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Abstract.

This paper presents the results of a comparison of three parallel algebraic multigrid (AMG)
preconditioners for structural mechanics applications. In particular, we are interested in investigating
both the scalability and robustness of the preconditioners. Numerical results are given for a range of
structural mechanics problems with various degrees of difficulty, and show that algebraic multigrid
methods can be applied successfully even to difficult problems in structural mechanics.
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1. Introduction. Krylov methods with algebraic multigrid preconditioners have
been demonstrated to offer fast convergence rates as well as good parallel efficiency
for the iterative solution of linear systems arising from discretizations of many elliptic
partial differential equations. Two classes of algebraic multigrid methods (AMG) have
gained popularity - the classical AMG method originally conceived in [5] and practi-
cally developed by Ruge and Stiiben [24] (RS), and smoothed aggregation multigrid
(SA) proposed by Vanék, Mandel and Brezina [31, 29]. In addition, improvements to
SA have been made to handle more difficult problems such as Maxwell’s equations [4].
In this paper we investigate another improvement to SA to handle difficult problems
in structural mechanics. This improvement involves locally enriching the prolongation
operator using low energy eigenvectors of subdomains in a finite element framework.
The idea of enriching the coarse space was already recognized in [31] in conjunction
with treatment of high-order equations, and was later expanded into an adaptive pro-
cedure similar to the one presented here by Brezina, Heberton, Mandel and Vanék
in [7] as a general principle to eliminate convergence problems due to local irregular-
ities of the finite element discretization. The latter method was, however, limited to
two-levels. Our implementation generalizes this coarse-space enriching approach to
multi-level, replacing the subdomain smoothers with more efficient multilevel proce-
dure that allows for further coarsening. We call this method GSA, an acronym for
generalized smoothed aggregation.

Parallelization issues for AMG preconditioners are also considered in this paper.
The application of algebraic multigrids involves two phases: the setup phase and the
solution phase. A typical setup phase consists of coarse grid selection, construction of
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prolongation operators, and creation of coarse grid matrices. The original coarse grid
selection procedures in both RS and SA are sequential in nature. Efforts to parallelize
the coarsening step have been reported in [26, 16, 19, 15]. The construction of coarse
grid matrices using triple matrix products can be parallelized in a straightforward
manner, but perfect scalability is difficult to achieve. Scalability issues in the solution
phase are associated mainly with the parallel smoothers, and with solution of the
coarse grid problem. In this paper we discuss some of these parallelization issues in
detail and make recommendations given different options.

This paper is organized as follows: in Section 2, we give an introduction of the
three AMG methods in question. Section 3 is dedicated to expounding the GSA meth-
ods and providing theoretical motivation for the method. Section 4 describes in more
detail the parallel aspects of the setup and solution phases. Numerical experiments
will be presented in Section 5, followed by a few afterthoughts in Section 6.

2. A Brief Review of Algebraic Multigrids. AMG methods can be used as
independent linear solvers for solving linear systems of the form

) Az =b

where A € R™*™ is a positive definite matrix and z,b € ™. In practice, they are
often used as preconditioners in preconditioned conjugate gradient and/or generalized
minimal residual methods. A typical V-cycle AMG is given as follows (by calling
MG(Ag, b,u,0)):

ALGORITHM MG (Ak, bk, Uk, k‘)

1. If level k is the coarsest level, u, = A;lbk, return

2. up = Sk(Ag, br, ug) /* pre-smoothing */

3. mk = by — Aguy /* residual calculation */
4. bpg1 = Ry =1y, /* restriction */

5. Vk+1 = 0

6. MG(Ak+1, bgy1, Vgt1, k+ 1)

7. up = up + Prog41 /* coarse grid correction */
8. up = Sk(Ag, br, ug) /* post-smoothing. */

Here Sy, Ry, and Pj are the smoothing, restriction, and prolongation operators,
respectively.

Application of AMG methods consists of distinct setup and iteration phases. In
the setup phase, the transfer operators Py, Ry, are created based on the operator Ay,
and the multigrid smoothing operators Sj are set up. Once P, becomes available,
the restriction operator, Ry, is typically defined as Ry = PkT , and the coarse problem
operator is constructed using the Galerkin formula, Agy1 = RpArPr;. The hybrid
Gauss-Seidel smoother [33] is chosen for our numerical study and its performance
aspects will be discussed later.

The main idea of multigrid is based on the complementary roles of the multigrid
smoothing and coarse-grid correction procedures. In order to have a well-convergent
multigrid, the solution error not eliminated well by smoothing must be eliminated
well by coarse grid correction. As the prolongation operators define the coarse spaces,
they play a critical role in transmitting and eliminating the error modes between
different grid levels. In the following subsections we briefly describe two different
ways of selecting the coarse variables and the corresponding prolongation operators.

2.1. The Classical Algebraic Multigrid. Setting up the coarse grid structure
in the classical algebraic multigrid [24] (RS) is guided by two principles:
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P1: Errors not efficiently reduced by smoothing must be approximated well by the
range of interpolation, and

P2: the coarse grid correction must efficiently eliminate fine grid error in the range
of interpolation.

For problems with M-matrix property P1 is satisfied by a two-pass coarse grid
selection and the Ruge-Stiiben interpolation formula [24], while construction of coarse
problems using the Galerkin formula allows P2 to be satisfied.

A typical setup phase for RS is as follows [11]:

RS Setup Phase:
1. Set k = 0.
2. Partition the level k set of points O into disjoint sets C* and F*.
(a) Set QF+1 = Ok,
(b) Define interpolation P.
3. Set Rk = PI;T and Ak+1 = RkAkPk.
4. If Qg1 is small enough, stop. Otherwise, set k =k + 1
and go to step 2.

