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Abstract� We introduce AMGe� an algebraic multigrid method for solving the discrete equations that arise in Ritz�type
�nite element methods for partial di�erential equations� Assuming access to the element sti�ness matrices� AMGe is based
on the use of two local measures� which are derived from global measures that appear in existing multigrid theory� These new
measures are used to determine local representations of algebraically �smooth� error components that provide the basis for
constructing e�ective interpolation and� hence� the coarsening process for AMG� Here� we focus on the interpolation process	
choice of the coarse �grids� based on these measures is the subject of current research� We develop a theoretical foundation
for AMGe and present numerical results that demonstrate the e
cacy of the method�
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�� Introduction� Computer simulations play an increasingly important role in scienti�c investigations�
Indeed� as experimentation becomes more expensive� impracticable� or even proscribed� scientists are turning
more and more to numerical simulation� Modern simulation packages are extremely complex� with compo�
nents spanning many disciplines �e�g�� hydrodynamics� radiation� transport� structures� thermal� chemistry�
and electromagnetics�� Also� the problems are frequently posed in multi�material regimes� with contact sur�
faces� interpenetrability constraints� and intricate geometries� As a result� codes are being developed to solve
complex multi�physics problems on highly resolved� unstructured grids� Such large�grid simulations require
the e�cient union of massively parallel computing with scalable numerical algorithms such as multigrid �see
e�g�� 	
���

An especially e�ective method for many of the problems that arise in these applications is algebraic
multigrid �AMG 	� �� �� �� 
�� ��� 
�� ����� AMG is a method for solving matrix equations that is based
on multigrid concepts� but constructs the coarsening process in an algebraic way that requires no explicit
knowledge of the geometry� It examines the matrix entries to determine a sequence of smaller matrix
problems that serve as coarse�level equations� AMG also determines associated inter�level transfer operators
�restriction and prolongation�� then solves the original matrix equation in a multigrid�like process based on
these automatically�constructed components� AMG has been shown to be well�suited for solving unstructured
grid problems� and to work well over a wide variety of applications �see� e�g�� 	�����

It has been applied successfully to M�matrix problems where the so�called strength of connection is
easily measured �this measure is used to determine which variables are strongly representative of the errors
left by relaxation� so that they can be used to construct the coarse levels�� It also applies well to scalar
problems that depart substantially from M�matrix discretizations� However� for problems where strength of
connection is not easily measured� AMG is not e�ective without certain problem�speci�c modi�cations or
careful parameter tuning� For such cases� there is no systematic AMG approach that has proven e�ective in
any kind of general context� There are still other problems �e�g�� thin�body elasticity on unstructured grids�
for which AMG and other iterative methods in general have failed to achieve full optimality �i�e�� convergence
factors bounded uniformly in the size of the problem�� The goal of our research is to develop a more robust
AMG for solving these di�cult problems�

This paper introduces an algebraic multigrid method for solving partial di�erential equations discretized
by Ritz�type �nite element methods� As a departure from standard AMG� where only the operator matrix
is required� this approach assumes access to element sti�ness matrices� We thus refer to it as AMGe �AMG
henceforth refers to the standard scheme�� This new approach is based on the use of either of two measures
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�derived from global measures used in existing theory� to determine algebraically �smooth� error and to
construct e�ective interpolation� AMGe uses a minimization principle based on the element interpolation
scheme �rst introduced in 	���� Other multigrid methods� using minimization principles for constructing
energetically stable inter�grid transfer operators� have recently appeared in 	
�� 
�� ����

Some notation and the key ideas behind AMG are summarized in the next section� �Nevertheless� we
assume that the reader is familiar with AMG methods and terminology� For more detail� see 	��� and
	����� In particular� we discuss the notion of strength of dependence and its role in de�ning the basic AMG
components� In section �� we de�ne a heuristic based on two global measures and establish a corresponding
two�level convergence result� We �localize� these measures in section �� and describe how they can be used to
compute the interpolation operator for AMGe� We also discuss the relationship between the local and global
measures in subsection ���� Section � contains numerical results supporting the theory and demonstrating
the e�cacy of the approach� Concluding remarks are made in section �

�� Preliminaries� We begin this section by describing notation� Capital Roman letters �A�B� P�R�
denote matrices and bold lower case Roman and Greek letters denote vectors �u�v� ��� The ith component
of the vector q is denoted by qi� Other lower case letters denote scalars� while capital calligraphic letters
denote sets and spaces �C�F �S�� with the singular exception that A is used to denote �nite element sti�ness
matrices� We de�ne the A�inner product by h�� �iA �� hA�� �i� where h�� �i is the standard Euclidean inner

product� and the A�norm �also called the energy norm� by k�kA �� h�� �i
���
A �

Assume that we are given an n�n symmetric positive de�nite matrix A expressed as the sum of a given
set of �nite element sti�ness matrices� A �

P
��T A�� where T is the set of �nite elements used to discretize

the problem and each A� is symmetric positive semi�de�nite� We do not assume access to a spatial grid or
the ability to create new �nite element sti�ness matrices�

We seek the solution u � Rl n to the linear system

Au � f ��
���

for a given f � Rl n� Standard iterative schemes� like Gauss�Seidel and Krylov space methods� tend to converge
slowly for large�scale problems of this type that arise from partial di�erential equations� The di�culty is that
smooth error components are typically attenuated very slowly by these simple processes� because they are
based on local properties �i�e�� local connections in A�� Multigrid methods attempt to correct this limitation
by representing the smooth errors on increasingly coarser� and� therefore� more global levels�

To describe how system �
��� could be solved by a multilevel method� let P be an n� nc interpolation
or prolongation matrix that transfers level nc corrections to level n� with nc � n� P could be determined
geometrically by� say� linear interpolation �cf� 	��� when Rl nc and Rl n represent grids whose nodal positions
are accessible� P could instead be determined algebraically by so�called operator interpolation �cf� 	����
which is based on the entries of A� In any event� we choose P T as the restriction matrix that transfers level
n residuals to level nc� The two�grid method for solving �
��� is then de�ned as follows�

Relax �� times on Au � f ��
�
a�

Correct u� u� P �P TAP ���P T �f �Au���
�
b�

Relax �� times on Au � f ��
�
c�

Note the use of P TAP in correction step �
�
b�� This so�called Galerkin coarse�grid operator� together with
the use of P T as the restriction operator� amounts to a variational form of multigrid� When A is symmetric�
the correction step minimizes the energy norm of the �ne�grid error over all possible corrections from the
range of P �cf� 	���� To solve �
��� in practice� one would use a multilevel method that recursively applies
algorithm �
�
� to solve the linear system involving P TAP in correction step �
�
b��

