
MULTIGRID SMOOTHERS FOR ULTRA-PARALLEL COMPUTING

ALLISON H. BAKER∗, ROBERT D. FALGOUT∗, TZANIO V. KOLEV∗, AND

ULRIKE MEIER YANG∗

Abstract. This paper investigates the properties of smoothers in the context of algebraic multi-
grid (AMG) running on parallel computers with potentially millions of processors. The development
of multigrid smoothers in this case is challenging, because some of the best relaxation schemes, such
as the Gauss-Seidel (GS) algorithm, are inherently sequential. Based on the sharp two-grid multigrid
theory from [22, 23] we characterize the smoothing properties of a number of practical candidates for
parallel smoothers, including several C-F , polynomial, and hybrid schemes. We show, in particular,
that the popular hybrid GS algorithm has multigrid smoothing properties which are independent of
the number of processors in many practical applications, provided that the problem size per processor
is large enough. This is encouraging news for the scalability of AMG on ultra-parallel computers. We
also introduce the more robust `1 smoothers, which are always convergent and have already proven
essential for the parallel solution of some electromagnetic problems [29].

1. Introduction. Multigrid (MG) linear solvers are optimal methods because
they require O(N) operations to solve a sparse system with N unknowns. Conse-
quently, multigrid methods have good scaling potential on parallel computers, since
we can bound the work per processor as the problem size and number of processors
are proportionally increased (weak scaling). Near ideal weak scaling performance has
been demonstrated in practice. For example, the algebraic multigrid (AMG) solver
BoomerAMG [25] in the hypre software library [26] has been shown to run effectively
on more than 125 thousand processors [21, 5].

One critical component of MG is the smoother, a simple iterative method such
as Gauss-Seidel (GS). In the classical setting, the job of the smoother is to make the
underlying error smooth so that it can be approximated accurately and efficiently on a
coarser grid. More generally, the smoother must eliminate error associated with large
eigenvalues of the system, while the coarse-grid correction eliminates the remaining
error associated with small eigenvalues.

Some of the best smoothers do not parallelize well, e.g., lexicographical GS. Others
used today, while effective on hundreds of thousands of processors, still show some
dependence on parallelism and may break down on the millions of processors expected
in the next generation machines (we use the term processor here in a generic sense,
and distinguish it from cores only when necessary). One such smoother is the hybrid
GS smoother used in BoomerAMG, which uses GS independently on each processor
and updates in a Jacobi-like manner on processor boundaries. In practice hybrid GS
is effective on many problems. However, because of its similarity to a block Jacobi
method, there is no assurance of obtaining the good convergence of lexicographical
GS. In fact, Hybrid GS may perform poorly or even diverge on certain problems,
and its scalability has often been cited as a concern as the number of blocks increase
with increasing numbers of processors or as block sizes decrease (see, e.g. [1, 16, 37]).
For these reasons, previous papers have studied alternatives such as using polynomial
smoothers [1] or calculating weighting parameters for hybrid GS [38]. Yet despite its
shortcomings, hybrid GS remains the default option in hypre because of its overall
efficiency and robustness. Therefore, one of the main purposes of this paper is to

∗Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,
P.O. Box 808, L-561, Livermore, CA 94551. This work performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344 (LLNL-JRNL-473191).

1

better understand the potential of block smoothers like hybrid GS on millions of
processors. We show that these hybrid smoothers can in fact exhibit good smoothing
properties independent of parallelism, as long as the blocks satisfy certain properties
(e.g., the blocks have some minimal size).

There are many other well-known smoothers that exhibit parallel-independent
smoothing properties. In particular, methods like weighted Jacobi (both pointwise
and blockwise), red/black GS, Chebyshev and Krylov-based polynomial methods have
been extensively studied in classical works such as [13, 35, 24, 7]. In practice, each
of these methods have their drawbacks. For example, weighted Jacobi requires the
estimation of an ideal weight [38] and Chebyshev involves estimating an eigenvalue
interval [1]. For multi-colored GS [1], the number of parallel communications required
per iteration is proportional to the number of colors, hence it tends to be slow, es-
pecially on coarser grids in AMG where the number of colors is difficult to control.
Therefore, the secondary purpose of this paper is to study and identify smoothers that
are practical for AMG in the context of millions of processors. To this end, we analyze
a variety of candidates for smoothing, revisiting some of the classics as well, under
a common framework based on the recent two-grid theory in [22, 23]. In addition,
to both complement and support the analysis, we perform numerical experiments for
the most promising parallel smoothers using both message-passing (with MPI) and
threading (with OpenMP).

The structure of the paper is as follows. In Section 2, we introduce our approach
for doing smoothing analysis in general, and we then analyze several specific classes of
smoothers in Section 3 through Section 6, including C-F , polynomial, hybrid, and `1
smoothers. We present numerical experiments in Section 7, and we make concluding
remarks in Section 8.

2. Smoothing Analysis. Our smoothing analysis is based on the two-grid vari-
ational multigrid theory from [22], which was developed for general relaxation and
coarsening processes. In this section, we first summarize this theory and then de-
scribe our general approach for applying it to smoother analysis. We represent the
standard Euclidean inner product by 〈·, ·〉 with associated norm, ‖·‖ := 〈·, ·〉1/2.
The A-norm (or energy norm) is defined by ‖·‖A := 〈A ·, ·〉1/2 for vectors, and as the
corresponding induced operator norm for matrices.

Consider solving the linear system of equations

(2.1) Au = f ,

where u, f ∈ Rn and A is a symmetric positive definite (SPD) matrix. Define the
smoother (relaxation) error propagator by

(2.2) I −M−1A,

and assume that the smoother is convergent (in energy norm ‖ · ‖A), i.e. assume that
MT + M − A is SPD. This is equivalent to the condition 〈Ax, x〉 ≤ 2〈Mx, x〉 for
all x, since 〈Mx, x〉 = 〈MT x, x〉. Note that we often refer to the matrix M as the
smoother. Denote the symmetrized smoother by

(2.3) M̃ = MT (MT + M −A)−1M,

so that I−M̃−1A = (I−M−1A)(I−M−T A). Let P : Rnc 7→ Rn be the interpolation
(or prolongation) operator, where Rnc is some lower-dimensional (coarse) vector space

2

of size nc. The two-grid multigrid error transfer operator with no post-smoothing steps
is then given by

(2.4) ETG = (I − P (PT AP)−1PT A)(I −M−1A),

where PT is the restriction operator and Ac = PT AP is the Galerkin coarse-grid
operator. Note that coarse-grid correction involves an A-orthogonal projection onto
range(P).

Let R : Rn 7→ Rnc be any matrix for which RP = Ic, the identity on Rnc , so
that PR is a projection onto range(P). We can think of R as defining the coarse-grid
variables, i.e., uc = Ru. Also, let S : Rns 7→ Rn be any full-rank matrix for which
RS = 0, where ns = n−nc. Here, the unknowns us = ST u are analogous to the fine-
grid-only variables (i.e., F -points) in AMG. In addition, R and S form an orthogonal
decomposition of Rn: any e can be expressed as e = Ses + RT ec, for some es and ec.
The next theorem summarizes one of the main convergence results in [22].

Theorem 2.1. (see Theorem 2.2 in [22])

(2.5) ‖ETG‖2
A ≤ 1− 1

K
, where K = sup

e

‖(I − PR)e‖2
M̃

‖e‖2
A

≥ 1.

Theorem 2.1 gives conditions that P must satisfy in order to achieve a fast uni-
formly convergent multigrid method. It is clear that to make K small, eigenvectors
of A belonging to small eigenvalues must either be interpolated accurately by P or
else attenuated efficiently by the smoother (since the denominator is small for these
eigenvectors). For brevity, we refer to these as small eigenvectors. The choice of which
small eigenvectors to eliminate by smoothing and which to eliminate by coarse-grid
correction depends on the “localness” of the modes. Essentially, modes that can be
eliminated by a local process (i.e., one that is equivalent to applying an operator with
a comparable sparse nonzero structure to A) should be handled by the smoother.

In the next two sections, we discuss two approaches for employing Theorem 2.1
to analyze smoothers. In Section 2.1, we use the idea of measuring (or bounding)
the two-grid convergence factor by assuming an ideal interpolation operator. This
is essentially what is done in classical smoothing factor analysis introduced in [13],
where the smoothing factor measures the effectiveness of relaxation on the oscillatory
Fourier modes, motivated by the assumption that interpolation (our ideal interpola-
tion) eliminates the smooth Fourier modes. An important aspect of this approach is
that it is explicitly tied to the (ideal) coarse-grid correction.

The comparative approach described in Section 2.2 is similar to most other
smoother analyses, where either weighted Richardson or Jacobi relaxation is used
to measure the relative quality of a smoother [24, 9, 10, 32, 33, 31, 34, 11, 12]. A gen-
eral comparison lemma similar to our Lemma 2.3 was stated in [31]. One limitation
of this approach is that coarse-grid correction is not explicitly taken into account, so
in cases such as Maxwell’s equation, care must be taken to compare with a suitable
smoother that is already known to work well for Maxwell’s equation.