Step 2 begins by forming a set of dependencies for each point i (a point can be
a single unknown in the scalar case or a set of unknowns in the system case) in the
current grid level defined by

(2) Si={j#i:—a; < Oérlrclig((—aik)},

where « is the strength threshold for pruning weak couplings between variables. All
points in the domain are chosen either as coarse or fine points. A set of interpolation
points Cj; is then selected for every fine point i. Since errors are more effectively
smoothed in the direction of influence, a suitable criterion for selecting C; is C; =
S; N C (C is the set of all C points.)

Two criteria for choosing the F' and C' sets are that
P3: For each i € F, each j € S; is either in C or S; NC; # 0, and
P4: (' is a maximal set with the property that if 4 and j are both coarse points,

then j € S; and ¢ € S;.

Criterion P3 says that if ¢ is a fine point, then the points influencing ¢ must either
be coarse points or must share a common coarse point with ¢. P4 is enforced to
keep the coarse grid as small as possible. Since it may not be possible to satisfy
both criteria simultaneously, a common practice is to enforce P3, guided by P4.
This commonly takes the form of a two-pass coarse selection, which proceeds by first
choosing a maximal independent set of coarse points, followed by patching up the C
set to satisfy P3.

Once the coarse set C' has been determined, the interpolation formula is prescribed
as:

(Prupsr)i = (wr+1)i if i € C and ¢ and [ are the same point
kL ZjEC’,- wij(uk+1)j if 1 € F.

Details of computing the quantities w;; can be found in [24].

Note that the RS method was originally developed for problems with M-matrix
property, so the problems considered in this paper are out of its theoretical scope.
However, the method has been successfully applied to a variety of problems violating
the M-matrix property, and we demonstrate that it can, with some success, be applied
to the problems under our consideration.



2.2. The Smoothed Aggregation Multigrid. The coarse grid construction
for SA differs from that of RS in that, instead of choosing the coarse set as a subset
of the current grid nodes (a node can be a single unknown in the scalar case or a set
of unknowns in the system case), each fine node is assigned to a unique aggregate.
Each aggregate thus corresponds to one or more equations in the coarse grid operator.
The first coarsening step is thus to form a collection of mutually disjoint aggregates
covering all the fine nodes (however, the equations corresponding to the essential
boundary conditions are usually left out). The goal is to have uniformly shaped
aggregates. The optimal aggregate size for the standard method has a diameter
three, i.e., three nodes along the diameter (small aggregates may result in higher
overall complexity, but very large aggregates may result in poor convergence rates
unless a nonstandard prolongator smoother is applied, cf. [30]). A basic aggregation
procedure proceeds as follows [31, 26]:

SA Aggregation step: (Given a graph representing the node connectivity)
Phase 1 : Form initial set of aggregates: for i = 1 to n,
a. If node 7 has been aggregated or it is adjacent to an aggregated
node, go to the next node.
b. Otherwise, select it as a root node, and define a new aggregate as
node 4 plus all its strongly coupled neighbors.
Phase 2 : Put unaggregated nodes into existing aggregates: for i = 1 to n,
a. If node i has been aggregated, go to the next node.
b. Otherwise, put it in the aggregate to which one of its neighbors
belongs.

Actual implementation can add complexity to this aggregation algorithm. For
example, more phases may be needed if aggregate size control is incorporated. Also,
different criteria for choosing host aggregates in phase 2 may be prescribed to enhance
performance.

The aggregation step is followed by forming the tentative prolongation operator
Py, the formula of which, in the simplest case of piecewise constant interpolation, is
given as:

5.y _ [ (we); ifi € aggregate,
(3) (Prugy1); = { 0 otherwise.

For construction of the tentative prolongation in more general cases we refer to [31].
For solving systems of partial differential equations, aggregation is typically performed
on the nodes in the computational grid. Three-dimensional elasticity problems, for
example, have three unknowns per node corresponding to displacements in the three
orthogonal directions. Thus, in the case of structured hexahedral mesh, each aggregate
would ideally contain 27 nodes or 81 unknowns. In addition, instead of using piece-
wise constant interpolation for each aggregate, rigid body modes or near null space
vectors can be provided for defining P;. The number of coarse grid equations for each
aggregate is then the number of null space vectors provided. For three-dimensional
elasticity, six rigid body modes can be computed from the nodal coordinates which
are readily available from most applications.

More robust prolongators can be constructed by smoothing the tentative prolon-
gators. For example, applying a damped Jacobi smoother gives:

(4) Py = (I —wD; " Ay) Py,

where Dy, is the diagonal of Ay, and w is the damping factor related to the maximum
eigenvalue of the scaled matrix D, 'A;. Convergence theory [29] proves that this
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prolongation smoother is needed to guarantee convergence rates only mildly dependent
on the grid size.

3. Generalized Smoothed Aggregation. For many applications, the knowl-
edge of a small number of near-kernel components suffices to construct a robust
smoothed aggregation solver. However, for difficult problems, it may be beneficial
or indeed necessary to generalize the method.

To motivate the GSA method, we first recall the theoretical convergence estimate
derived in [30]. Throughout this section we drop the level indices in the notation
for the multigrid operators when there is no danger of ambiguity. Let n,m denote
the dimensions of the Euclidean spaces associated with the fine and coarse spaces,
respectively. We further define Ag = S2A, where S denotes the prolongator smoother.
Then for the two-level smoothed aggregation method employing a pre-smoother with
a linear part given by S and a post-smoother with linear part given by

A~

W
5 S'=1—-—As
©®) o(As)
the following result holds (cf., [30]),
THEOREM 3.1. Assume that there exists a positive constant Cypx such that:
1. There is a linear mapping, Q, of R™ onto Range(P) such that

02
6 I—Q)ull> < =2 ||lu||} VYueR™
(6) I = Qull” < é(As)” 14
2. The prolongator smoother, S, is symmetric, commutes with A, and satisfies
o(S) < 1.