Further examination of �
�
� reveals that relaxation and coarse�grid correction must be chosen to com�
plement each other� error not reduced by one must be reduced by the other� In this paper� we �x the choice
of relaxation� then determine interpolation� The relaxation we choose is a simple pointwise method� like
Richardson� damped Jacobi� or Gauss�Seidel� that satis�es the following heuristic�

H�� Error in the direction of an eigenvector associated with a large eigenvalue is rapidly reduced
by relaxation� while error in the direction of an eigenvector associated with a small eigenvalue
is reduced by a factor that may approach � as the eigenvalue approaches ��
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Error that is not rapidly reduced by relaxation is called algebraically smooth� The actual character of
algebraically smooth error depends on the operator and the type of relaxation� but it loosely means that
the residual is small when compared to the error itself �we will be more precise about this shortly�� This
does not mean that the error is smooth in any geometric sense� Thus� error at a point may be very di�erent
from the errors at neighboring points� yet it might be di�cult to reduce the error by relaxation� Such is the
case for anisotropic problems� where algebraically smooth error that point Gauss�Seidel relaxation cannot
e�ectively reduce can be geometrically oscillatory in the direction of small coe�cients of the di�erential
equation� In any case� the interpolation matrix� P � must be de�ned so that algebraically smooth error is
e�ectively eliminated in step �
�
b� and the coarse�grid equations� which involve P TAP � are amenable to
solution�

���� AMG� To de�ne the multigrid components in AMG� we use the following heuristic �cf� 	� �� ����
based on special properties of M �matrices�

H�� Smooth error varies slowest in the direction of strong dependence�

Here� we say that unknown i strongly depends on unknown j if

�ai�j � �max
k ��i

f�ai�kg� for some �xed � � ��� ����
���

Thus� strong dependence is characterized by matrix coe�cients that are large in the sense of �
���� A typical
choice for parameter � is ��
��

Although AMG was developed with M �matrices in mind� in practice it is not limited to this class of
problems� However� the standard method does rely on H�� and our sense of strong dependence may not
be suitable for many important classes of problems� For example� one simple problem with which standard
AMG has di�culty is the Poisson equation on a rectangular grid� discretized with bilinear quadrilateral
elements� where the �ne�grid elements are stretched to a �� � � aspect ratio� This yields the coe�cient
stencil �

� �� ���� ��
��� � ���
�� ���� ��

�
� ��
���

In �
���� it is not readily apparent from the size of the o��diagonal entries that the direction of strongest
dependence is vertical� Since H� is used to de�ne all of the AMG components� and it requires a clear
understanding of strong dependence� AMG can exhibit degraded performance �see Table ��
�� For this simple
case� slow convergence of AMG can be ameliorated by simply tuning its parameters �e�g�� setting � � ����
or by more elaborate algorithmic ��xes� �e�g�� iterative weight interpolation 	��� or geometric�algebraic
interpolation methods 	�
� ��� ���� Another approach is to replace H� by a heuristic that leads to a more
robust AMG algorithm� Exploring this possibility� as we begin to do in the next section� is the primary aim
of this paper�

�� Global Measures and Convergence Bounds� This paper takes a slightly di�erent approach�
using a heuristic based not on M�matrices� but on the eigenvectors of A� In a two�grid scheme� coarse�
grid correction will completely eliminate error in Range �P �� the range of the interpolation operator� To
complement the action of relaxation� which satis�es H�� the interpolation matrix must satisfy the following
heuristic�

H�� Interpolation must be able to approximate an eigenvector with error bound proportional to
the size of the associated eigenvalue�

To make H� more rigorous� de�ne Q � Rl n � Rl n to be a convenient projection onto Range �P �� that is�

Q � PR������

for some restriction operator R � Rl n � Rl nc such that RP � Ic� the identity on Rl nc � The speci�c form
for Q �and� hence� R� will not become important until section �� For any vector e � Range �P �� we have
Qe � e� Thus� I �Q can be used to measure the defect of interpolation� With this in mind� we now de�ne
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two measures of how well H� is satis�ed�

M��Q� e� ��
h�I �Q�e� �I �Q�ei

hAe� ei
����
�

M��Q� e� ��
hA�I �Q�e� �I �Q�ei

hAe� Aei
������

Measure M� was used in the early multigrid theory 	�� ��� ��� to establish optimal convergence of the
V�cycle algorithm under full regularity assumptions on the associated partial di�erential equation� Measure
M� was introduced in 	�� and used more recently to establish convergence� independent of the coarse�grid
size� of a two�level method for linear elasticity 	
��� It is also an essential ingredient of the regularity�free
multilevel theory found in 	��� We develop the relevant two�grid theory here for both measures so that we
can tailor the results to our needs�

It has not been our practice to use diagonal conditioning of A in standard AMG� Such a scaling generally
changes the nature of smooth errors� Since current schemes at some point rely on a premise of how smooth
error behaves �e�g�� that it is locally constant�� then diagonal scaling can make it more di�cult for AMG
to handle� However� no such premise of smoothness is made anywhere in AMGe� Thus� in the remainder
of this paper� we are free to assume for convenience that matrix A has been scaled so that its diagonal is
the identity� For a general symmetric positive�de�nite matrix with diagonal D 	� I � this can be assured by
a diagonal scaling that replaces A by D����AD����� Note that this transformation must be considered in
the representation of A as a sum of local sti�ness matrices� but this is just a straightforward rescaling of
the variables� This scaling does� however� bear on the practicality of our results because we analyze AMG
based on Richardson iteration� which is not generally a good smoother for matrices that have widely varying
diagonal entries� Thus� if diagonal scaling is not used� then in general it would be wise to use a relaxation
scheme like damped Jacobi and adjust measures M� and M� accordingly�

Our theory assumes that either M� or M� is bounded uniformly in e � Rl nnf�g� To see how this
assumption relates to H�� suppose that e is an eigenvector of A corresponding to a small eigenvalue� Then�
for M� or M� to be bounded� since the denominators of the two measures are small� the numerators must
also be small� Thus� Q must accurately interpolate eigenvectors belonging to small eigenvalues� On the
other hand� if e is an eigenvector of A corresponding to a large eigenvalue� then the denominators of the two
measures are large� so the numerators may be large� Thus� Q need not accurately interpolate eigenvectors
belonging to large eigenvalues�

We now prove convergence results based on M� or M� for two�level algorithm �
�
��
Lemma ���� Let Q be any projection onto Range �P �� Assume that either of the following two approxi�

mation properties are satis�ed for some constant K�

M��Q� e� 
 K �e � Rl nnf�g������

M��Q� e� 
 K �e � Rl nnf�g������

If e 	� � is A�orthogonal to Range �P �� then

�

K



kAek�

hAe� ei

 kAk �����

Proof� The upper bound in ���� follows easily from the de�nition of the matrix norm� To prove the
lower bound� note that Range �Q� � Range �P �� Hence� if e is A�orthogonal to Range �P �� then

hAe� Qvi � � �v � Rl n������

First� assume that ����� holds� From ����� and the Cauchy�Schwarz inequality� we have

hAe� ei � hAe� �I �Q�ei


 kAek k�I �Q�ek


 kAek hAe� ei���K����
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The lower bound in ���� now follows by dividing through by hAe� eiK��� and squaring the result�
Now� assume that ����� holds� From ����� and the Cauchy�Schwarz inequality� we have

hAe� ei 
 hAe� ei� hAQe� Qei

� hAe� ei � hAe� Qei � hAQe� ei� hAQe� Qei

� hA�I �Q�e� �I �Q�ei


 kAek�K�

The lower bound in ���� now follows by dividing through by hAe� eiK�

Denote the A�orthogonal projection onto the Range �P � by S� Thus�

S �� P �P TAP ���P TA������

The error propagation matrix for the coarse�grid correction step �
�
b� is I � S� A Richardson iteration
with step�size parameter s � �� kAk� � � ��� 
�� has the error propagation matrix G � I � sA� If we choose
���� ��� � ��� �� in �
�
�� then the associated error propagation matrix for this simple two�grid scheme is
G�I � S�� The following theorem analyzes its convergence by bounding its error propagation matrix in the
A�norm� Convergence results for other values of ���� ��� then follow naturally 	����

Analogous multilevel results can be found in 	�� ��� ��� for approximation property ������ and in 	�� 

�
for ����� under the additional assumption of energetic stability of interpolation� a su�cient condition for
which is that kP �P TP ���P T kA be bounded uniformly on all levels�

Theorem ���� Assume that either approximation property ���	
 or ����
 is satis�ed for some constant
K� Then

kG�I � S�kA 


�
��

��
� ��

K kAk

����

������

Proof� First note that ���� implies K � �� kAk � ��
� ��� kAk� so that ����� makes sense� We have

hAGe� Gei � hAe� ei � 
s hAe� Aei� s�
�
A�e� Ae

	

 hAe� ei �

��
� ��

kAk
hAe� Aei �

Replacing e with �I � S�e and applying the result in Lemma ��� yields

kG�I � S�ek�A 
 hA�I � S�e� �I � S�ei �
��
� ��

kAk
kA�I � S�ek�




�
��

��
� ��

K kAk

�
kek�A �

Notice that the bound on the convergence factor approaches � as K becomes large� Conversely� smaller
K yields a smaller bound on the convergence factor� Our aim is to determine P so that� for some appropriate
Q� either ����� or ����� is satis�ed for a reasonably small K�

We also remark that the above results can be generalized to apply when �
��� is a consistent system with
symmetric positive semi�de�nite matrix A� MeasuresM� and M� must be restricted to e 	� Null�A�� A �nite
bound K in ����� or ����� then implies that interpolation is exact for e � Null�A�� which in turn implies
that the correction step involves a consistent system� A zero initial guess and relaxation using a polynomial
method like Richardson iteration ensures that the approximate solution remains orthogonal to Null�A��

�� Interpolation Using Local Measures� Quantities M� and M� are global measures of the quality
of interpolation� Our intent is to use these measures to determine an e�ective strategy for constructing
interpolation in AMG� but it is not practical to do this globally� In this section� we discuss an approach for
localizing these measures for linear systems �
��� that arise from �nite element discretizations�
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Fig� ���� Local neighborhoods�

Recall that A is given as the sum of �nite element sti�ness matrices� A �
P

��T A�� Now� we do not
assume access to an underlying spatial grid� However� we can construct an arti�cial grid based on the graph
associated with A� with vertices G �� f�� 
� � � � � ng and edges E �� f�i� j� � aij 	� � for i 	� jg� Grid point
�vertex� i � G is associated with unknown ui�

We �rst de�ne the point set of an element�

M� ��


j � �Tj A��j 	� �

�
������

where �j is the canonical basis vector associated with unknown j� Next� de�ne the neighborhood of grid
point i as the set of elements and set of points

Ti �� f	 � T � �Ti A��i 	� �g����
�

Ni �� ���TiM�������

respectively �see Figure ����� De�ne the local matrices on neighborhood i by

Ai �
X
��Ti

A�������

We also assume that a coarse grid has been selected� that is� the points in G have been partitioned into
coarse�grid points C and �ne�grid points F such that C � F � G and C  F � �� We now seek the n � nc
interpolation matrix P � where nc � jCj� that interpolates from the coarse�grid points C to the entire grid G�

Two con�icting goals drive the construction of P � The �rst is to minimize the bound on measure M� or
M�� while the second is to control the sparsity of the coarse�grid system involving P TAP � Focusing on the
second goal �rst� assume that the coarse�grid points interpolate to themselves exactly� that is� P restricted
to C is the identity� while �ne�grid points interpolate only from coarse�grid points in their neighborhood�
that is� from Ci �� Ni  C�

To make the construction more clear� suppose that the rows and columns of A have been arranged so
that the �ne�grid points come �rst� followed by the coarse�grid points� We may then write A in block form
as follows�

A �

�
Aff Afc

Acf Acc


������

In this context� the interpolation matrix has the block form

P �

�
Pfc
Ic


�����

Alternatively� we may de�ne the projection

Q �

�
� Pfc
� Ic


������
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which implies the choice of R � 	�� Ic� as the restriction in ������
In what follows� we develop a strategy for constructing the rows of Pfc� that is� the rows of Q corre�

sponding to each point i � F � which we denote

qTi �� �Ti Q������

Restricting interpolation to a neighborhood of coarse�grid points is equivalent to choosing

qi � Zi �� fv � Rl n � vj � � for j 	� Cig������

We now localize measures M� and M� by de�ning

Mi���Q� e� ��

�
�i�

T
i �I �Q�e� �i�

T
i �I �Q�e

	
hAie� ei

�������

Mi���Q� e� ��

�
Ai�i�

T
i �I �Q�e� �i�

T
i �I �Q�e

	
hAie� Aiei

�������

for any e 	� Null�Ai�� Notice for i � C that Mi�� �Mi�� � �� while for i � F the above measures only depend
on the ith row of Q� which is to be chosen in Zi� To emphasize this dependence� when the meaning is clear
we write