2.1. Smoothing Analysis with Ideal Interpolation. One approach for using
the above theory to do smoothing analysis is to consider the best K in Theorem 2.1
by substituting the P that minimizes the following for a given R

(2.6) K? = inf
P : RP=Ic

sup
e

‖(I − PR)e‖2
M̃

‖e‖2
A

.

3

The following theorem evaluates this inf-sup problem.
Theorem 2.2. (see Theorem 3.1 in [22]) Assume that R, S, and P satisfy

RS = 0 and RP = Ic as above. Then K? in (2.6) is given by

(2.7) K? = sup
es

〈ST M̃Ses, es〉
〈ST ASes, es〉

=
1

λmin((ST M̃S)−1(ST AS))
,

and the corresponding minimizer is

(2.8) P? = (I − S(ST AS)−1ST A)RT .

Equation (2.8) defines the so-called ideal interpolation operator. Notice that,
if K? is uniformly bounded with respect to parameters such as the mesh spacing,
then using P? as the interpolation operator results in a uniformly convergent two-grid
method. Since the inverse of ST AS may not be sparse, this is generally not a good
practical choice for interpolation. However, it is reasonable to use P? (and hence K?)
to analyze smoothing.

We consider two settings in the analysis that follows, depending on the particular
smoother. The first is the classical AMG setting where the coarse-grid variables Ru
are a subset of the fine-grid variables:

(2.9) RT =
[

0
Ic

]
; S =

[
If

0

]
; P? =

[
−A−1

ff Afc

Ic

]
.

The second setting corresponds more closely to the classical smoothing factor analysis
[13], where the coarse-grid variables span the space of the nc “smallest” (they do not
have to strictly be the smallest as we discuss later) eigenvectors of A:

(2.10) RT = [v1, . . . ,vnc
] ; S = [vnc+1, . . . ,vn] ; P? = RT .

2.2. Comparative Smoothing Analysis. Direct evaluation of K? in (2.6) is
not always straightforward. However, one useful technique that we use below is to
compare the K? for one smoother to that of another with well-known smoothing
properties (e.g., Gauss-Seidel). Writing K = K(M) in (2.5) as a function of the
smoother (similarly for K?), we articulate this approach in the next lemma.

Lemma 2.3. Suppose that M1 and M2 are two convergent smoothers for A that
satisfy

(2.11) 〈M̃1x, x〉 ≤ c〈M̃2x, x〉

for all x, with a fixed constant c. Then, for any choice of the interpolation operator
in the two-grid multigrid method, we have that

K(M1) ≤ cK(M2),

and in particular, K?(M1) ≤ cK?(M2). In other words, multigrid methods using M1

and M2 have comparable parallel scalability properties, provided c is independent of
the problem size and the number of processors. Therefore, when (2.11) holds, we say
that M1 has multigrid smoothing properties comparable to M2.

4

Proof. The proof follows immediately from (2.5) and (2.6).
Remark 2.1. Note that the above result can also be analogously stated in terms

of the sharp two-grid theory of [23] since we can write the constant K] in that theory
as

K] = sup
e

∥∥(I − π
M̃

)e
∥∥2

M̃

‖e‖2
A

= sup
v∈range(I−πA)

inf
w :v=(I−πA)w

〈M̃w, w〉
〈Av, v〉

,

where πX = P (PT XP)−1PT X denotes the X-orthogonal projection onto range(P)
for any SPD matrix X.

In this paper, we determine the constant c in Lemma 2.3 through direct analysis.
However, we can also write c in terms of a few general constants from [22] and instead
estimate those to do the analysis. For brevity, we do not include the latter approach
in this paper, but provide them in a separate technical report [4].

3. The C-F Smoother. In this section, we apply the smoothing analysis theory
from the previous section to the so-called C-F smoother. C-F smoothing corresponds
to applying a smoother first to the coarse points (C-points) and then to the fine points
(F -points). That C-F smoothers can be effective in practice is evident if one considers,
for example, that C-F Jacobi for a standard finite difference Laplacian problem on a
structured grid is equivalent to red-black Gauss-Seidel when red-black coarsening is
used (as happens in AMG).

More formally, the C-F smoother is defined by

(3.1) I −M−1
CF A; MCF =

[
Mff Afc

0 Mcc

]
.

This smoother converges if and only if the following are convergent:

If −M−1
ff Aff ; Ic −M−1

cc Acc.

Therefore, one can consider using any of the convergent smoothers discussed in the
following sections as the Mff and Mcc matrices of a C-F smoother. This is typically
advantageous since the principle submatrices Aff and Acc have better properties than
A in terms of conditioning and diagonal dominance. The following theorem shows that
C-F smoothing is good if F -relaxation is fast to converge.

Theorem 3.1. Define S as in (2.9). Then K? in (2.6) for the C-F smoother
satisfies

K? =
1

1− %f
2
; %f = ‖If −M−1

ff Aff‖Aff
.

Proof. Similarly to (2.3), define

(3.2) M̃ff = MT
ff (MT

ff + Mff −Aff)−1Mff .

From (2.3) and the definition of MCF above, we have

M̃ =
[

MT
ff 0

Acf MT
cc

] [
(MT

ff + Mff −Aff)−1 0
0 (MT

cc + Mcc −Acc)−1

] [
Mff Afc

0 Mcc

]
,

5

and therefore ST M̃S = M̃ff . This implies by Theorem 2.2

K? =
1

λmin(M̃ff

−1
Aff)

=
1

1− λmax[(I −M−1
ff Aff)(I −M−T

ff Aff)]
.

Let Eff = Iff −M−1
ff Aff and let ρ(·) denote the spectral radius of a matrix. Then,

using the definition of %f and the fact that ‖B‖ = ‖BT ‖ for any matrix B, we have

%f
2 = ‖Eff‖2

Aff
= ‖A1/2

ff EffA
−1/2
ff ‖2 = ‖A−1/2

ff ET
ffA

1/2
ff ‖

2

= ρ(A1/2
ff EffA−1

ff ET
ffA

1/2
ff) = ρ(EffA−1

ff ET
ffAff)

= ρ[(I −M−1
ff Aff)(I −M−T

ff Aff)] ,

which completes the proof.
From the above, we see that C-F smoothing is a natural smoother to use when

coarse grids are selected based on compatible relaxation (CR) [14, 22], because %f is
estimated as part of the CR coarsening algorithm.

4. Polynomial Smoothers. Polynomial smoothers are of practical interest for
parallel computing for a couple of reasons. First, their application requires only the
matrix-vector multiply routine, which is often highly-optimized on modern parallel
machines. Second, they are unaffected by the parallel partitioning of the matrix,
the number of parallel processes, and the ordering of the unknowns. However, as
mentioned previously, one drawback is the need to calculate eigenvalue estimates.
Unlike the smoothed aggregation variant of AMG, eigenvalue estimates are not needed
by classical AMG, so this computational cost is extra.

We now apply the smoothing analysis from Section 2 to polynomial smoothers.
Let pν(x) be a polynomial of degree ν ≥ 0 such that pν(0) = 1, and consider the
smoother

(4.1) I −M−1A = pν(A).

The following theorem gives conditions for a good polynomial smoother.
Theorem 4.1. Let A = V ΛV T be the eigen-decomposition of A with eigenvectors

vk and associated eigenvalues λk, and define S as in (2.10). Then K? in (2.6) for
the polynomial smoother satisfies

K? =
(

1− max
k>nc

pν(λk)2
)−1

.

Minimizing K? over all pν , we have

min
pν

K? ≤

(
1−

(
min
pν

max
x∈[α,β]

|pν(x)|
)2
)−1

; α ≤ λnc+1 ≤ λn ≤ β.

Proof. Order the eigenvectors in V so that we can write S = V Si, Si = [Is, 0]T .
Then, since I − M̃−1A = (I −M−1A)(I −M−T A), we have

ST M̃S = ST (A−1 − (I −M−1A)A−1(I −M−1A)T)−1S

= ST
i V T (A−1 − pν(A)2A−1)−1V Si

= ST
i (Λ−1 − pν(Λ)2Λ−1)−1Si

= (Λ−1
s − pν(Λs)2Λ−1

s)−1.

6

Since ST AS = Λs, then

(ST M̃S)−1(ST AS) = Is − pν(Λs)2,

and the first result follows from Theorem 2.2. The second result follows trivially from
the first since we are maximizing over a larger set [α, β] containing λk, k > nc.

In the following two subsections, we first discuss the optimal polynomial smoother
according to Theorem 4.1 and then briefly overview several other choices of polyno-
mials that may also be good smoothers for AMG in practice.