Let e; denote the error after i iterations of SA with P = SP, and ef = Se; the final
error smoothed by the prolongator smoother. Then it holds that

lle?I% < (1= C)'lleoll%,

where

Cam(2 — &) . .
= —5— —, and @ is the damping parameter from (5).
1 + Capx&)(Q — UJ)

As Assumption 2 of Theorem 3.1 is usually easy to satisfy, our attention is focused
on minimizing the constant Capx in (6). We note that the left-hand side of (6) depends
only on the tentative prolongator, while the prolongator smoother is present only in
the form of a bound on the spectral radius of Ag in the denominator of the right-hand
side.

The smoothed aggregation method thus possesses two mechanisms for ensuring
good convergence properties. One strategy leading to improved constant Cypx relies
on developing more powerful prolongator smoothers, S, thus forcing o(S%24) < o(A).
This approach had been investigated in [30], where a two-level method with conver-
gence properties independent of the size of the coarse grid was developed.

Another way to improve Cypx is based on appropriately enriching the range of
the tentative prolongator P, thus minimizing the left-hand side in (6). This approach
can, naturally, be combined with the improvement of S for a compound benefit. Note,
however, that in forming the prolongator P = § P to be used in the final method, all
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columns of P must be multiplied by S. Hence, the effect of using an improved S is
global in nature. The corresponding smoothing of the coarse space basis functions is
thus appropriate for correcting global convergence phenomena tied to the differential
equation solved, and the use of nonstandard prolongator smoothers may thus be an
overkill if slow convergence of the method is rooted in local phenomena. In contrast,
due to the disjoint nature of the aggregate decomposition, the enrichment of the range
of P can be carried out locally one aggregate at a time.

As the emphasis of this paper is on parallel implementation, we are seeking a
procedure which would modify the iterative solver locally in the problematic regions.
We will thus focus on local enrichment of the range of the tentative prolongator P,
and refer interested reader to [30] for details on construction of S.

We will consider a decomposition of our computational domain, 2, into J nonover-
lapping subdomains, ;,

J
(7) Q=J% UunQ;=0ifi#j
i=1
We assume that each (2; is a connected cluster of elements. Denote by n; the number
of degrees of freedom in €2;, by A; the n; x n; local stiffness matrix corresponding to
;, and by N; the zero-one matrix mapping the degrees of freedom associated with Q;
into the set of global degrees of freedom in matrix A. Obviously, the stiffness matrix
A can be assembled from the local stiffness matrices A; by:

J
(8) A=Y NAN].
i=1

We will utilize a system of large nodal aggregates {A;}7_, forming a disjoint
covering of the set of all nodes such that all nodes in A; lie in ;. Such aggregates
are easily formed by assigning all the nodes in Q; to A;, and distributing any nodes
shared by more than one ; to exactly one of the corresponding aggregates at will.

To formalize this distribution of nodes, for each subdomain ; with number of
degrees of freedom n;, we define a zero-one diagonal matrix I; of dimension n; as

) (I)aa = 1 if degree of freedom d corresponds to a node in A;
A0 otherwise

We further define for each subdomain €2; a set of vectors {wy) Yy w§i) €
Range(I;), and denote by W; the n; x m; matrix consisting of orthogonal columns

{w](.i) }i2,. The tentative prolongator P : R®™ — R being able to represent exactly

all functions in {w](-i) }j2; over A; can then be defined by

J
(10) 1350 = Z NiWim(i),

i=1

where z(?) denotes the segment of coarse degrees of freedom associated with aggregate
A;.
Theorem 3.1 guarantees that the rate of convergence of the two-level method is
-2

bounded by 1 — lfgfg under the assumption that there exists v € ™ such that
apx

2

> Ca X n
(11) [lu— Pv||l22(Q) < Q(T;)A)”u”i‘ Yu € R".
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Using the sparsity structure of P stemming from disjointness of the aggregates, we
can write for any u € R™,

J
llu = Pollfgy = Y llu = Puvillizga,ys
i=1

where || - [|;2(4,) denotes the restriction of the Euclidean norm to the set of degrees of
freedom corresponding to the node in the aggregate A;, and P, ; denotes the super-
column of P corresponding to aggregate A; . Similarly, using (8), we write

J
llulld = (AN u, Nf'u).

i=1
Thus, in order to satisfy (11) it suffices to satisfy over all aggregates A; the inequality

2

R C
2 apx T T n
(12) llu = Pollizc4,) < 79(5;14) (A;N'u, Nj'u) Vu e R™

Assuming fixed prolongator smoother S, the satisfaction of (12) depends solely on the
selection of columns of P. We are thus led to constructing P 5o that

(13) ,nf lu — Prgvill = (I — Qi)u, w)iza;y < Ailul, Vue R,

where Q; = W;(WIW,)"'WT is the R™-orthogonal projection onto the Range(W;).
Equation (13) can be reformulated as a generalized eigenvalue problem for I;(I —Q;)I;
preconditioned by A;. The constant A; in (13) can be decreased by finding the largest
eigenvalue of the generalized eigenvalue problem and adding the corresponding eigen-
vector to the range of );. This amounts to introducing new columns corresponding
to aggregate A; into the tentative prolongator P. This procedure can be repeated
until (13) is eventually satisfied with a uniform constant A > A; foralli=1,...,J.

To reduce cost associated with the solution of the local generalized eigenvalue
problem, we instead solve the local eigenvalue problem for A;. The following lemma [7]
justifies this reduction in cost.

LEMMA 3.2. Let w(’)

corresponding to the ezgenvalues of A; that are smaller than > 0. Then

o , where w;i)

=1 w are the eigenvectors of matriz A;

(IZ(I — Qi)Iiu,U)g‘Rni S A”U”il Yu € éRni.

