for Symmetric and Nonsymmetric Saddle
Point Problems, Technical report 99/104, Minnesota Supercomputing Institute, 1999.

A. Klawonn, preconditioners for Indefinite Problems, PhD thesis, Westfilischen Wilhelms-
Universitdt Miinster, 1995.

M. F. Murphy, G. H. Golub, and A. Wathen, A Note on Preconditioning for Indefinite Linear
Systems, SIAM J. Sci. Comput. 21, No. 6, pp. 1969-1972.

C. Paige and M. Saunders, Solution of Sparse Indefinite Systems of Linear Equations, SIAM
J. Numer. Anal. 12, pp. 617-629, 1975.

M. Rozloznik and V. Simoncini, Krylov Subspace methods for Saddle Point Problems with
Indefinite Preconditioning, To appear in SIMAX.

T. Rusten and R. Winther, A Preconditioned Iterative Method for Saddle Point Problems,
SIAM J. Matrix Anal. Appl. 13, No. 3, pp. 887-904, 1992.

P. Saint-Georges and Y. Notay and G. Warzée, Efficient iterative solution of constrained finite

element analyses, Comput. Meth. Appl. Mech. Engrg., 160, 101-114, 1998.
. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, 1995.
. Sarin and A. Sameh, An Efficient Iterative Method for the Generalized Stokes Problem,
SIAM J. Sci. Comput. 19, No. 1, pp. 206-226, January 1998.

Z. Tong and A. Sameh, On an Iterative Method for Saddle Point Problems, Numer. Math. 79,
pp. 643-646, 1998.

P. Vanek, J. Mandel, and M. Brezina, Algebraic multigrid based on smoothed aggregation for
second and fourth order problems, Computing 56, pp. 179-196, 1996.

<=

14