4.1. Chebyshev Smoothers. The min-max problem in Theorem 4.1 has a clas-
sical solution qν(x) in terms of Chebyshev polynomials (see, e.g., [2]). Let Tk(t) be
the Chebyshev polynomial of degree k defined by the recursion

(4.2) T0(t) = 1; T1(t) = t; Tk(t) = 2tTk−1(t)− Tk−2(t), k = 2, 3, . . .

By letting t = cos(ξ) ∈ [−1, 1], it is easy to show that the explicit form of these
polynomials is Tk(t) = cos(kξ). The polynomial qν(x) is given by

(4.3) qν(x) =
Tν

(
β+α−2x

β−α

)
Tν

(
β+α
β−α

) ,

and has the required property that qν(0) = 1. It also satisfies

−1 < qν(x) < 1 for x ∈ (0, β],

which implies that the smoother (4.1) with pν = qν is convergent as long as the
spectrum of A is contained in the interval (0, β]. To show the above inequality with
α, β > 0 observe that the Chebyshev polynomial Tν(x) equals 1 for x = 1 and is strictly
monotonically increasing for x > 1 (see, e.g., (5.28) in [2]). Therefore, x ∈ [α, β]
implies Tν

(
β+α
β−α

)
> 1 ≥

∣∣∣Tν

(
β+α−2x

β−α

)∣∣∣, while |qν(x)| < 1 due to β+α
β−α > β+α−2x

β−α ≥ 1
for x ∈ (0, α].

Since K? is a measure of the smoothing properties of the smoother (4.1), then
Theorem 4.1 shows that a good choice for polynomial smoothing is qν(x) where the
interval [α, β] contains the “large” eigenvalues of A. The upper bound β can easily be
estimated using a few iterations of conjugate gradient (CG), but choosing a suitable
α is not obvious in general. It is clear that α depends on the coarse-grid size, but
it should also depend on the distribution of eigenvalues for the problem and possibly
even the nature of the associated eigenvectors. To see this, consider a simple Laplace
example on a unit domain discretized by standard finite differences. Assume full
coarsening so that nc/n = 1/2d where d is the dimension. We discuss three possible
choices for α below.

First, note that the analysis above does not require that R be made up of the
strictly smallest eigenvectors of A. Consider instead that R contains the smooth
Fourier modes used in standard local Fourier analysis. In this case, it is easy to see
from standard Fourier diagrams that α should be chosen such that

(4.4) α/β = 1/2 (1D), 1/4 (2D), 1/6 (3D).

The resulting Chebyshev polynomial smoothers were first derived almost 30 years ago
in [35].

7

Now consider letting R contain the actual nc smallest eigenvectors for the Laplace
equation. Using Matlab, we get the estimates

(4.5) α/β ≈ 0.5 (1D), 0.32 (2D), 0.28 (3D).

Consider again letting R contain the actual nc smallest eigenvectors, but assume
that the eigenvalues are distributed uniformly. Then, we have

(4.6) α/β = 1/2 (1D), 1/4 (2D), 1/8 (3D).

In practice, we set β by estimating λmax with several iterations of CG and set
α = aβ for some fraction 0 ≤ a ≤ 1. For example, we use a = 0.3 in the numerical
experiments. A similar approach is used in [1], but with a small a = 1/30. It is not
vital to estimate λmin unless it is large. In that case, no coarse grid is needed, and the
smoother should damp all eigenvectors equally well, i.e., α should approximate λmin.

4.2. Other Polynomial Smoothers. Although the above theory leads natu-
rally to the Chebyshev polynomial in (4.3), there are several other polynomials in
the literature that are also good smoothers. We briefly summarize some of the most
notable here.

A related smoother to the Chebyshev polynomial in (4.3) is the following shifted
and scaled Chebyshev polynomial used in the AMLI method [3]

(4.7) q+
ν (x) =

1 + Tν

(
β+α−2x

β−α

)
1 + Tν

(
β+α
β−α

) .

This has the required property that q+
ν (0) = 1, but satisfies

0 < q+
ν (x) < 1 for x ∈ (0, β].

Another polynomial smoother of interest is used in both the smoothed aggregation
(SA) and cascadic multigrid methods [8, 15, 36], and is given by

(4.8) φν(x) = (−1)ν

(
1

2ν + 1

)(√
β√
x

)
T2ν+1

(√
x√
β

)
.

Note that (4.8) does not require the estimation of α. It can be shown that φν is the
minimizer of

(4.9) min
pν

max
x∈[0,β]

|
√

x pν(x)|.

One way to interpret (4.9) is to think of the
√

x term as serving the role of coarse-
grid correction, since it is small for small eigenvalues. Because

√
x operates on the

entire eigenvalue interval and not just the smallest eigenvalues (as in true coarse-grid
correction), the resulting smoother φν does not damp the largest eigenvectors as much
as the Chebyshev polynomial in (4.3). Note that it could be modified to satisfy (4.9)
over the interval [α, β].

The MLS smoother in [1] is the product of φν and a complementary (post)
smoother of the form

I − ω

λmax(φ2
νA)

φ2
νA.

8

0 2 4 6 8
−1

−0.5

0

0.5

1

CG
Chebyshev
SA
Richardson

0 2 4 6 8
−1

−0.5

0

0.5

1

CG
Chebyshev
SA
Richardson

Fig. 4.1. Various polynomials of order two (left) and four (right). The CG polynomial was
generated by solving a 2D Laplace problem on a 25 × 25 grid with a random initial error. The
Chebyshev polynomial (4.3) uses a = 0.3. The SA polynomial is given by (4.8).

It has better overall smoothing properties than φν alone, and it is particularly advan-
tageous when using aggressive coarsening.

The polynomial smoother in [30] minimizes an equation like (4.9) over the interval
[α, β], but with

√
x in the equation replaced by 1/x. This means that the amplitude of

the polynomial increases over the interval [α, β]. The polynomial is computed through
a three-term recurrence.

The conjugate gradient method is also a good smoother [7]. Note that it con-
verges to the Chebyshev polynomial in (4.3), but over the entire eigenvalue interval
[α, β] = [λmin, λmax]. Even though this is not a good value for α, it is only relevant
asymptotically; for small ν, CG has good smoothing properties. Other Krylov meth-
ods such as conjugate residual (also called minimum residual or MINRES) typically
have good smoothing properties as well [7].

In Figure 4.1 we plot several polynomials over the eigenvalue interval. Focusing on
the fourth-order figure, note that the polynomial tails for x > β = 8 turn up steeply.
For this reason, it is important not to underestimate λmax in practice. Note also that
the CG polynomial closely approximates Chebyshev. As previously mentioned, the SA
polynomial does not damp the large eigenvectors as well as the others. The Richardson
polynomial is given by (I−λ−1

max)
ν . We include it in the figure because it is the simplest

smoother to understand and it is used in most classical smoothing analysis. In the
interest of keeping the figure readable, we do not plot all of the polynomials in this
section. Note, however, that they all have good smoothing properties, with mostly
minor differences between them as noted in the text.

5. The Hybrid Smoother. The class of so-called hybrid smoothers can be
viewed as the result of the straightforward parallelization of a smoother. For example,
the easiest parallelization of GS is to have each process independently use GS on its
domain and then exchange information from neighbor processors after each iteration,
resulting in a Jacobi-like update at the processor boundaries. As noted in Section 1,
hybrid smoothers, like hybrid GS in particular, are of interest because they are easy
to implement and often quite effective in practice, even though convergence may not
be guaranteed. In this section, we first formally define hybrid smoothers and apply
the smoothing analysis theory from Section 2. We then discuss two particular hybrid
smoothers, hybrid GS and Block Jacobi, in more detail, and, finally, we discuss the

9

use of weights with hybrid smoothers.
We define the hybrid smoother to be essentially an inexact block Jacobi method.

Specifically, let Ω = {1, . . . , n} and consider the non-overlapping partition of Ω,

Ω =
p⋃

k=1

Ωk.

Of particular practical interest in this paper is the case where Ωk represents the
unknowns on processor k so that p is the total number of processors, but the analysis
below is for the general setting. Let A be partitioned into blocks Akl of size nk × nl

where the rows of Akl are in Ωk and the columns are in Ωl. Let I − B−1
k Akk be a

smoother for Akk. Then, the hybrid smoother is defined by

(5.1) I −M−1
H A; MH = diag{Bk},

where diag{Bk} denotes the block-diagonal matrix with blocks Bk.
If Bk = Akk, then (5.1) is block Jacobi. As p increases, the convergence of

block Jacobi approaches that of pointwise Jacobi. However, although (unweighted)
pointwise Jacobi is often not a good smoother, we show below that block Jacobi and
other hybrid smoothers can have good smoothing properties independent of p, as long
as the blocks are sufficiently large. We also show that this threshold block size can
be quite small.