Mi���qi� e� �

�
��i � qi�

T e� ��i � qi�
T e
	

hAie� ei
�����
�

Mi���qi� e� �

�
��i � qi�

T e� ��i � qi�
T e
	

hAie� Aiei
�������

for qi � Zi and e 	� Null�Ai�� �Recall that A has unit diagonal��
Heuristic H�� as applied to these local measures� now relates interpolation accuracy to local eigenvectors

of Ai� This makes it practical to use Mi�� and Mi�� to compute interpolation� Since we wish to make these
local measures small� interpolation is de�ned so that the qi in ����� is the argmin �that is� the argument
that attains the minimum� of one of the following min�max problems�

Ki�p �� min
qi�Zi

max
e ��Null�Ai�

Mi�p�qi� e��������

for p � � or 
� Note that if there exists a qi � Zi that yields Ki�p ��� then qi satis�es the constraint

��i � qi�
T e � � �e � Null�Ai��

Thus� min�max problem ������ can be restated as the constrained min�max problem

Ki�p � min
qi�Zi

max
e�Null�Ai�

Mi�p�qi� e�� subject to ��i � qi�
Te � � �e � Null�Ai��������

for p � � or 
� The next two subsections focus on solving these min�max problems� In Section ���� we relate
the local measures to the global measures�

���� Computing Interpolation by Fitting Eigenvectors� One way to compute the qi in ������ or
������ is to ��t� the eigenvectors of Ai� as quanti�ed in the following theorem�

Theorem ���� Suppose we have computed the eigen�decomposition

AiVi � Vi�i� V T
i Vi � I������

The columns of Vi are the orthonormalized eigenvectors of Ai� and �i is the diagonal matrix formed from
the corresponding eigenvalues� Assume that this eigen�decomposition is ordered to distinguish between zero
eigenvalues and positive eigenvalues �that form the diagonal matrix �i�
�

Vi �
�
Vi� Vi�

�
� �i �

�
� �
� �i�


�������
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Then min�max problem �	���
 is equivalent to the following constrained least�squares problem�

min
qi

�����p��i� V T
i���i � qi�

���� � subject to V T
i� ��i � qi� � ��������

for p � � or 
�
Proof� Note that the null�space constraint in ������ is equivalent to that in ������� Assume �rst that qi

satis�es ������ with p � �� Since e � Null�Ai�� we can write e � Vi��
����
i� w� which yields

min
qi�Zi

max
e�Null�Ai�

Mi���qi� e� � min
qi�Zi

max
w

�����i � qi�
TVi��

����
i� w

����
kwk�

� min
qi�Zi

��������i� V T
i� ��i � qi�

���� �
Assume now that qi satis�es ������ with p � 
� Writing e � Vi��

��
i�w� we then have

min
qi�Zi

max
e�Null�Ai�

Mi���qi� e� � min
qi�Zi

max
w

����i � qi�
TVi��

��
i�w

���
kwk�

� min
qi�Zi

�����i� V T
i� ��i � qi�

��� �

Computing the interpolation weights qi using ������ requires eigen�decomposition ������ which is not
the most e�cient method� We introduce a simpler approach in the next subsection� However� we include this
notion of �tting eigenvectors because it is useful for understanding the basic principles involved in selecting
interpolation�

���� A More Practical Algorithm for Computing Interpolation� Here describe a practical al�
gorithm for determining when ������ or ������ has a �unique� solution for i � F � and for computing Q when
a solution does exist� One important consequence of this characterization is its update property� whenever
the solution with the current interpolatory set does not exist� we can add points to Ci and test again for
solvability without redoing all of the computation�

Assume �rst that grid point i � F has a neighborhood� as depicted in Figure ���� consisting of ni points
in set Ni� with nf �ne�grid points and nc coarse�grid points in Ci� Next� order the unknowns and equations
of matrix Ai so that unknown i is �rst� followed by the other �ne�grid points� with the coarse�grid points
last� The neighborhood matrix and its square can then be written as

Ai �

�
A
���
ff A

���
fc

A
���
cf A

���
cc

�
and A�

i �

�
A
���
ff A

���
fc

A
���
cf A

���
cc

�
�

respectively� and �i becomes ���
In the remainder of this subsection� we drop the subscript i whenever the meaning is clear� Set Zi

restricted to the neighborhood becomes

Z �� fe � Rl ni � ej � � �j 	� Cig �

We can then interpret ������ with p � � or 
 as the problem of determining a vector q � Z that minimizes
maxe ��Null�Ai�Mi�p�q� e�� subject to the constraint

��� � q�T e � � � e � Null�Ai� � Null�A�
i ��

That is� we require

�� � q � Range �Ai� � Range
�
A�
i

�
�������
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Our �rst concern is the existence of such a vector q� For this� we let ��� � Rl
nf denote the �rst canonical

basis vector of length nf �

Lemma ���� There exists q � Z such that �� � q � Range �Ap
i � if and only if

��� � Range
�
A
�p�
ff

�
�

with p � � or 
�

Proof� Assume that ��� � Range
�
A
�p�
ff

�
so that

��� � A
�p�
ff

���

for some ��� � Rl
nf � Then

Ap
i � ��

�
A
�p�
ff A

�p�
fc

A
�p�
cf A

�p�
cc

��
���
�

�
� �� � q � Range �Ap

i � �

and q � Z �
Conversely� suppose there exists q � Z such that �� � q � Range �Ap

i �� that is� there exists � such that

�� � q � Ap
i ��

This� in turn� implies that

��� �
h
A
�p�
ff � A

�p�
fc

i
� � Range

�h
A
�p�
ff � A

�p�
fc

i�
�

The proof will be completed by demonstrating that

Range
�h
A
�p�
ff � A

�p�
fc

i�
� Range

�
A
�p�
ff

�
�

This is certainly true if A
�p�
ff is nonsingular� Assume otherwise� and let �� be a nonzero vector in Null�A

�p�
ff ��

Then ��
A
�p�
ff A

�p�
fc

A
�p�
cf A

�p�
cc

��
��
�

�
�

�
��
�

��
� ��

Since Ap
i is symmetric positive semi�de�nite� then � is an extreme value of hAp

i e� ei� which implies that the

vector ���� ��T is an eigenvector of Ap
i with eigenvalue �� In other words� ���� ��T � Null�Ap

i �� which implies
that

Null�A
�p�
ff � � Null�A

�p�
cf ��

which� in turn� implies that

Range
�
A
�p�
ff

�
� Range

��
A
�p�
cf

�T�
� Range

�
A
�p�
fc

�
�

and the lemma is proved�

Rewriting ������� we want � � Rl ni such that

�� � q � Ap
i �

for some q � Z � By the proof of Lemma ��
� the set of all such � is

Y �p� ��
n
� � Rl ni �

h
A
�p�
ff � A

�p�
fc

i
� � ���

o
�
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If Y �p� is empty� then the constraint in ������ cannot be satis�ed and Ki�p � �� In this case� more points
must be added to Ci for ������ to have a solution� If Y �p� is not empty� then any � � Y �p� can be written as