Note that we only compute the near null space vectors for the subproblems cor-
responding to subdomains ; created by the domain partitioner (computing the near
null space vectors for the global matrix would be prohibitively expensive). The setup
cost is still relatively high, but it can be performed in parallel with no interprocessor
communication. To keep cost down, the size of each subdomain is limited to a few
thousand nodes.

The coarse-space enriching technique we have thus far described in this section
is based on the two-level method proposed in [7], which utilizes aggregates A; where
each aggregate consists of all the nodes in the subdomain ;. This necessitates the
use of special prolongator smoothers and special multigrid relaxation procedure in
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order to guarantee good convergence. Here we are interested in providing a multilevel
generalization. Our current GSA method differs from that in [7] in that a standard
aggregation coarsening will be applied on each ;. Thus the nodes of ; are subag-
gregated into a number of small, standard-sized aggregates, N; = |J Aij, where N;
denotes the set of unique nodes corresponding to subdomain ;. The eigenmodes of
A; are then restricted to these smaller aggregates, A;;, and the tentative prolongator
used in the current GSA can be written as

J o

(14) Pl‘ = ZZN”W@].’E(”),

i=1 j=1

where W;; denotes restriction of W; to A;; and Ni]' is a zero-one matrix mapping
the degrees of freedom in A;; into the set of global degrees of freedom. Symbol (@)
denotes the segment of coarse degrees of freedom associated with aggregate A;;.

As the computation of eigenmodes on each subdomain is performed independently
of one another, we do not allow aggregation across the subdomain boundary in order
to facilitate alignment. Consequently, the number of unknowns on the coarsest grid
is at least J x v where J is the number of subdomains and v is the desired number of
null space vectors. When both J and v are large, the coarsest problem can become
too large for direct solution.

Since the set of coarse grid basis functions generated by P is a refinement of that
generated by P, we trivially obtain

Hi ~ .. A .

> minlu— Pr |y ) <minflu— Pzl ) < Allull,.

j=1
Thus the standard convergence theory for the smoothed aggregation method [29]
can be used to guarantee convergence of the resulting method. As a result of using
the standard aggregates, P can approximate well not only the computed set of eigen-
modes, {wgz) };”:"1, but also a much richer subspace consisting of any modes with locally
similar character. This can reduce the number of eigenmodes that need to be com-
puted. Another benefit of using GSA, compared to the method of [7], is the reduced
amount of inter-processor communication. The method of [7] was primarily intended
for serial environment. Its multigrid relaxation is based on polynomial smoothing,
which makes it suitable for parallel implementation. But its use of the more pow-
erful prolongation smoothing, required to achieve optimal convergence rates, results
in larger cross-processor overlap in its coarse-level basis functions. This leads to in-
creased communication necessary in setting up the coarse-level matrices. In contrast,
GSA, with its use of the standard prolongation smoother, reduces communication and
is certain to result in higher flop-rates in a massively parallel environment.

For completeness, we include a summary of the GSA multilevel coarsening pro-
cedure below. Let ! denote the level index (I = 0 corresponds to the finest grid).
Furthermore, let us denote by N} the set of unique nodes on level [ which is associ-
ated with subdomain €;, and by 4} its number. Symbol A} denotes the aggregates on
level I. Given a decomposition of the domain (7) and the corresponding subdomain
matrices, A;, GSA coarsening proceeds as follows:

1. Initialize one large aggregate, A? = A, per subdomain Q;, i =1,...,J,
distributing any shared nodes so that the resulting N; are mutually disjoint.
Set p? = card(N;),i=1,...,J.



2. For each local matrix 4;,i = 1,...,J, compute a set of m; eigenmodes, Wk,
smaller than A. Set [ = 0.

3. Perform standard SA aggregation independently over each A} to produce
{Al;} such that N} = |J; Aj;. Split W/ into segments, W};, corresponding to
aggregates.

4. Construct operator P, as in (14). Simultaneously, compute Wi”l, the coarse-
level representations of W} such that W} = PW/*t.

5. Construct smoothed prolongator, P, = (I —wD; LA)P,.

Construct coarse-level operator, A;11 = PlTAlPl

7. If I +1 is the coarsest level, stop.

Otherwise, set N; to be the set consisting of global numbers indexing the
aggregates on level I, ptt1 = card({Aﬁ-j}), set I =1+ 1, and go to step 3.

2

o

The construction of P in step 4 (and in (14)) is modified in practice by orthogo-
nalizing the columns of Wilj over the local aggregates .Aﬁj. Such modification does
not change the range of the constructed tentative prolongator, but produces better-
conditioned coarse-level matrices (cf. [31]). Also, it can be conveniently combined
with the computation of the coarse-level representation W} (cf. [29]).

We note that a coarse space enrichment similar to the one described here has
been used in the context of classical AMG in the AMGe class of methods [6, 10], and
also by Mandel [21, 22] in the context of two-level domain decomposition suitable
for p-version finite elements. Reference [13] describes a coarse-space enrichment for a
non-smoothed aggregation method using very small element agglomerates, under the
assumption that the local element matrices are available. The recently introduced
class of adaptive smoothed aggregation methods (aSA, cf. [8]) approaches local coarse-
space enrichment by run-time evaluation of the error components of the iteration
and subsequent incorporation of these modes into its multigrid transfer and coarse
operators.

4. Parallel Implementation Issues. The original coarse grid selection algo-
rithms for both RS and SA are inherently sequential. In the solution phase, the
primary factor for parallel efficiency is the use of parallel and robust smoothers. This
section briefly reviews efforts pertaining to these two issues.