As stated in the beginning of Section 2, for the hybrid smoother to be convergent
we need to show that MT

H + MH − A is SPD. Assuming that the block smoothers
converge in the stronger sense that

(5.2) 〈Bkvk, vk〉 ≥ 〈Akkvk, vk〉 ,

it is relatively easy to show that one class of matrices for which the hybrid smoother
is convergent is the class of block red-black matrices, i.e., matrices A that admit the
following two-by-two form

(5.3) A =
[

Arr Arb

Abr Abb

]
,

with block-diagonal matrices Arr and Abb (see [4] for details). As a practical exam-
ple of a block red-black matrix, consider a structured (i.e. topologically Cartesian)
partitioning of a 5-point discretization in 2D.

To analyze the smoothing properties of the hybrid smoother, we introduce a
constant, θ ≥ 0, which is a measure of the relative size of the block off-diagonal
portion of A. First, define the sets

(5.4) Ω(i) = {j ∈ Ωk : i ∈ Ωk}; Ω(i)
o = {j /∈ Ωk : i ∈ Ωk}.

Hence, Ω(i) is the set of columns in the diagonal block for row i while Ω(i)
o contains the

remaining “off-diagonal” columns in row i. Now, with aij denoting the coefficients of
A, define θ such that

(5.5) aii ≥ θ
∑

j∈Ω
(i)
o

|aij | for all rows i.

One can think of θ as an indicator of the quality of the parallel partitioning of the
matrix, since large values of θ imply that most of the relatively significant entries

10

of A are contained in the local portion of the matrix on each processor, i.e. the
off-processor entries of A are relatively small.

Under typical weak scaling, θ quickly stabilizes to a value independent of the
number of processors as the processor topology saturates. In many practical applica-
tions this value satisfies θ > 1 (required in the theory below). This, e.g., is the case
when A is diagonally dominant and each Akk has at least two non-zero entries per
row (i.e., the block sizes are large enough). Another example is the structured weak
scaling of the 5-point discretization of the Laplacian operator in 2D, where θ = 2.

To improve the values of θ one should consider parallel partitionings that group
most of the strong connections for each i (relatively large |aij |) inside each processor.
In finite element settings, better values for θ are obtained when the blocks correspond
to element partitioning (as opposed to random partitioning of the degrees of freedom,
see Section 7.3).

5.1. Hybrid Gauss-Seidel. In this section we consider the hybrid Gauss-Seidel
smoother MHGS , which is obtained when the blocks Bk in (5.1) are chosen to be
Gauss-Seidel sweeps for Akk. This smoother is of practical importance, for example,
because it is the default option in the BoomerAMG code.

Let A = D + L + LT , where D is the diagonal of A and L and LT are its strictly
lower and upper triangular parts. We first remark that MHGS is convergent if θ > 1
or if A is red-black both pointwise and blockwise as discussed above. Indeed, the θ
condition implies

(5.6) 〈(MT
HGS + MHGS −A)v, v〉 ≥ θ − 1

θ
〈Dv, v〉 ,

so MT
HGS + MHGS − A is SPD. In the red-black case, we specifically assume that A

admits two different splittings of the form (5.3) where the principal submatrices Arr

and Abb are diagonal for one of the splittings and block-diagonal with respect to the
Ω partition in the other splitting. As a practical example, consider a topologically
Cartesian partition of a 5-point discretization in 2D or a 7-point discretization in 3D.
To establish the convergence of the hybrid smoother in this case we start with

〈(MT
HGS + MHGS)v, v〉 =

∑
k

〈Akkvk, vk〉+ 〈Dv, v〉

and observe that both the block and the pointwise Jacobi smoothers on the right are
convergent since they satisfy (5.2) with an equality. This means that

〈(MT
HGS + MHGS)v, v〉 =

∑
k

〈Akkvk, vk〉+ 〈Dv, v〉 >
1
2
〈Av, v〉+

1
2
〈Av, v〉 .

Note that if A has large positive off-diagonal entries, such as in discretizations of
definite Maxwell problems, MHGS may be divergent, even for large block sizes. This
was the motivation in [29] to develop the `1 smoothers considered in the next section.

In the next theorem, we compare the smoothing properties of MHGS to that of
the standard Gauss-Seidel smoother MGS = D + L.

Theorem 5.1. Assume that θ > 1. Then

K(MHGS) ≤ θ

θ − 1

(
1 +

2
θ

)2

K(MGS).

11

‖ETG‖2
A K?

m p BJac HGS BJac HGS
512 1 0.00 0.20 1.00 1.25
256 2 0.50 0.32 65.12 1.81
128 4 0.50 0.32 110.62 1.81
32 16 0.51 0.32 418.96 1.81
16 32 0.53 0.32 834.93 1.81
4 128 0.56 0.41 3334.24 1.81
2 256 0.56 0.39 6667.23 2.33
1 512 1.00 1.00 26664.93 26664.93

Table 5.1
Convergence factors and constants from Theorem 2.1 for (unweighted) block Jacobi (BJac) and

hybrid GS (HGS) for a 1D Laplace problem with m unknowns per block and p blocks.

Proof. The proof proceeds analogously to that of Theorem 6.2 from the next
section, using (5.6) in place of (6.4) to show that

〈M̃HGSx, x〉 ≤ θ

θ − 1
‖MHGSx‖2

D−1

≤ θ

θ − 1
(‖MGSx‖D−1 + ‖(MHGS −MGS)x‖D−1)2 ,

then showing that

‖(MHGS −MGS)x‖2
D−1 ≤

1
θ2
〈Dx, x〉 ≤ 4

θ2
〈M̃GSx, x〉.

Since ‖MGSx‖2
D−1 = 〈M̃GSx, x〉, this results in the desired estimate.

By Theorem 5.1 we can conclude that hybrid GS is a convergent smoother with
smoothing properties comparable to full GS provided that θ > 1 is not close to 1,
e.g., if A is diagonally dominant and each block is large enough to have at least two
non-zero entries per row.

5.2. Block Jacobi. As mentioned in the beginning of Section 5, the hybrid
smoother can be thought of as an inexact block Jacobi method. Since hybrid GS can
be shown to have smoothing properties comparable to GS under certain conditions,
it seems plausible that (unweighted) block Jacobi might have even better smoothing
properties. In fact, block Jacobi is not a particularly good smoother, though it can
exhibit smoothing properties independent of the number of blocks (processors).

As an example, consider again a standard Laplace problem on a unit domain
with homogeneous Dirichlet boundary conditions. In Table 5.1, we report ‖ETG‖2

A

from Theorem 2.1 for the ideal interpolation operator P? in (2.9) for a coarsening
factor of two in 1D. We also report the corresponding K?. From the table, we see
that hybrid GS is a better smoother than block Jacobi, while both methods appear to
have p-independent convergence factors for m > 1 (this is easily confirmed by fixing
m and increasing p; not shown). At m = 1, both methods degenerate into unweighted
pointwise Jacobi, which is known to have poor smoothing properties. We also see from
the table that K? is stable for hybrid GS but unbounded for block Jacobi (additional
numerics shows that K? depends on both m and p). This implies that the theoretical

12

tools in Section 2 are not adequate for analyzing block Jacobi. Although not the best
smoother choice in practice, we would like to get a deeper understanding of block
Jacobi’s smoothing properties. One approach might be to base the analysis on the
sharp theory in [23], but we have not yet pursued this.

The observations from Table 5.1 also carry over to 2D (we have not done 3D
experiments), but they are more pronounced. In particular, the convergence factor
for m ≥ (2×2) approaches 0.76 for block Jacobi instead of 0.56 as in 1D, while hybrid
GS stays at 0.39. Another item worth noting is that the convergence of both methods
degrades for larger coarsening factors, as one would expect. In addition, for block
Jacobi, the minimum block size needed to yield good smoothing properties increases
with increasing coarsening factor. It remains the same for hybrid GS as indicated by
the theory.

The fact that block Jacobi is not a better smoother than hybrid GS in the above
experiments has important implications for developing algorithms on future computer
architectures. In particular, the ever-growing gap between local memory and global
memory access speeds is leading researchers to consider algorithms that are more
local in nature. One idea is to try to improve multigrid convergence by doing more
work locally in the smoother before exchanging data with other processors. From the
above, it appears that this may not be straightforward.

5.3. Using Weights in Hybrid Smoothers. While we have shown that for
many problems hybrid smoothers converge well, there are various situations where
this is not the case, see e.g. Section 7.3. Convergence can be achieved by multiplying
MH with a weight ω as follows:

Mω = ωMH .

If MH is SPD and ω = λmax(M−1/2
H AM

−1/2
H), we immediately get that Mω is con-

vergent. In practice, ω can be obtained by the use of Lanczos or CG iterations. For
further details on the use of relaxation weights in hybrid smoothers, see [38].

6. The `1 Smoother. While weighted hybrid smoothers are an attempt to fix
hybrid smoothers by multiplying them with a suitable parameter, `1 smoothers do
so by adding an appropriate diagonal matrix, which also leads to guaranteed conver-
gence. They have the additional benefit of not requiring eigenvalue estimates. The `1
smoother is defined by

(6.1) I −M−1
`1

A; M`1 = MH + D`1 = diag{Bk + D`1
k },

where D`1 is a diagonal matrix with entries

d`1
ii =

∑
j∈Ω

(i)
o

|aij | .