� � �� � �� where �� is a particular element of Y �p� and � � Null�	A
�p�
ff � A

�p�
fc ��� From the proof of Lemma

��
� we may choose �� � ����� ��
T � where A

�p�
ff

��� � ���� We now show that

�� � q� � Ap
i �
�

yields the unique solution to ������ or �������

Theorem ���� If ��� 	� Range
�
A
�p�
ff

�
� then Ki�p ��� If ��� � A

�p�
ff

���� then the unique solution of �	��	


is given by

q� �

�
�

�A�p�
cf

���

�
� Z ����
��

and Ki�p �� ���� ��� 
� for p � � or 
�

Proof� The �rst statement follows from Lemma ��
� To prove the second� let �� � ����� ��T � Using the
substitution

�� � q � A�p��

with � � Y �p�� then ������ can be written as

min
q�Z

max
e��Null�Ap

i
�

�
��� � q�T e� ��� � q�T e

	
hAp

i e� ei
� min
��Y �p�

hAp
i �� �i

� min
��Null�	A

�p�

ff
� A

�p�

fc

�

hAp
i ��

� � ��� ��� � ��i ����
��

Any solution of ���
�� is characterized by �� � Null�	A
�p�
ff � A

�p�
fc �� such that

hAp
i ��

� � ���� �i � � �� � Null�	A
�p�
ff � A

�p�
fc ������

�

that is�

Ap
i ��

� � ��� � Range

��
A
�p�
ff

A
�p�
cf

��
����
��

But �� � � satis�es ���

� by construction of ��� which proves that ���
�� solves �������
To prove uniqueness� suppose there are two such solutions to ���

�� say� �� and ��� Then

Ap
i ��

� � ��� �

�
A
�p�
ff

A
�p�
cf

�
�w

for some �w � Rl nf � Since both �� and �� are in Y �p�� we have �w � Null�A
�p�
ff �� From Lemma ��
� we have

Null�A
�p�
ff � � Null�A

�p�
cf �� which implies that Ap

i ��
� � ��� � � and that q� is unique�

Finally� substituting �� into ���
�� yields

Ki�p � hAp
i �
�� ��i �

D
���� ���

E
�

which completes the proof�

A practical algorithm for determining Q is as follows�
For p � �� set

A
���
ff � Aff � A

���
cf � Acf �
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For p � 
� set

A
���
ff � A�

ff � AfcAcf � A
���
cf � AcfAff �AccAcf �

Perform a QR factorization on A
�p�
ff using Householder re�ections and column pivoting to detect rank de��

ciency� If

A
�p�
ff

��� � ���

has a solution� then set

q� �

�
�

�A�p�
cf

���

�

and Ki�p �
D
���� ���

E
� otherwise� set Ki�p ���

���� Local�Global Measure� This subsection shows that if Mi�� or Mi�� is bounded for every i � F �
then the global measure M� is also bounded�

Theorem ���� Let p � � or 
 and assume that the local approximation property

Mi�p�Q� e� 
 Ki�p �e � Rl n���
��

holds for some Ki�p and all i � F � Then global approximation property ���	
 is also satis�ed with

K � max
��T

X
i�M��F

Ki�p kAik
p�� ����
��

Proof� We have

h�I �Q�e� �I �Q�ei �
X
i�F

�
�i�

T
i �I �Q�e� �i�

T
i �I �Q�e

	


X
i�F

Ki�p hA
p
i e� ei



X
i�F

Ki�p kAik
p�� hAie� ei

�
X
��T

hA�e� ei
X

i�M��F

Ki�p kAik
p��


 K
X
��T

hA�e� ei

� K hAe� ei �

Straightforward application of the above techniques can be used to bound M� in terms ofMi��� However�
the resulting bounds on M� can be much larger than the maximum value of Mi��� While this may not be
sharp� it is simple to construct an example where M� is much larger than the largest Mi�� and� hence� much
larger than M�� In this case� using M� to estimate convergence could lead to the erroneous conclusion that
the resulting two�level method is slow to converge�

The local measure bounds�Ki�p� can be used as a diagnostic tool� Theorem ��� shows that they contribute
to the bound K� used to establish convergence in Theorem ��
� While neither measure provides a sharp
bound when the algorithm exhibits a small convergence factor� they can provide a warning� if Ki�p is large
for some i� it may be pro�table to reexamine the choice of the coarse grid� perhaps adding more grid points
to C�
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As an alternative to increasing the size of C� we could respond to large values of Ki�p locally by increasing

the size of the neighborhood� De�ne the set N �k�
i of kth removed neighbors recursively by letting N ���

i �� Ni

and

N
�����
i �� �

j�N
���

i

Nj ����
�

Then interpolation could be allowed from the set Ci �� N �k�
i  C� which are the coarse�grid points connected

to point i by a path of length k in the graph of A� While this would yield more accurate interpolation� the
complexity of P TAP would certainly increase�

	� Numerical Results� We apply the element interpolation methods numerically to two illustrative
examples� a Poisson equation discretized on stretched quadrilaterals and a plane�stress cantilever beam�
We compare our numerical results to the bounds predicted by our theory� and demonstrate the improved
robustness of the new methods over AMG�

For each problem� we �rst present results for AMG to show that our usual approach breaks down� For
standard AMG� which we now refer to as AMG�� parameter � de�ning the cuto� for strong connections is
set to ��
�� The interpolation formula is that found in 	��� �see ������ and ���� there�� For the stretched grid
problem� two variants of AMG are presented that restore convergence �although these �xes will be shown to
be ine�ective in the elasticity problem�� The �rst� called AMG
� uses a more restrictive de�nition of strong
connections by taking � � ����� The second variant �AMG�� returns to � � ��
� but uses iterative weight
interpolation 	����

For comparison� we also include a method presented by Chang et al� 	�
� ��� ��� since they report
results for both anisotropic Poisson problems and 
D elasticity� Chang et al� describe two basic methods�
each with a user�speci�ed parameter ��� The one we include �referred to in 	�� as Method II� with �� � ��
and called the CWF method here� appears to be the most robust of their methods overall� There are two
main di�erences between our standard AMG algorithm and theirs� The �rst is that their strong connections
are determined by absolute value� while we consider only connections of the �right� sign �i�e�� the opposite
sign from that of the diagonal entry� to be strong� �As with standard AMG� they take � � ��
��� The
second di�erence is the use of a modi�ed interpolation formula� As with standard AMG� interpolation to
a point i is derived by writing the corresponding residual equation in terms of the error� making some
approximations for those terms de�ned at points not used in interpolation� and solving for ei to obtain the
weights� Unlike standard AMG� these approximations use weighted averages based on absolute values of
the matrix entries� and incorporate some geometric ideas based on the assumption that the size of matrix
entries diminishes with the distance between grid points� A seemingly minor modi�cation is that� for weak
�small� connections j with no connection to set the interpolation points� the approximation is made that
ej � ei if sign�aij� � �sign�aii� or ej � �ei if sign�aij� � sign�aii�� Variants of their methods include
modi�cations to restriction and the de�nition of the coarse grid operator� However� the algorithm we test
reduces to the standard Galerkin formulation� That is� restriction is de�ned as the transpose of interpolation�
and the coarse grid operator is taken as the product of restriction� the �ne grid matrix� and interpolation�
The coarsening method they describe is simply the Ruge�St uben two�pass coarsening scheme 	��� using the
modi�ed de�nition of strong connections� For testing their method� we use our AMG coarsening code with
strong connections determined by absolute value�

The only di�erence here between AMGe and the AMG variants described above is that we use the
element interpolation method in AMGe to construct the interpolation operators� Thus� the coarse grids are
selected in the same way that they are in AMG� The possibility of using the AMGe measures to determine
coarsening is a topic of current research� Three di�erent de�nitions are considered for interpolation� AMG�
local measure � �AMGe��� and local measure 
 �AMGe
��

In the multilevel algorithm� we construct �coarse element sti�ness matrices� Ac�� as follows�

Ac�� � P TA�P������

To reduce computational complexity and storage costs� we combine coarse elements that operate on the same
points by summing them� That is� we de�ne

Mc�� ��


j � �Tj Ac���j 	� �

�
���
�
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Two�Level Multilevel
Size AMG� AMG
 AMG� CWF AMG� AMG
 AMG� CWF

�� � ���� ���
 ���� ���� ���� ���� ���� ����
�
�� �
� ���� ���
 ���� ���
 ���� ���� ���� ����

Table ���

��level and V�cycle asymptotic convergence factors for the stretched quadrilateral problem�

and� when Mc�� �Mc��� we combine Ac�� and Ac�� to form a single coarse�element sti�ness matrix�
To conform to the theory� the linear systems for the AMGe tests are scaled so that the diagonal is the

identity� That is� we actually solve �A�u � �f � where �A � D����AD����� �u � D���u� and �f � D����f � Our
initial experiments use V ��� �� cycles based on damped Jacobi with step�size s � ��
� In the examples below�
kAk is between 
�� and ��� so that �

kAk 
 s 
 �
kAk � For AMG� we use the original unscaled matrix A�

Equation ����� in Theorem ��
 yields a bound on the convergence factor given by

� 
 ��
�� kAk

�K
������

where K is the bound on either M� or M�� As we will see� this bound is very pessimistic� Replacing K from
���
�� by Kp � maxiKi�p yields a somewhat more realistic but still pessimistic estimate for the convergence
factor� These estimates are included in the numerical results below�

	��� Stretched Quadrilateral� Consider the stretched quadrilateral problem introduced in Section 
�
which consists of a Poisson equation on a rectangular grid discretized with nx � ny bilinear quadrilateral
elements� The �ne�grid elements have a �� � � aspect ratio� yielding the stencil in �
���� The boundary
conditions are Dirichlet� which are eliminated from the matrix during discretization�

In Table ���� we present results of tests with AMG and its variants for the stretched�grid Poisson problem�
Both 
�level and V�cycle results are given� In all cases� ����� V�cycles are used� with C�F�ordered Gauss�
Seidel relaxation� For AMG�� convergence is much worse than the 
�level factors of ��� and V�cycle factors
of ���� that we would get on unstretched grids� AMG
 and AMG� both improve convergence greatly� nearly
restoring the results that would be obtained in the uniform case�

The AMG variants each produced a semi�coarsened grid for the �rst coarsening� Away from boundaries�
AMG� used a �point interpolation stencil of the form

PAMG �

�
� ����� ����
 �����

�
����� ����
 �����

�
������

Both AMG
 and AMG� produced 
�point interpolation away from boundaries� so that weights of ��� were
obtained for the north and south points� Here� the di�erence between these two methods lies in the interpo�
lation stencils near boundaries�

In geometric multigrid� this anisotropic situation is often treated by semi�coarsening� that is� by choosing
coarse�grid points along each vertical line� Interpolation is then performed only in the y direction� The
typical interpolation weights used in geometric semi�coarsening do not involve corner points� so smaller
weights intuitively make more sense here� In fact� it can be shown that� for this problem� smaller corner
weights �up to a point� generally produce better 
�level results� Since performance is very sensitive to these
weights� small changes in the algorithm can a�ect convergence greatly� For example� in the code AMG�R�
that is widely available to the public� in computing the interpolation operator� weak connections are treated
in a manner similar to strong connections� For this problem� this modi�cation gives corner weights of �����

and results in 
�level and V�cycle factors of ���� and ����� respectively�

Poor performance of the CWF method is primarily due to the grid chosen� Using their modi�ed de�ni�
tion of strong connections� all o��diagonals in stencil �
��� are considered strong� This results in standard
coarsening �coarsening by a factor of 
 in each grid direction�� not semi�coarsening� It is well known that such
a coarse grid cannot be used e�ectively for this problem without additional modi�cations to the algorithm�
such as line relaxation� It is interesting to note that� as the grid becomes �unstretched�� the connections
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to the left and right become smaller� and proper semi�coarsening results� If semi�coarsening were used in
conjunction with the CWF interpolation� 
�level results of ���� would be obtained� This is still far from
the results reported for anisotropic problems in 	��� In that paper� however� simple ��point �nite di�erence
stencils are used� so that M�matrices result� and connections to the east and west actually do become small
as the grid is stretched� AMG and the variants used here would also have no problem with such discretiza�
tions� It should be noted that the coarse grids we obtain may not be those that would be obtained with the
algorithm as they have implemented it� and in fact appear to be coarser in most of their test problems� given
the larger grid complexities they report� Nevertheless� the grids chosen satisfy the criteria they present�

The point here is not that particular �xes exist for this speci�c problem� There is no shortage of
variations of the AMG algorithm� each works well for some speci�c cases� but can break down for others�
Our goal is instead to obtain robust AMG methods that are much more di�cult to break� This goal is the
motive for the development of AMGe�

In the AMGe tests� the AMG coarsening algorithm used for all three methods again produces semi�
coarsened grids� and the interpolation formulas for AMGe� and AMGe
 are as follows�

PAMGe� �

�
� ����� ���� �����

�
����� ���� �����

�
� ������

PAMGe� �

�
� ����� ����� �����

�
����� ����� �����

�
� �����

The stencils at boundaries are similar� Note that interpolation for these algorithms also involve corner points�
since these are considered strong connections� but the associated weights for AMGe� and AMGe
 are much
smaller than for AMG� The large element aspect ratio e�ectively decouples each vertical line of grid points
from the others�

The experimental results for AMG�� AMGe�� and AMGe
 are presented in Table ��
� Two grid sizes�
��� and �
���
�� are used� For better comparison with the theory� two changes were made to the solution
method� First� we used ����� V�cycles� as opposed to the ����� V�cycles reported in the previous table� In
addition� relaxation has been changed from C�F Gauss�Seidel to a Richardson iteration with a relaxation
parameter � � ���� For each grid� we show asymptotic convergence factors for AMG�� AMGe�� and AMGe
�
Factors are shown for both two�level and multilevel cases� For the two�level case� we show the bound on the
convergence factor corresponding to using ���
�� in Theorem ��
 for M�� This is computed using kAk � 
���
and K� � 
��� As expected� the bound is very pessimistic� We also show the convergence factor �labeled
�estimate�� that would result from substituting K� � maxiKi�� � ���� and K� � maxiKi�� � 
�� for ���
��
in Theorem ��
� This provides a somewhat improved but still very pessimistic value for the convergence
factor� This behavior is typical of most multigrid theory� where results often substantially exceed theoretical
estimates�

The key observation to be made from the data in Table ��
 is that both AMGe� and AMGe
 produce
substantial improvement over AMG for stretched quadrilaterals� For this problem� AMG
 and AMG�
described above would produce results similar to AMGe� and AMGe
� Such techniques� however� tend to be
somewhat ad hoc� and are not based on theoretical considerations� As such� we cannot determine in advance
whether such treatments will be useful for a given problem� By contrast� we expect AMGe� and AMGe
 to
perform well in more general problems involving high aspect ratios� so they should �nd wide applicability
for problems based on unstructured grids having thin domains or regions�

	��� Plane�Stress Cantilever Beam� Consider the 
D linear elasticity equations

uxx �
�� �



uyy �

� � �



vxy � f��

vyy �
�� �



vxx �

� � �



uxy � f��

where u and v are displacements in the x and y directions� respectively� We take � � ��� for the tests� The
problem� depicted in Figure ���� has free boundaries� except on the left where u � v � �� We discretize with
bilinear �nite elements on a uniform rectangular mesh with spacing h in both directions �square elements��



AMGe ��

Two�Level Multilevel
Size AMG� AMGe� AMGe
 AMG AMGe� AMGe


�� � ���
 ��
� ��
� ���� ���
 ��
�
�
�� �
� ���
 ��
� ��
� ���� ���� ��
�
Bound ���� ���� ! ! ! !

Estimate ���� ���� ! ! !
Table ���

Asymptotic convergence factors� bound predicted by theory� and �improvement� of observed over predicted for the stretched
quadrilateral problem�

1

d

Fig� ���� Plane�stress cantilever beam problem�

Again� before testing the element�based methods� we present results for the AMG�� AMG
� AMG�� and
CWF methods of the previous section� AMG�� AMG
� and AMG� are applied in a separate fashion �the
so�called �unknown approach� 	���� in which connections between u and v are completely ignored in the
determination of strong connections and computation of interpolation weights� Such an approach has been
shown to produce good results for the elasticity problem on the unit square when full Dirichlet boundary
conditions are used� although it degrades with the number of free sides allowed �cf� 	����� As in 	��� the
CWF method does not di�erentiate between the two unknowns� �It should be noted that� in comparisons
with the AMG�R� code in that paper� AMG was also applied in a �scalar� fashion� Not unexpectedly� it did
not perform well since AMG�R� was designed for scalar problems and there is really no local relationship
between pointwise values of errors in u and errors in v� even when these errors are smooth��

Results are presented in Table ���� Several di�erent thicknesses are used for the beam� ranging from a
square cross section� d � �� to a very thin beam� d � ���� As before� ����� V�cycles were used with C�F
Gauss�Seidel relaxation� The factors shown were obtained after ��� cycles� �With such poor convergence
factors� it generally takes many iterations to reach the asymptotic state�� Note that there is little di�er�
ence between convergence factors for AMG�� AMG
� and AMG�� although AMG� with iterative weight
interpolation shows a slight advantage� For this problem� the u � u and v � v stencils each resemble the
anisotropic stencils for the Poisson problem �with the �rst stretched in x and the second in y�� but with
grids that are less stretched� Thus� the ��xes� do not improve much on the basic algorithm� as they did for
the stretched�grid Poisson problem� Note that 
�level factors are nearly constant until d is reduced to below
��
� at which convergence degrades sharply� V�cycle factors� while somewhat acceptable for large d� degrade
even more quickly than 
�level factors as the domain becomes thinner� With all three AMG variants� on the
�nest grid� u is semi�coarsened in x while v is semi�coarsened in y for all d used� Thus� for all d 
 ����
interpolation computed on the �nest level does not change� This indicates strongly that the problem is not
that interpolation accuracy for smooth components is a�ected� but that such smooth components must be
interpolated more accurately as d is reduced� In fact� it can be shown that the energy norm relative to
the Euclidean norm of the smoothest components decreases to zero with d� which by standard variational
multigrid theory �see Section �� suggests that interpolation must become increasingly more accurate�

For this problem� the interpolation scheme of Chang et al� gives very slow convergence� Even 
�level
factors are large for d � �� indicating that the local interpolation accuracy is not su�cient� Since quite
good results for the 
D elasticity problem were presented in 	��� some explanation for the behavior of the
method here is warranted� As noted earlier� the CWF method does not di�erentiate between u and v� and�
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Two�Level Multilevel
d AMG� AMG
 AMG� CWF AMG� AMG
 AMG� CWF
� ���� ���� ���� ���� ���� ��
 ���� ���

��� ���� ���� ��
� ���� ���
 ��� ��� ����
��
 ���� ���
 ��
� ���� ���� ��� ���� ���
��� ���� ���� ���� ���� ���� ���� ���� ����
��� ���� ���� ���� ���� ���� ���� ���� ����
��� ���� ���� ���� ���� ���� ���� ���� ����
���
 ���� ���� ���� ���� ���� ���� ���� ����
��� ���� ���� ���� ���� ���� ���� ���� ����

Table ���

��Level and V�cycle asymptotic convergence factors for four methods for the plane�stress problem�

for example� u at a point can interpolate from a combination of u and v values at surrounding points� With
such interpolation� however� some minimal conditions must be met before reasonable convergence could be
expected� With discretizations of scalar di�erential operators� away from Dirichlet boundaries� the matrix
generally has zero row sums� so that the constant is in the local null space of the operator� Since the smoothest
grid functions are locally constant� these must be interpolated exactly� which in turn requires interpolation
weights at each point to sum to �� Similarly� in the elasticity problem� away from �xed boundaries the u�u�
u� v� v � u� and v � v connections at each point also sum to zero� so that separate independent constants
in u and v are in the local null space of the operator� For these components to be interpolated exactly� the
u � u and v � v interpolation weights both must sum to �� while the u � v and v � u weights both must
sum to zero� Loss of any of these conditions can severely degrade convergence� Now� one thing to note
is that the tests in 	�� use �nite di�erences and full Dirichlet boundary conditions� In the �nite di�erence
case� the u� v and v � u connections are smaller relative to the maximum connection� and are considered
weak� thus keeping interpolation completely separate for u and v� at least on the �nest grid� In the �nite
element case here� connections from u to v and v to u are considered strong� By itself� this is not bad� In
fact� when full Dirichlet conditions are used with the �nite element discretization� the CWF method gives a

�level convergence factor of ���� for the d � � problem� Along free boundaries� however� it was found that
di�erent geometric assumptions applied to positive and negative cross�connections resulted in a loss of ��row
sum for the u� u interpolation weights and zero�row sum for the u� v and v � u weights� resulting in the
uniformly poor convergence found�

In the AMGe tests� we use the geometric coarsening strategy of doubling the element size in both
directions until there is only one element in the y direction� then doubling the element size in the x direction
only� For the multilevel results� we coarsen until hx � 
hy� Such a grid is not admissible with the other AMG
algorithms presented� so a direct comparison of the e�ect of using the di�erent interpolation formulas on the
same grid is not practical here� �Actually� a modi�cation of iterative weight interpolation could be used� and
would yield results comparable to those previously obtained�� However� it is instructive to include results
of AMG where linear interpolation is actually used on these uniform grids� This method then becomes a
geometric multigrid algorithm� which we call GMG�

Experimental results from three methods are shown in Table ���� using ����� V�cycles based on Jacobi
sweeps with relaxation parameter � � ���� This should be kept in mind when comparing results to the
AMG tests of Table ���� since ����� V�cycles were used there� The theoretical bounds and estimates suggest
extremely slow convergence for AMGe� and AMGe
 �when applied to AMG� they do not indicate that AMG
will converge at all�� In fact� however� both AMGe� and AMGe
 achieve substantial improvement� especially
for the two�level algorithm� where they greatly exceed predictions� The bound is based on kAk � 
��� and
K� � �
�
�� while the predictions are based on maxiKi�� � 
��� and maxiKi�� � �����

Note that the GMG method� which is basically the best that the AMG methods using separate inter�
polation can aspire to� also shows the same type of degradation as the AMG methods� although less severe�
That is� 
�level results are stable until d becomes small� then worsen� V�cycle results degrade faster� although
they stabilize due to the arti�cial limitation on the coarsest grid used� This limitation was not present in the
AMG tests� In fact� coarser grids could have been used here� which would result in much worse convergence
factors if we were to continue with the same interpolation and relaxation schemes� For further coarsening in



AMGe ��

Two�Level Multilevel
d GMG AMGe� AMGe
 GMG AMGe� AMGe

� ���� ���� ���� ���� ��� ����
��� ��� ���� ���� ��� ��� ����
��� ��� ���� ���� ���� ��� ����
��� ��� ���� ���� ���� ���� ����
���
 ���� ���� ���� ���� ���� ���
��� ��� ���� ��
� ��� ���� ��
�
Bound ! ���� ! ! ! !

Estimate ! ���� ���� ! ! !
Table ���

Asymptotic convergence factors� bound predicted by theory� and �improvement� of observed over predicted for the plane�
stress problem with h � �����

the x direction� smoothing of pointwise relaxation would su�er as the grid aspect ratios worsen� so �group�
relaxation �here equivalent to y�line relaxation� would be needed to maintain e�ciency� We did not consider
this group relaxation option or its implications on our theory because the focus here is on the interpolation
process�

Two observations are signi�cant� the two�level performance of AMGe� and AMGe
 is generally inde�
pendent of the beam thickness until d � hx� where even greater improvement occurs� and the multilevel
performance of AMGe� and AMGe
 improves steadily as the beam becomes thinner� This is in direct
contrast to the AMG and GMG results obtained� demonstrating the e�ectiveness of the new interpolation
methods�

While this paper concentrates on the e�ect of the new interpolation method� it should be kept in mind
that there are other techniques that may be applied to enhance performance of the algorithm� For instance�
the multilevel experiments shown here focused on Jacobi relaxation and a ����� V �cycle� The relaxation
method and its parameters can be chosen di�erently� For example� the multilevel AMGe� case with d � ���
shows a convergence factor of ��� in Table ���� A Jacobi ����� V �cycle improves this factor to ����� while
a ����� F �cycle �see 	���� attains a convergence factor of ����� Nearly identical results� ��� for V ������ ���
for V ������ and ���� for F ������ are obtained if the Jacobi relaxation is replaced by nodal Gauss�Seidel with
symmetric CF relaxation� which sweeps over the C points followed by the F points on the downward leg
of the V �cycle� and over the F points followed by the C points on the upward leg� Another possibility is
the use of a single multigrid V ����� cycle as a preconditioner for a conjugate gradient iteration� Applied to
the plane�stress problem using the nodal relaxation described above� this yields convergence factors ranging
from ��� to ��
 per CG iteration�

For both sets of experiments� AMGe interpolation achieves signi�cant improvement over conventional
AMG performance� We believe that further improvement is possible using more sophisticated coarse�grid
selection� We observe that local measuresMi�� andMi�� carry a great deal of information about the nature of
the underlying problem and its discretization� and we should be able to exploit this information to determine
more e�ective coarse grids�


� Conclusions� For any multigrid method to work� errors that remain after relaxation must be well
approximated by the range of interpolation� Since algebraic multigrid does not rely on geometric information�
its fundamental challenge is to construct coarse grids and interpolation operators that approximate these
errors� The core of this challenge is to determine errors that cannot be e�ectively reduced by local processing�

Two local measures were introduced here to quantify how well the coarsening processes determine alge�
braically smooth error� and they were used to construct new interpolation operators� Experimental data for
two representative test problems con�rm that these operators produce an AMGe algorithm whose conver�
gence rates for these cases are substantially better than standard AMG�

Current research focuses on using these measures in AMGe also to assess the ability of coarse�grid points
to represent the necessary error components� that is� to determine which points are best suited to be on the
coarse grid� Combined with the improved interpolation operator� this may lead to very e�cient AMGe
algorithms for a much wider range of problems than is currently available�
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