4.1. Parallel Coarsenings for RS Algebraic Multigrid. Several parallel
coarsening algorithms have been proposed and tested successfully - the parallel RS
coarsening [14], the CLJP coarsening [11], and the hybrid (or Falgout) coarsening.
The parallel RS coarsening first performs independent local coarsening within each
processor, followed by coarsening on the processor boundaries. The CLJP coarsening
is a form of a parallel maximal independent set algorithm [18, 20] modified to enforce
the coarsening criteria. The hybrid coarsening uses the RS coarsening interior to
the processors and CLJP coarsening on the boundaries. The relative performance
of these algorithms varies dependent on the applications. Since the CLJP algorithm
generally gives better results for unstructured grid problems, it is used in our numerical
experiments. For other strategies which have been proved successful in parallelizing
RS-based multigrid methods we refer the readers to [19, 15].

4.2. Parallel Coarsenings for SA Algebraic Multigrid. Reference [26] de-
scribes three parallel aggregation algorithms. The coupled aggregation scheme pro-
ceeds by having each processor first separating all nodes assigned to it into the interior
and border nodes. Border nodes are those which share a grid edge with a nodes on
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another processor. Subsequently, this scheme aggregates the border nodes before
aggregating the interior nodes. This scheme has the disadvantage that some proces-
sors may have to wait until other processors have completed aggregating their border
nodes. The worst case scenario would require a wait time proportional to P1/3 where
P is the number of processors. However, the scheme can give significantly better
aggregates than the other approaches considered.

The second parallel aggregation scheme is based on maximally independent set
(MIS). In brief, the widely studied parallel MIS algorithms can be applied to the square
of the matrix representing grid connectivities. This scheme has the disadvantage that
it requires computing the square of a matrix.

The third scheme, which is our choice in our numerical studies, is called the decou-
pled aggregation scheme. This scheme lets each processor form its set of aggregates
independently of one another. It is very simple to implement and it generally gives
good performance. However, its performance depends a great deal on the quality of
the domain partitioner. Furthermore, not allowing the aggregate to cross the proces-
sor boundaries can result in slightly higher overall grid complexity (the total number
of grid nodes in the grid hierarchy) and larger coarsest grid size when the number of
processors is large. We remedy the latter by triggering a processor aggregation step
(forming processor connectivity graph and grouping processors into aggregates) when
the coarsest grid is too large.

4.3. Parallel Smoothers. Smoothers play a critical role in the AMG solution
phase. On sequential computers, Gauss-Seidel (GS) is usually the smoother of choice.
On massively parallel computers, however, the choice of smoother is less clear. The
GS smoother can be modified for higher degree of parallelism by combining it with
the Jacobi smoother. By preserving the sequential nature of GS within each proces-
sor and exploiting the parallel nature of Jacobi across processor boundaries, a hybrid
GS-Jacobi smoother has been demonstrated to be quite effective on small number
of processors. For massive parallelism, it may suffer from slow convergence rates.
Another approach is to improve GS’s parallelism by using multi-coloring [1]. A limi-
tation of this approach is that there needs to be sufficient number of unknowns on each
processor, and is thus not an effective smoother on the coarse grids. Other efforts in-
clude the use of polynomial smoothers [2] and Krylov smoothers preconditioned with
Jacobi, block Jacobi, or overlapped Schwarz, all with limited success.

In our numerical experiments, we use a variant of the hybrid GS-Jacobi smoother
given in [33]. The idea is to recover fast convergence rates by using under-relaxation
in GS and/or damped Jacobi across processors. The relaxation parameters can be
computed by a few conjugate gradient iterations.

5. Test Problems from Structural Mechanics. The test problems are taken
from the ALE3D code developed at the Lawrence Livermore National Laboratory.
The implicit integration algorithm in ALE3D for solid materials is based on an up-
dated Lagrangian displacement-based formulation. A set of nonlinear equations is
solved for equilibrium using the state and configuration at the end of a time step.
During the time integration, nonlinearities arise because of the material response and
configuration changes.

The basic equations are the momentum equations derived by starting with the
local dynamic equilibrium relation in a form suitable for a solid body

(15) puy =V -0 +pb
n-o=g
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where u is the displacement vector, o is the stress tensor, b is the body force vector
per unit mass, p is the density, and g is the surface traction. Applying the weak form
and then integrating by parts yield

(16) /putt-dudV—i-/U:(V(Su)TdV—/n-a'-éudV—/pb-6udV=0
v v s v

where the colon signifies a double inner product, V is the volume, and S is the surface
of the body. Time integration is performed by using the full Newton-Raphson iteration
scheme represented by

dP
1 - . —_p
(17) T du
where P is the left hand side of Equation (16), and (A is the surface area)
(18) dP = / [do — (Vdu)' -0 + (V -du)o] : (Véu)Tav —
1%
dg 1 dA
(19) /S [d_u -du+ 187 -du] -dudS —

db dutt
/Vp[d—u] -du+/vp[d—u] - dudV.

This displacement-based Jacobian equation is solved with the finite element method
using linear elements on a hexahedral mesh. At each time step, corrections are added
to the previous estimate of the nodal displacements. The nodal displacements are
then used to calculate displacement gradients and strain increment tensors that are
passed to the constitutive model.

The constitutive relation we use cannot be written simply in terms of stresses and
elastic properties. It also depends on current loading. For a forward gradient stress
integration, the material stiffness would take the form:

LijrsPrsPtuLtukl
h+ PrerstuPtu ’

where L is the standard fourth order elasticity tensor, P is the derivative of the yield
surface with respect to the stress tensor and h is the material strain hardening.

5.1. The Spherical Shell Problem. The domain for the first problem is an
octant of a spherical shell depicted in Figure 1. The shell has three layers having steel
on the outside and inside layers and polycarbonate in the middle. Both elasticity
and plasticity are present in the constitutive model. The forcing function is the small
amount of energy injected into the polycarbonate layer, causing the polycarbonate to
expand against the inner and outer layers. Equation (20) can be simplified to C = L
in this case as there is no plasticity.