Note that with this notation (5.5) is simply D ≥ θD`1 . Furthermore, D`1 has the
important property that

(6.2) 〈Av, v〉 ≤
∑

k

〈Akkvk, vk〉+ 〈D`1v, v〉 ,

which follows from the Schwarz inequality 2|aijvivj | ≤ |aij |v2
i + |aij |v2

j .
We first show that M`1 is A-convergent, i.e., that MT

`1
+M`1−A is SPD. In the case

where Bk = Akk, we can actually show more, since (6.2) implies 〈Av, v〉 ≤ 〈Mv, v〉.
13

In general, if the block smoothers Bk are non-divergent in the Akk-norm with at least
one of them being convergent, then

〈Akkvk, vk〉 ≤ 〈(BT
k + Bk)vk, vk〉

with strict inequality holding for at least one k. Hence, from (6.2),

〈Av, v〉 <
∑

k

〈(BT
k + Bk + D`1

k)vk, vk〉 ≤ 〈(MT
`1 + M`1)v, v〉.

Remark 6.1. The following scaled `1 smoother is also A-convergent:

M`1 = diag{Bk +
1
2
D`1

k }.

6.1. `1 Gauss-Seidel. Let M`1GS = MHGS + D`1 be the `1 GS smoother. This
is the default smoother used in the AMS code [29]. From above, this smoother is
always convergent, and we analyze its smoothing properties by directly computing
the constant in Lemma 2.3. First, we state a Lemma needed to prove Theorem 6.2,
but also of general interest.

Lemma 6.1. Suppose that A is SPD and B is arbitrary. Then

〈Ax, x〉 ≤ c〈Bx, x〉 implies 〈B−1x, x〉 ≤ c〈A−1x, x〉.

Proof. Note that by the given inequality B is invertible, and B−1 + B−T is SPD.
Using Cauchy-Schwarz and the assumption above, we have

〈B−1x, x〉2 = 〈A1/2B−1x, A−1/2x〉2

≤ 〈AB−1x, B−1x〉〈A−1x, x〉
≤ c 〈B−1x, x〉〈A−1x, x〉.

Dividing both sides by 〈B−1x, x〉 gives the desired result.
Theorem 6.2. Without any restrictions, we have

K(M`1GS) ≤
(

1 +
4
θ

)2

K(MGS).

In particular, `1 GS has multigrid smoothing properties comparable to full GS for
any A, for which θ is bounded away from zero, independently of the number of blocks
(processors) or the block sizes.

Proof. First, note that Lemma 6.1 implies

(6.3) 〈Mx, x〉 ≤ 2〈M̃x, x〉 ,

for any convergent smoother M , since from (2.3) and A SPD, we have

〈M̃−1x, x〉 = 〈(M−1 + M−T −M−1AM−T)x, x〉 ≤ 2〈M−1x, x〉.

Now, observe that 〈M`1GSx, x〉 ≥ 〈MGSx, x〉, which implies

(6.4) 〈Dx, x〉 ≤ 〈(MT
`1GS + M`1GS −A)x, x〉.

14

Therefore,

〈M̃`1GSx, x〉 = 〈(MT
`1GS + M`1GS −A)−1M`1GSx, M`1GSx〉 ≤ ‖M`1GSx‖2

D−1 .

By the triangle inequality in the D−1-inner product,

‖M`1GSx‖D−1 ≤ ‖MGSx‖D−1 + ‖(M`1GS −MGS)x‖D−1 .

The first term above is simply 〈M̃GSx, x〉1/2, while the second can be estimated as
follows using the Schwarz inequality (in lines 2 and 4), the symmetry of A (in line 5),
and the fact that A is SPD together with (6.3) (in line 6):

‖(M`1GS −MGS)x‖2
D−1 =

∑
i

1
aii

(∑
j∈Ω

(i)
o

|aij |xi −
∑

j∈Ω(i)
o

j<i

aijxj

)2

≤
∑

i

1
aii

[(∑
j∈Ω

(i)
o

|aij |
)1/2(∑

j∈Ω
(i)
o

|aij |x2
i

)1/2

+
(∑

j∈Ω(i)
o

j<i

|aij |
)1/2(∑

j∈Ω(i)
o

j<i

|aij |x2
j

)1/2
]2

≤
∑

i

1
aii

(∑
j∈Ω

(i)
o

|aij |
)[(∑

j∈Ω
(i)
o

|aij |x2
i

)1/2

+
(∑

j∈Ω(i)
o

j<i

|aij |x2
j

)1/2
]2

≤ 2
∑

i

1
aii

(∑
j∈Ω

(i)
o

|aij |
)(∑

j∈Ω
(i)
o

|aij |x2
i +

∑
j∈Ω(i)

o
j<i

|aij |x2
j

)

≤ 2
θ

∑
i

(∑
j∈Ω

(i)
o

|aij |+
∑

j∈Ω(i)
o

j>i

|aij |
)

x2
i

≤ 4
θ2
〈Dx, x〉 ≤ 8

θ2
〈MGSx, x〉 ≤ 16

θ2
〈M̃GSx, x〉.

The desired bound now follows by assembling the above estimates together. Note that
in the last line we derived the inequality 〈Dx, x〉 ≤ 4〈M̃GSx, x〉, which has appeared
previously in [39], Lemma 3.3 and in [36], Proposition 6.12.

Remark 6.2. The scaled variant of `1 GS based on Remark 6.1 is given by
M`1GS = MHGS + 1

2D`1 . Theorem 6.2 also holds for this smoother.
Another convergent option, which also takes advantage of the local estimation of

θ in (5.5) is

(6.5) M`1GS∗ = MHGS + D`1∗, where d`1∗
ii =

{
0, if aii ≥ ηd`1

ii ;
d`1

ii /2, otherwise.

and η is a fixed parameter satisfying η > 1. This smoother locally switches to `1 GS
if hybrid GS is not appropriate, and we have found that the value η = 1.5 works well
in practice. Some results with this smoother are shown in Section 7. Note that the
smoother M`1GS∗ is identical to MHGS when θ ≥ η, and reduces to the scaled version
of M`1GS from Remark 6.2 when θ is uniformly small relative to η. Furthermore, the
general conclusion of Theorem 6.2 still holds for M`1GS∗, since η = 1.5, for example,
implies

〈Dx, x〉 ≤ 3〈(MT
`1GS∗ + M`1GS∗ −A)x, x〉.

15

6.2. `1 Jacobi. The `1 point Jacobi smoother is given by M`1J = D + D`1 and
is a special case of the `1 GS smoother when the blocks are of size one. Although the
analysis in Theorem 6.2 holds for M`1J , a slightly better constant is straightforward
to derive [4].

7. Numerical Experiments. In this section, we discuss numerical experiments
that complement the smoothing analysis and illustrate the effect of smoothers on
AMG performance. First we describe our four test problems. Then we present re-
sults using a two-level AMG method. Next we discuss the potential impact of using
threading in smoothers, which is particularly relevant for modern large-scale paral-
lel computing. Finally, we present multilevel results for Conjugate Gradient (CG)
preconditioned with AMG on up to 32,000 processors.

For the results in this section, we use a modification of the BoomerAMG code in
the hypre software library [26] . We use HMIS coarsening [18] and extended+i(5) [17]
interpolation in all cases. For the coarse-grid solve, we use CG for the two-level results
in Section 7.2, and Gaussian elimination for all multilevel results (coarse grids contain
at most nine unknowns in this case). We use a relative convergence tolerance of 10−6

and report the number of AMG (or CG/AMG) iterations (as opposed to timings)
because our focus here is on the effect of the smoother on AMG convergence. Finally,
we note that the implementation of the Chebyshev polynomial smoother uses A scaled
by its diagonal D, i.e. pν(D−1/2AD−1/2), c.f. (4.1).

While we experimented with various smoothers, we present here only those results
we deemed to be the most interesting. For polynomial smoothers, we chose the
Chebyshev polynomial, since it is the optimal polynomial according to the theory.
We only present results for 2nd degree polynomials. While the use of polynomials
with larger degrees (3 or 4) led to better convergence, the gain in convergence was
not sufficient to offset the increase in work required. We also don’t report any results
for weighted hybrid smoothers, since they performed similarly to `1 smoothers, which
do not require eigenvalue estimates.

7.1. Problem Descriptions. We use four test problems for our numerical ex-
periments. The first three problems are scalar diffusion problems of the form

−∇ · (a(x, y, z)∇u) = f,

and discretized on unstructured grids with the aFEM finite element package, which
has been used previously in [28, 29, 14]. The resulting matrices have some positive
off-diagonal entries and are not diagonally dominant. The fourth problem is a simple
3D Laplace problem on a structured grid and is an M-matrix.

2D square: This is a 2D problem posed on the unit square with a = 1 discretized
with linear triangular elements as shown on the left in Figure 7.1. Boundary conditions
are homogeneous Dirichlet on the right and left edge.