5.2. The Crystal Plasticity Problem. This test problem (called TBar and
shown in Figure 2) uses a crystal plasticity constitutive model given by

(20) Cijn = Liju — i,k s, tu=1---3

12 12
(21) Cijrt = Lijit = > > LijmnQmnREs st

a=1b=1
where Q¢ and R’ are each second order tensors for each of the 12 slip systems. As a
result, the global stiffness matrix is slightly nonsymmetric. Boundary conditions for
this test problem are forces applied at one end in the direction of the bar length and
the other end is tied down to prohibit displacement in the direction of the bar length.
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Fic. 1. The Spherical Shell Problem

Fi1G. 2. The TBar Problem (subdomains in different colors)
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5.3. The Bifurcation Problem. This test problem (called RBar and shown
in Figure 3) involves bifurcation which occurs when the force required to stretch the
perfectly uniform rod reaches a peak. The load is the axial stress times the cross
sectional area. During deformation, the stress first increases linearly with strain as an
elastic material. When stretched to a stress level known as the yield point, dislocation
mechanisms in the metal allow rearrangement of the atoms and result in permanent
deformation of the material. This is plastic flow. During plastic flow the rate of change
of stress with strain is typically 2 to 3 orders of magnitude less than during the initial
elastic deformation. This rate typically decreases continuously during deformation.
Also, during plastic flow the volume of the material is roughly constant leading to a
measurable decrease in the bar diameter as it is stretched.

Since the load is the stress times the cross section area, the load rate is comprised
of two terms containing the increasing stress rate and the decreasing area rate. For
most metals the area rate contribution overtakes the stress rate contribution in the
strain range from 5% to 30% extension. This is the peak load and corresponds to
the Considere [12] condition. Up to the peak load, energy considerations require that
the bar deform uniformly. At the peak load the incremental energy increase applied
to extend the bar is the same whether it continues stretching uniformly or some
nonuniform strain rate pattern emerges. If a nonuniform strain rate pattern emerges,
it is not unique.

It is the behavior at this instance of nonunique solution that is challenging to the
solver. If everything is geometrically perfect and the low order digits are all the same,
the bar can continue to deform uniformly. This has occasionally been seen with direct
solvers. If the numerical perturbations are not negligible, a nonuniform deformation
pattern will emerge triggered by the numerical imperfections. The energy increase
and the load at the nodes of the finite element mesh are nearly the same regardless
of the mode selected.

In the physical experiments, the real materials are not perfect and the effects of
the grip ends holding the specimen generally force a nonuniform deformation pattern
whereby the diameter reduces faster in one location. The second order work terms
at the Considere point are such that these localized deformation modes are favored
over continued uniform deformation. Once the localized modes begin, the bar is
energetically favored to continue deforming in the localized mode. This eventually
leads to what is known as a necking behavior and fracture of the bar (see Figure 4).

6. Numerical Experiments. The numerical experiments are run on two IBM
SP2 computers (to be called SP2-White and SP2-Blue from this point on) at the
Lawrence Livermore National Laboratory. The SP2-White computer has more than
500 nodes with 16 gigabyte of main memory per node. Each node has 16 Power3
processors running at 375 MHz each. The SP2-Blue computer has 264 nodes with 4
PowerPC 604e processors and 1.5 gigabytes of memory per node. Due to the scarce
availability of large number of processors (1000 or more) and the large disk space re-
quirement for storing the finite element meshes, our numerical experiments are limited
to a maximum of 512 processors. For the spherical shell problem, some performance
data were collected for RS and SA on 4000 SP2-White processors. The largest run for
RS is about 300 millions unknowns which consumes 200 iterations and 2000 seconds
for each solve. For SA we were able to successfully run even larger problem (610 mil-
lion unknowns, which takes about 500 iterations and 1500 seconds) due to its lower
memory requirements.

For both RS and SA, we prescribe one sweep of hybrid SSOR-Jacobi for both pre-
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Fi1c. 5. Spherical Shell Problem Using RS Preconditioner

and post-smoothing. For RS, we choose different strength thresholds for best results
on different test problems. For SA, the strength threshold is 0.0 and no prolongation
smoothing is used for all test problems. In addition, the near null space vectors
(the 6 rigid body modes) are computed from the nodal coordinates from our finite
element package. For GSA, additional near null space information is calculated from
the element stiffness matrices.

6.1. Scalability Study for the Spherical Shell Problem. We study the
parallel performance of the spherical shell problem on the SP2-White computer using
the conjugate gradient method with RS and SA as preconditioners. Each processor has
about 100K unknowns, yielding more than 51 million unknowns on 512 processors.
The entire simulation takes about 10 linear solves, and the timing results are the
averages of all linear solves. Convergence criterion for the conjugate gradient is 1076.
The best strength threshold for RS is around 0.9 — 0.99 for this problem. We use
0.95 in our experiment. With this threshold the grid and operator complexities (grid
complexity is the ratio of the total number of rows in all Ay’s with respect to Ag
while the operator complexity is the ratio of the total number of nonzeros in all
Ayp’s with respect to the number of nonzeros in Ag) are approximately 2.1 and 2.5,
respectively. The corresponding grid and operator complexities for SA are 1.08 and
1.15, respectively. The timing results and iteration counts are shown in Figure 5 and
6.

These results show that SA is reasonably scalable (that is, the total solution
time grows slowly with the number of processors given the same problem size per
processor), while RS appears to be somewhat less scalable due mainly to the faster
convergence rate deterioration with larger problem size (but RS gives much better
solution times than SA when the number of processors is small.) For SA, we observe
a substantial increase in the solution time going from P = 128 to P = 256 even though
the iteration counts stay about the same. After eliminating the cause attributing to
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F1G. 6. Spherical Shell Problem Using SA Preconditioner

load imbalance, we conclude the performance deterioration is probably due to higher
memory access conflicts for larger test problems.

6.2. Scalability/Robustness Study for the Tbar Problem. Numerical ex-
periments for the Thbar problem are performed on the SP2-Blue computer. Each
processor has about 30K unknowns, yielding a total of more than 14 million un-
knowns for 512 processors. The generalized minimal residual (GMRES [25]) method
with a restart size of 200 is used for this problem due to nonsymmetry. The pre-
scribed convergence criterion is 1078, We use 0.9 as strength threshold for RS. With
this threshold the grid and operator complexities are about 2.1 and 3.4, respectively,
for all processor configurations. The grid and operator complexities for SA are 1.09
and 1.13, respectively. The numerical results given in Figure 7 and 8 are for the first
linear solve. We observe that starting from the second linear solve RS fails to converge
(stagnation occurs when the relative residual norm drops to about 1072), while SA
takes many more iterations. We demonstrate in Figure 9 and 10 that GSA helps to
improve the robustness of SA.

From Figure 7 and 8, we observe that RS takes many more iterations than SA
to converge even for the first linear solve. From examining the convergence history
(not shown here) we further notice that the iteration count for RS would have been
reduced by a factor of 4 if the convergence criterion is raised to 10~6. We conclude
that, for low accuracy runs, RS and SA give comparable performance. Similarly, the
residual norm curves in Figure 10 shows that SA would have been competitive with
GSA for low accuracy runs. For higher accuracy runs and in later time steps when
the effect of crystal plasticity becomes more prominent, GSA performs the best.

6.3. Robustness Study for the Rbar Problem. For the Rbar problem, our
focus is on the robustness of the preconditioners. Since similar scalability behaviors
(as the spherical shell and Thar problems) are observed here, we deliberately omit the
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scalability results. The concern for solver robustness stems from the observation that
convergence deteriorates rapidly in later time steps when non-uniform deformation
occurs. To illustrate the relative performance of the different solvers, we use a test
problem with 380K unknowns running on 64 processors of the SP2-Blue computer.
Again, we use GMRES(m) with m = 100 and convergence criterion 10~8. To reduce
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the eigendecomposition time in GSA, 128 subdomains are used, with each subdomain
having roughly about 3000 unknowns. The number of grid levels and near null space
vectors for GSA are 3 and 12 (ns=12), respectively, yielding the coarsest grid size of
about 1500.

Timing results for all three AMGs are given in Figure 11 up to the 12th time
step. Each time step involves 3 to 6 linear solves, and the data given here are the
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averages. We observe that in the first 6 time steps when the problem is still well-
behaved, SA without enriching the prolongation operator is adequate. Beyond the
12th time step, both RS and SA fail to converge, but GSA continues to march on in
time with acceptable convergence rates, as depicted in Figure 12. We observe from
Figure 12 that a large fraction of the setup time is in the eigendecomposition. We
comment that this setup time can be improved by noting that the first 6 near null
space vectors are already available and only 6 additional ones are to be computed. In
the current implementation, we have not taken advantage of this fact.

7. Summary and Conclusion. In this paper we demonstrate the feasibility
of using algebraic multigrid for solving large-scale structural mechanics problems on
massively parallel processors.

For difficult structural mechanics problems, the smoothing and coarsening pro-
cedures used by the standard algebraic multigrid methods may fail to satisfactorily
capture all significant low energy modes of the error. Although the standard SA can
guarantee approximation of a general set of functions, it requires these functions to be
known before its setup procedure commences. The RS coarsening faces an additional
hurdle - even if the set of low energy modes were a priori known, an approximation of
a general set of functions is an open problem for RS interpolation. Local prolongation
enriching methods such as GSA help to alleviate these problems. Superior conver-
gence has been observed for GSA compared to the RS and SA. Some shortcomings of
GSA are the expensive eigendecomposition in the preprocessing step and the poten-
tially large coarsest grid problem. Faster eigensolvers and faster parallel direct solvers
are critical for this class of efficient and robust multigrid solvers. Future effort should
focus on improving efficiency by reducing memory traffic.

REFERENCES
19



(1] M

(2] M

150

100

average time/time step

o
=}

Il setup time 7
[ solve time

0 10 20 30 40 50 60 70
time step

100

(o2} @
=} =)

'S
o

iterations/time step

20

Il average number of iterations

0 10 20 30 40 50 60 70
time step

F1G. 12. Rbar Problem Using GSA Preconditioner

. F. Adams, A Distributed Memory Unstructured Gauss-Seidel Algorithm for Multigrid
Smoothers, ACM/IEEE Proceedings of SC2001: High Performance Networking and Com-
puting, Nov 2001.

. F. Adams, M. Brezina, J. J. Hu, and R. S. Tuminaro, Parallel Multigrid Smoothing: poly-
nomial versus GS, J. Comp. Phys., Vol. 188, No. 2, pp. 593-610, 2003.

3] ALE3D Theory Manual, UCRL-PRES-203313, Lawrence Livermore National Laboratory.

[
[4] P.

5] A.

[11] A.

[12] M

[13] J.

B. Bochev, C. J. Garasi, J. J. Hu, A. C. Robinson, and R. S Tuminaro, An Improved
Algebraic Multigrid Method for Solving Mazwell’s Equations, STAM J. Sci. Comput., Vol.
25, No. 2, pp. 623-642, 2003.

Brandt, S. F. McCormick, and J. W. Ruge, Algebraic Multigrid (AMG) for Automatic
Multigrid Solutions with Application to Geodetic Computations, Technical Report, Inst.
for Computational Studies, Fort Collins, Colorado, October 1982.

. Brezina, A. J. Cleary, R. D. Falgout, V. E. Henson, T. A. Manteuffel, S. F. McCormick,
and J. W. Ruge, Algebraic Multigrid Based on Element Interpolation (AMGe), SIAM J.
Sci. Comput., Vol. 22, No. 5, pp. 1570-1592, 2000.