2D LLNL: This is a 2D problem on the unit square with four material sub-
domains resembling the Lawrence Livermore National Laboratory (LLNL) logo. We
have a(x, y) = 1 in the inner three domains, a(x, y) = 10−3 in the outer domain, and
homogeneous Dirichlet boundary conditions. Linear triangular elements are used as
shown in Figure 7.1.

3D sphere: This 3D diffusion problem is discretized on a domain approximating
the unit ball with trilinear hexahedral finite elements. It contains 2 “random” material
subdomains, with a(x, y, z) = 1 and a(x, y, z) = 103, see Figure 7.2. Boundary
conditions are homogeneous Dirichlet.

16

Fig. 7.1. Coarse versions of the unstructured meshes used for the 2D square and 2D LLNL
problems. The 2D square mesh is on the left, while the 2D LLNL mesh is shown in the center with
the three material subdomains indicated on the right.

Fig. 7.2. A coarse version of the unstructured mesh used for the 3D sphere problem, with the
two material subdomains shown on the right.

7pt Laplacian: This is the 3D Laplace problem with a = 1, homogeneous
Dirichlet boundary conditions, and discretized with a constant 7-point stencil on a
structured meshing of the unit cube.

7.2. Two-level Results. In this section we provide results using a two-level
AMG method to corroborate the smoothing analysis in the previous sections. We
consider both strong and weak scaling.

For strong scaling, the problem size is fixed and the number of processors varies.
Therefore, for a fixed problem size n, as the number of processors increases, the
number of unknowns per processor decreases, and we affect the value of θ in (5.5).
Strong scaling results for all four test problems are shown in Figures 7.3 and 7.4 for
up to 4096 processors for four smoothers: hybrid GS, a C-F smoother using `1 Jacobi
(’CF-L1-Jacobi’), `1 GS (’L1-GS’), and second order Chebyshev (’Cheby(2)’). The
left y-axis indicates the number of (two-level) AMG iterations with each smoother.
The dotted line in the figures corresponds to θ, and its value is indicated on the right
y-axis. We chose the problem sizes n to be relatively small to better illustrate the
effect of strong scaling on θ.

The 2D LLNL and 7pt Laplacian problems are particularly interesting as one can
clearly see the relation between a decrease in θ and the deterioration of hybrid GS
convergence. For the 3D sphere, AMG with hybrid GS does not converge except for
the single processor case, and, correspondingly, θ is much less than one (note that θ
is not defined in the single processor case, so the first data point in the figures for θ
is at 32 processors). While 2D square and 2D LLNL problems also have θ less than
one, the percentage of rows for which θ is less than one is much smaller than for the

17

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

Number of Processors

A
M

G
 (

2−
le

ve
l)

Ite
ra

tio
ns

Strong scaling: 2D Square n =8881

0 1000 2000 3000 4000 5000
0.9

0.92

0.94

0.96

0.98

1

θ

Hybrid−GS
CF−L1−Jacobi
L1−GS
Cheby(2)

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

Number of Processors

A
M

G
 (

2−
le

ve
l)

Ite
ra

tio
ns

Strong scaling: 2D LLNL n =5537

0 1000 2000 3000 4000 5000
0.75

0.8

0.85

0.9

0.95

1

θ

Hybrid−GS
CF−L1−Jacobi
L1−GS
Cheby(2)
L1−GS*

Fig. 7.3. Two-level strong scaling results for the 2D square (left) and the 2D LLNL problem
(right). (The global problem size is fixed and indicated by n.)

0 20 40 60 80 100 120 140
0

100

200

Number of Processors

A
M

G
 (

2−
le

ve
l)

Ite
ra

tio
ns

Strong scaling: 3D Sphere n =7351

0 20 40 60 80 100 120 140
0.46

0.48

0.5

θ

Hybrid−GS
CF−L1−Jacobi
L1−GS
Cheby(2)

0 1000 2000 3000 4000 5000
0

100

200

Number of Processors

A
M

G
 (

2−
le

ve
l)

Ite
ra

tio
ns

Strong scaling: 3D Laplace (7pt) n =8000

0 1000 2000 3000 4000 5000
1

1.5

2

θ

Hybrid−GS
CF−L1−Jacobi
L1−GS
Cheby(2)

Fig. 7.4. Two-level strong scaling results for the 3D sphere (left) and the 7pt Laplacian (right).
(The global problem size is fixed and indicated by n.)

3D sphere problem. For example, for the 2D square with 64 processors, θ is less than
one for only a single row of the matrix. In practice, one could calculate θ during the
AMG setup phase and use it to determine whether hybrid GS would be an appropriate
smoother, or one should switch to `1 GS globally or locally as in (6.5). Note that
the corresponding `1 row norms can be obtained in the process of calculating θ. For
comparison, results for the `1 GS smoother from (6.5) are included for the 2D LLNL
problem in Figure 7.3 (and later in Figure 7.8) and labeled ’L1-GS*’.

For weak scaling, the number of unknowns per processor remains constant as the
number of processors increases. Therefore, the value of θ remains essentially constant.
Weak scaling results are shown for the 7pt Laplacian problem in Figure 7.5 for 8 and
1000 unknowns per processor, both of which correspond to a θ = 2, and, therefore,
yield relatively flat iteration counts for hybrid GS.

7.3. Impact of Threading. Achieving scalability on modern multicore ma-
chines requires effective utilization of the new node architectures, which generally
consist of multiple cores and sockets per node, cache sharing, multiple memory con-
trollers, and non-uniform memory access times. An MPI-only programming model
may not be well-suited to all multicore machine architectures (e.g., see [6]). Instead,
a hybrid programming model, in which a subset of cores on a node (or all cores) use a

18

0 1000 2000 3000 4000
0

5

10

15

20

25

Number of Processors

A
M

G
 (

2−
le

ve
l)

Ite
ra

tio
ns

Weak scaling: 3D Laplace (7pt) n =8

Hybrid−GS
CF−L1−Jacobi
L1−GS
Cheby(2)

0 1000 2000 3000 4000
0

5

10

15

20

25

Number of Processors

A
M

G
 (

2−
le

ve
l)

Ite
ra

tio
ns

Weak scaling: 3D Laplace (7pt) n =1000

Hybrid−GS
CF−L1−Jacobi
L1−GS
Cheby(2)

Fig. 7.5. Two-level weak scaling for the 7pt Laplacian for n = 8 (left) and n = 1000 (right)
unknowns per processor.

shared memory programming model (like OpenMP) and MPI is used between nodes,
can be more appropriate. Therefore, we are interested in smoothers that are amenable
to a hybrid parallel programming model.

First we briefly describe the parallelism for the smoothers in the BoomerAMG
code. To begin, the matrix A is distributed row-wise across p MPI processes, such that
each process owns a contiguous block of rows that are stored in a parallel compressed
sparse row (CSR) format (see [20] for details). This parallel storage format is similar to
what many packages use. OpenMP is implemented at the loop level for the smoothers
such that each thread operates on a subset of the process’ rows. Therefore, for a
polynomial smoother, the OpenMP implementation of the matrix-vector multiply is
straightforward, and, similarly, Jacobi smoothers are easily threaded. However, for
the hybrid GS smoother, we must modify the algorithm at the thread level in the
same manner as the MPI implementation: we use GS within each thread and delayed
updates (Jacobi) for those elements belonging to other threads.

To demonstrate the (negative) effect that threading may have on convergence,
we show results obtained on the multicore cluster Hera at LLNL. Each node of Hera
consists of four AMD Quadcore processors, each with its own memory controller
that is attached to one quarter of the main memory on the node, and the nodes are
connected by Infiniband. We use BoomerAMG as a preconditioner for CG (’AMG-
CG’), and use Symmetric GS (SGS). The plots in Figure 7.6 give results for the
unstructured 2D LLNL and 3D sphere problems on up to 256 nodes (4096 cores) of
Hera. These are weak scaling results, so the problem size per core is approximately
87,000 and 57,000 for the 2D LLNL and 3D sphere problems, respectively. Note that
the 2D square problem is not shown as its behavior is similar to that of the 2D LLNL
problem, and the 7pt Laplacian is not shown as it is structured and unaffected by
threading. The MPI-only version uses 16 MPI tasks per node, while the hybrid model
we consider uses 16 threads and 1 MPI task per node (labeled ’OMP’). Figure 7.6
clearly illustrates that convergence degrades with the addition of threads for hybrid
SGS; the convergence of the `1 SGS smoothers (’L1-SGS’), `1 Jacobi (not shown), and
Chebyshev smoothers (not shown) are relatively unaffected. The 3D sphere problem
is the most extreme example because AMG-CG with hybrid SGS no longer converges
with the addition of threading.