. Brezina, C. Heberton, and P. Vanék, An Iterative Method with Convergence Rate Chosen A
Priori, UCD/CCM Report, No. 140, Center for Computational Mathematics, University
of Colorado at Denver, Denver, CO., 1999.

. Brezina, R. D. Falgout, S. MacLachlan, T. A. Manteuffel, S. F. McCormick and J. W.
Ruge. Adaptive Smoothed Aggregation(a(SA)), SIAM J. Sci. Comp., Vol. 25, No. 6, pp.
1896-1920, 2004.

. Brezina and P. Vanék, A Black-box Iterative Solver based on a Two-level Schwarz Method,
Computing, 63 (1999), pp. 233-263.

. Chartier, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel, S. F. McCormick, J.

W. Ruge and P. S. Vassilevski, Spectral AMGe (pAMGe), SIAM J. Sci. Comput., Vol. 25,
No. 1, pp. 1-26, 2003.

J. Cleary, R. D. Falgout, V. E. Henson and J. E. Jones, Coarse Grid Selection for Parallel
Algebraic Multigrid, Proc. of the Fifth International Symposium on Solving Irregularly
Structured Problems in Parallel, Vol 1457, Lecture Notes in Computer Science, pp. 104-
115, 1998.

. Consideére, Die Anwendung von Eisen und Stahl bei Konstruktionen, Gerold-Verlag, Wien
1888.

Fish and V. Belsky, Generalized Aggregation Multilevel Solver, International Journal for
Numerical Methods in Engineering, Vol. 40, pp. 4341-4361, 1997.

20



(33]

R. D. Falgout and U. M. Yang, hypre: a Library of High Performance Preconditioners, Com-
putational Science - CARS 2002 Part III, Lecture Notes in Computer Science, Vol. 2331,
pp. 632-641, 2002.

G. Haase, M. Kuhn, and S. Reitzinger, Parallel Algebraic Multigrid Methods on Distributed
Memory Computers, SIAM J. Sci. Comput., Vol. 24, No. 2, pp. 410-427, 2002.

V. E. Henson and U. M. Yang, BoomerAMG: a Parallel Algebraic Multigrid Solver and Pre-
conditioner, Applied Numerical Mathematics, Vol. 41, pp. 155-177, 2002.

E. W. Jenkins, C. E. Kees, C. T. Kelley, and C. T. Miller, An Aggregation-based Domain
Decomposition Preconditioner for Groundwater Flow, SIAM J. Sci. Comput., Vol. 23, No.
2, pp. 430-441, 2001.

M. Jones and P. Plassman, A Parallel Graph Coloring Heuristic, SIAM J. Sci. Comput. 14,
pp. 654-669, 1993.

A. Krechel and K. Stiiben, Parallel Algebraic Multigrid Based on Subdomain Blocking, Parallel
Computing, Vol. 27, pp. 1009-1031, 2001.

M. Luby, A Simple Parallel Algorithm for Mazimal Independent Set Problem, SIAM J. on
Computing 15, pp. 1036-1053, 1986.

J. Mandel, Adaptive Iterative Solvers in Finite Elements, in Solving Large-scale Problems in
Mechanics, editor: M. Papandrakis, John Wiley & Sons Ltd., pp. 65-86, 1993.

J. Mandel, Iterative Methods for p-version Finite Elements: Preconditioning Thin Solids, Com-
put. Methods Appl. Mech. Engrg., Vol. 133, pp. 247-257, 1996.

G. Robinson, Parallel Computational Fluid Dynamics on Unstructured Meshes Using Algebraic
Multigrid, in Parallel Computational Fluid Dynamics, Editor: R. B. Peltz, A. Ecer and J.
Héuser, Elsevier Science Publishers B.V., Vol 92, 1993.

J. W. Ruge and K. Stiiben, Algebraic Multigrid, Multigrid Methods, Frontier in Applied Math-
ematics, pp. 73-130, SIAM, 1987.

Y. Saad and M. H. Schultz, GMRES : A Generalized Minimal Residual Algorithm for Solving
Nonsymmetric Linear Systems, SIAM J. Sci. Stat. Comput. 7, pp. 856-869 (1986).

C. H. Tong and R. S. Tuminaro, Parallel Smoothed Aggregation Multigrid : Aggregation Strate-
gies on Massively Parallel Machines, Proceedings of Supercomputing, November 2000.

P. Vanék, Acceleration of Convergence of a Two-level Algorithm by Smooth Transfer Operators,
Appl. Math., Vol 37, pp 265-274, 1992.

P. Vanék, Fast Multigrid Solvers, Appl. Math., Vol 40, pp 1-20, 1995.

P. Vanék, M. Brezina, and J. Mandel, Convergence of Algebraic Multigrid Based on Smoothed
Aggregation, Numerische Mathematik, Vol. 88, No. 3, pp. 559-579, 2001.

P. Vanék, M. Brezina, and R. Tezaur, Two-grid Method for Linear Elasticity on Unstructured
Meshes, STAM J. Sci. Comp., Vol. 21, No. 3, pp. 900-923, 1999.

P. Vanék, J. Mandel, and M. Brezina, Algebraic Multigrid Based on Smoothed aggregation for
Second and Fourth order problems, Computing, Vol. 56, pp. 179-196, 1996.

P. Vanék, R. Tezaur, M. Brezina, and J. Ktizkova, Two-level Method on Unstructured Meshes
with Convergence Rate Independent of the Coarse-space Size, Technical Report UCD-
CCM-035, University of Colorado, 1995.

U. M. Yang, On the Use of Relazation Parameters in Hybrid Smoothers, Numer. Lin. Alg.
Appl., Vol. 11, pp. 155-172, 2004.

21