19

0 1000 2000 3000 4000
0

10

20

30

40

50

60

70

Number of Cores

A
M

G
−

C
G

 It
er

at
io

ns

2D LLNL

Hybrid−SGS: MPI
Hybrid−SGS: OMP
L1−SGS: MPI
L1−SGS:OMP

0 1000 2000 3000 4000
0

10

20

30

40

50

60

70

Number of Cores

A
M

G
−

C
G

 It
er

at
io

ns

3D Sphere

Hybrid−SGS: MPI
Hybrid−SGS: OMP
L1−SGS: MPI
L1−SGS:OMP

Fig. 7.6. A comparison of the number of AMG-CG iterations to convergence for the 2D LLNL
(left) and 3D sphere (right) problems with hybrid SGS smoothing and `1 SGS smoothing. ’MPI’ =
16 tasks per node, ’OMP’ = 16 threads per node.

To understand why convergence suffers with the addition of threads, we must
consider the application’s generation of the matrix. An AMG solver is typically part
of a parallel software library, such as hypre, and the library receives the matrix A
in a distributed manner: each process is given a subset of the rows of A. Note that
aFEM utilizes the Metis library [27] to partition a refinement of a given coarse mesh
into “nice” subdomains for each processor. These subdomains are further refined in
parallel to obtain approximately the same size per processor for weak scaling. Unlike
in the structured case, this process can lead to slight variations in the values of θ in
weak scaling. Figure 7.7 gives an example of the 2D square problem subdivided for
16 processes. However, when BoomerAMG uses threads, then the rows given to each
MPI task are further subdivided among the threads. Because BoomerAMG does not
know anything about the original elements, the thread subdomains are split unknown-
wise (not element-wise), and aFEM’s numbering of the elements and nodes becomes
relevant. For the example in Figure 7.7, the coloring indicates the element numbering,
which means that similarly-colored elements are given to the same thread. A domain
partitioning such as this is detrimental for hybrid GS, as the smoother essentially
becomes (unweighted) Jacobi. In other words, the blocks of the hybrid smoother will
correspond to disconnected points, and the value of θ will deteriorate significantly.
We stress that this example is not atypical for finite element applications: element
numbering is often assigned as a coarser grid is refined, and requiring that the resulting
unknowns are ordered “nicely” within processor subdomains imposes a non-trivial
burden on the application. We note that if the FEM application is careful with the
numbering within each MPI subdomain, then one can obtain similarly good results
with both MPI and OpenMP. Alternatively, BoomerAMG could reorder unknowns,
but reordering can be costly and memory consuming operation. The most logical
option, then, is to prefer smoothers that do not depend on parallelism, such as the `1
and the polynomial smoothers.

7.4. Multilevel Weak Scaling. Now we consider the relative scalability of
BoomerAMG on larger numbers of processors with the various smoothers. Experi-
ments were run using MPI-only on the BG/L machine at LLNL for the 2D square, 2D
LLNL, and 7pt Laplacian problems, and on Hera for the 3D sphere problem. We use

20

Fig. 7.7. 2D square problem partitioned into 16 subdomains for 16 MPI tasks (right). The
coloring in the left figure indicates element numbering obtained through refinement. Note that the
induced numbering of the degrees of freedom in each processor will be essentially random.

BoomerAMG as a preconditioner for CG. Results for the 2D square and 2D LLNL
problems are given in Figure 7.8 for up to 16384 processors. The iteration counts are
fairly flat, and second order Chebyshev requires the fewest iterations. Hybrid SGS
converges faster than `1 SGS, but this can be mitigated by the symmetric GS vari-
ant of (6.5) (’L1-SGS*’) that is shown for the LLNL problem (the Hybrid-SGS and
L1-SGS* lines are on top of each other). Results for the 3D sphere and 7pt Laplacian
are given in Figure 7.9. The sphere could not be run on as many processors due to
memory requirements for partitioning. Here also Cheby(2) exhibits the best conver-
gence. While `1 SGS converges slower (or at least not faster) than Hybrid SGS for
the smaller problem sizes as in the 2D case, this changes for the large problem sizes,
where `1 SGS takes fewer iterations.

While the focus of our numerical experiments is not on timings, we do make a
few comments in that regard. For the Chebyshev smoothers, eigenvalue estimates
must be obtained during the AMG setup phase. As in [1], we use 10 iterations of
CG and multiply λmax by 1.1, and this strategy appears to be sufficient. The time
required to calculate the eigenvalues is not a significant portion of the setup phase
and is justifiable, at least for these test problems, given that the Chebyshev smoother
required the fewest iterations. Furthermore, note that one can estimate the largest
eigenvalue of A by using the maximum absolute row-sum of A (infinity norm), which,
of course, is cheaper than performing 10 CG iterations. This strategy is equally
effective for most problems, though often less so on the coarser grid levels. Finally,
for the four smoothers shown here, the time per iteration is roughly similar because
each essentially requires two sweeps over the coefficients of A. SGS requires a forward
and backward sweep, second order Chebyshev requires two matrix-vector multiplies,
and the C-F Jacobi must sweep through the C-points and the F-points.

Although the timings in our current implementation are roughly the same per
multigrid iteration, it is worth making a few observations about the work done. Define
a work unit to be the number of scalar operations required to do a matrix-vector
multiply, and consider Figure 7.5. The Cheby(2) smoother does 4 work units of
smoothing per multigrid iteration, while the Hybrid-GS and L1-GS smoothers do 2.
The CF-L1-Jacobi only does 1.5 real work units of smoothing per multigrid iteration,
because we used C-F before coarse-grid correction and F -C after. This means that
C-relaxation is repeated twice between each multigrid iteration, with no additional

21

0 5000 10000 15000
0

2

4

6

8

10

12

14

16

18
2D Square

Number of Processors

A
M

G
−

C
G

 It
er

at
io

ns

Hybrid−SGS
CF−L1−Jacobi
L1−SGS
Cheby(2)

0 5000 10000 15000
0

2

4

6

8

10

12

14

16

18
2D LLNL

Number of Processors

A
M

G
−

C
G

 It
er

at
io

ns

Hybrid−SGS
CF−L1−Jacobi
L1−SGS
Cheby(2)
L1−SGS*

Fig. 7.8. Weak scaling on up to 16384 processors for the 2D square (left) and 2D LLNL problem
(right) with approximately 35,000 and 87,000 unknowns per processor, respectively.

0 1000 2000 3000 4000
0

2

4

6

8

10

12

14

16

18

Number of Processors

A
M

G
−

C
G

 It
er

at
io

ns

3D Sphere

Hybrid−SGS
CF−L1−Jacobi
L1−SGS
Cheby(2)

0 0.5 1 1.5 2 2.5 3

x 10
4

0

10

20

30

40

50

60
3D Laplace (7pt)

Number of Processors

A
M

G
−

C
G

 It
er

at
io

ns

Hybrid−SGS
CF−L1−Jacobi
L1−SGS
Cheby(2)

Fig. 7.9. Weak scaling on up to 4096 processors for the 3D sphere with approximately 57,000
unknowns per processor (left) and for the 7pt Laplacian problem on up to 32768 processors with
125,000 unknowns per processor (right). Note that the upper limits for the y-axis are different for
the two plots.

benefit. The overall numbers of iterations in the figure somewhat reflect these work
differences. A similar statement can be made about Figure 7.8 and Figure 7.9, except
that Cheby(2), Hybrid-SGS, and L1-SGS all take 4 work units per multigrid iteration,
while CF-L1-Jacobi again only does 1.5. Although CF-L1-Jacobi does much less real
work, our current implementation does not reflect this in timings. One issue is that
one sweep of C-F requires either two communications (our current implementation)
or one communication with more data together with some replicated computations.
Another issue involves ordering the computations in such a way that the data only
flows through the cache once. These optimizations are difficult to achieve, but have
already been demonstrated for red-black GS (see, e.g., [19]).

8. Concluding Remarks. In this paper we reviewed and analyzed a number of
practical parallel multigrid smoothers, and evaluated their potential for scalability on
ultra-parallel computers with millions of processors. Based on the framework from [22,
23] we proposed both a direct (Theorem 2.2) and a comparative (Lemma 2.3) approach

22

for smoother analysis. Using these approaches, we showed that C-F smoothing is
good if F-relaxation is fast to converge (Theorem 3.1), that Chebyshev is the optimal
polynomial smoother (Theorem 4.1), and that hybrid Gauss-Seidel exhibits multigrid
smoothing properties which are independent of the number of processors in many
practical applications, e.g. if the matrix is diagonally dominant and the problem
size per processor is large enough (Theorem 5.1). For the more robust `1 smoothers
described in Section 6, we were able to prove processor-independent equivalence with
full Gauss-Seidel with minimal restrictions on the matrix (Theorem 6.2).

The numerical results in Section 7 demonstrate that both Chebyshev and the
`1 smoothers are robust with respect to weak scaling, strong scaling, and the use of
mixed MPI / OpenMP parallelism. This is encouraging news for the scalability of the
corresponding AMG algorithms on the next generation parallel machines. Polynomial
smoothers are especially appealing for their lack of dependence on the ordering of the
unknowns and reliance on an often finely-tuned matrix-vector multiply kernel. Hybrid
Gauss-Seidel is also a viable option, provided that the constant θ, which measures the
relative size of the off-processor entries according to (5.5), is strictly larger than 1.

Acknowledgments. We thank Panayot Vassilevski for his helpful advice, and
an anonymous referee whose comments led to a much improved paper.

REFERENCES

[1] M. Adams, M. Brezina, J. Hu, and R. Tuminaro, Parallel multigrid smoothing: Polynomial
versus Gauss-Seidel, J. Comput. Phys., 188 (2003), pp. 593–610. 1, 2, 8, 21

[2] O. Axelsson, Iterative Solution Methods, Cambridge University Press, 1996. 7
[3] O. Axelsson and P. Vassilevski, Algebraic multilevel preconditioning methods I, Numer.

Math., 56 (1989), pp. 157–177. 8
[4] A. H. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang, Multigrid smoothers for ultra-

parallel computing: Additional theory and discussion, Tech. Report LLNL-TR-489114,
Lawrence Livermore National Laboratory, March 2011. 5, 10, 16

[5] A. H. Baker, T. Gamblin, M. Schulz, and U. M. Yang, Challenges of scaling algebraic
multigrid across modern multicore architectures, in Proceedings of the 25th IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS 2011), 2011. Also available
as LLNL Tech. Report LLNL-CONF-458074. 1

[6] A. H. Baker, M. Schulz, and U. M. Yang, On the performance of an algebraic multi-
grid solver on multicore clusters, in VECPAR 2010, J.M.L.M. Palma et al., ed.,
vol. 6449 of Lecture Notes in Computer Science, Springer-Verlag, 2011, pp. 102–115.
http://vecpar.fe.up.pt/2010/papers/24.php. 18

[7] R. E. Bank and C. C. Douglas, Sharp estimates for multigrid rates of convergence with
general smoothing and acceleration, SIAM J. Numer. Anal., 22 (1985), pp. 617–633. 2, 9

[8] F. A. Bornemann and P. Deuflhard, The cascadic multigrid method for elliptic problems,
Numer. Math., 75 (1996), pp. 135–152. 8

[9] D. Braess, The convergence rate of a multigrid method with Gauss–Seidel relaxation for the
Poisson equation, in Multigrid Methods, W. Hackbusch and U. Trottenberg, eds., vol. 960
of Lecture Notes in Mathematics, Berlin, 1982, Springer-Verlag, pp. 368–386. 3

[10] D. Braess and W. Hackbusch, A new convergence proof for the multigrid method including
the V cycle, SIAM J. Numer. Anal., 20 (1983), pp. 967–975. 3

[11] J. H. Bramble, Multigrid Methods, vol. 294 of Pitman Research Notes in Mathematical Sci-
ences, Longman Scientific & Technical, Essex, England, 1993. 3

[12] J. H. Bramble and X. Zhang, The analysis of multigrid methods, Handb. Numer. Anal., VII
(2000), pp. 173–415. 3

[13] A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp., 31
(1977), pp. 333–390. 2, 3, 4

[14] J. J. Brannick and R. D. Falgout, Compatible relaxation and coarsening in algebraic multi-
grid, SIAM J. Sci. Comput., 32 (2010), pp. 1393–1416. LLNL-JRNL-417122. 6, 16

[15] M. Brezina, C. Heberton, J. Mandel, and P. Vaněk, An iterative method with convergence
rate chosen a priori, Tech. Report UCD CCM Report 140, Center for Computational

23

Mathematics, University of Colorado at Denver, February 1999. 8
[16] E. Chow, R. Falgout, J. Hu, R. Tuminaro, and U. Yang, A survey of parallelization

techniques for multigrid solvers, in Parallel Processing for Scientific Computing, M. Heroux,
P. Raghavan, and H. Simon, eds., SIAM Series on Software, Environments, and Tools,
SIAM, 2006, ch. 10. 1

[17] H. De Sterck, R. D. Falgout, J. Nolting, and U. M. Yang, Distance-two interpolation for
parallel algebraic multigrid, Num. Lin. Alg. Appl., 15 (2008), pp. 115–139. 16

[18] H. De Sterck, U. M. Yang, and J. Heys, Reducing complexity in algebraic multigrid precon-
ditioners, SIMAX, 27 (2006), pp. 1019–1039. 16

[19] C. C. Douglas, J. Hu, M. Kowarschik, U. Rüde, and C. Weiss, Cache optimization for
structured and unstructured grid multigrid, Elect. Trans. Numer. Anal., 10 (2000), pp. 21–
40. 22

[20] R. Falgout, J. Jones, and U. M. Yang, Pursuing scalability for hypre’s conceptual interfaces,
ACM ToMS, 31 (2005), pp. 326–350. 19

[21] R. D. Falgout, An introduction to algebraic multigrid, Computing in Science and Engineering,
8 (2006), pp. 24–33. Special issue on Multigrid Computing. UCRL-JRNL-220851. 1

[22] R. D. Falgout and P. S. Vassilevski, On generalizing the algebraic multigrid framework,
SIAM J. Numer. Anal., 42 (2004), pp. 1669–1693. UCRL-JC-150807. 1, 2, 3, 4, 5, 6, 22

[23] R. D. Falgout, P. S. Vassilevski, and L. T. Zikatanov, On two-grid convergence estimates,
Numer. Linear Algebra Appl., 12 (2005), pp. 471–494. UCRL-JRNL-203843. 1, 2, 5, 13,
22

[24] W. Hackbusch, Multi-grid convergence theory, in Multigrid Methods, W. Hackbusch and
U. Trottenberg, eds., vol. 960 of Lecture Notes in Mathematics, Springer-Verlag, 1982,
pp. 177–219. 2, 3

[25] V. Henson and U. Yang, BoomerAMG: A parallel algebraic multigrid solver and precondi-
tioner, Appl. Numer. Math., 41 (2002), pp. 155–177. 1

[26] hypre: High performance preconditioners. http://www.llnl.gov/CASC/hypre/. 1, 16
[27] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular

graphs, SIAM J. Sci. Comput., 20 (1998), pp. 359–392. 20
[28] T. Kolev and P. Vassilevski, AMG by element agglomeration and constrained energy mini-

mization interpolation, Numer. Linear Algebra Appl., 13 (2006), pp. 771–788. UCRL-JC-
219462. 16

[29] , Parallel auxiliary space AMG for H(curl) problems, J. Comput. Math., 27 (2009),
pp. 604–623. Special issue on Adaptive and Multilevel Methods in Electromagnetics.
UCRL-JRNL-237306. 1, 11, 14, 16

[30] J. Kraus, V. Pillwein, and L. Zikatanov, Algebraic multilevel iteration methods and
the best approximation to 1/x in the uniform norm, Tech. Report 2009-17, Jo-
hann Radon Institute for Computational and Applied Mathematics (RICAM), 2010.
http://arxiv.org/abs/1002.1859v1. 9

[31] J. Mandel, S. F. McCormick, and J. W. Ruge, An algebraic theory for multigrid methods
for variational problems, SIAM J. Numer. Anal., 25 (1988), pp. 91–110. 3

[32] S. F. McCormick, Multigrid methods for variational problems: further results, SIAM J. Nu-
mer. Anal., 21 (1984), pp. 255–263. 3

[33] , Multigrid methods for variational problems: general theory for the V–cycle, SIAM J.
Numer. Anal., 22 (1985), pp. 634–643. 3

[34] J. W. Ruge and K. Stüben, Algebraic multigrid (AMG), in Multigrid Methods, S. F. Mc-
Cormick, ed., vol. 3 of Frontiers in Applied Mathematics, SIAM, Philadelphia, PA, 1987,
pp. 73–130. 3

[35] K. Stüben and U. Trottenberg, Multigrid methods: Fundamental algorithms, model problem
analysis and applications, in Multigrid Methods, W. Hackbusch and U. Trottenberg, eds.,
vol. 960 of Lecture Notes in Mathematics, Springer-Verlag, 1982, pp. 1–176. 2, 7

[36] P. S. Vassilevski, Multilevel block factorization preconditioners: Matrix-based analysis and
algorithms for solving finite element equations, Springer, New York, 2008. 8, 15

[37] U. Yang, Parallel algebraic multigrid methods - high performance preconditioners, in Numerical
Solution of Partial Differential Equations on Parallel Computers, A. Bruaset and A. Tveito,
eds., vol. 51, Springer-Verlag, 2006, pp. 209–236. 1

[38] U. M. Yang, On the use of relaxation parameters in hybrid smoothers, Numer. Linear Algebra
Appl., 11 (2004), pp. 155–172. UCRL-JC-151575. 1, 2, 13

[39] L. T. Zikatanov, Two-sided bounds on the convergence rate of two-level methods, Numer.
Linear Algebra Appl., 15 (2008), pp. 439–454. 15

24

