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Abstract

Computational experiences with hybrid message passing and multithreading techniques
on SMP clusters generally show poorer performance than pure message passing approaches.
This paper attempts to understand the performance of hybrid MPI and OpenMP programs
by decomposing and describing performance using four parameters: multithreading efficiency,
relative cache efficiency, network interface efficiency, and message passing scaled efficiency.
These parameters are used to assess a sparse matrix-vector product kernel, which is typical of
many parallel scientific computations, running on an IBM SP computer. Tests with various
problem sizes using up to 216 nodes (864 processors) reveal, for example, the benefit of using
a hybrid implementation compared to an MPI implementation when the computation uses
small messages and is not network bandwidth limited. Otherwise, the MPI implementation
generally shows superior performance.

1 Introduction

Large parallel computers are increasingly built by connecting commodity symmetric multipro-
cessor (SMP) nodes via a relatively inexpensive interconnect. Each node consists of a number of
processors and a large pool of shared memory. Examples of these machines include recent IBM
SP parallel computers, Compaq AlphaServer clusters, and advanced Beowulf systems. These
machines may be programmed by using message passing between all processors on all nodes
involved in a computation, but there is the possibility of achieving better performance by using
a hierarchical programming style that matches the hierarchical shared and distributed memory
architecture. We refer to a hybrid programming style as one that uses multithreading to use
shared memory within a node and message passing to use memory distributed across nodes.
On the surface, hybrid programs should give better performance than pure message passing
approaches for three reasons: 1) message passing within a node is replaced by fast shared
memory accesses, 2) there is smaller communication volume on the interconnect since intra-
node messages are not necessary (this might not affect performance unless the interconnect is
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congested), and 3) fewer processes are involved in communication, which should lead to better
scalability, particularly for global communications. Despite these advantages, however, most
hybrid codes do not even achieve the performance of an equivalent message passing code (or a
shared memory code), and in many cases, the performance is much worse [8, 9, 21, 12, 16, 19, 15].
Performance may only be comparable, for example, in applications that are very parallel [5].

Depending on the application program or computing environment, various factors have been
used to explain poor hybrid program performance, including 1) critical sections that cannot be
multithreaded, 2) thread sychronization, loop scheduling, and other overheads, and 3) data par-
titionings based on SMP nodes rather than threads, leading to poor cache utilization compared
to pure message passing programs. The goal of this paper is to help quantify and better under-
stand these and other factors and the performance that can be achieved in hybrid programs.

Some of the above difficulties can be overcome by writing hybrid codes carefully, for example,
by using coarse-grained thread parallelism and partitionings based on threads. These hybrid
programs, however, can involve significantly more effort to code than message passing programs,
e.g., see the overviews in [4, 17, 20, 7]. In reality, many hybrid programs are simply adapted
from message passing programs.

At Lawrence Livermore National Laboratory, our early IBM SP system software only allowed
slower TP mode communications when it was desired to use more than one MPI task per node,
making it imperative to use some form of hybrid programming for better performance. Users
combined MPI with either Pthreads, OpenMP, or threaded libraries [17]. The IP mode limitation
has now been removed, and the faster US mode may be used. However, US mode limits the
maximum number of MPI tasks and this limit is smaller than the number of processors on our
largest IBM SP systems. Thus hybrid programming is still imperative in order to solve very
large problems using all processors of these large machines.

There are also algorithmic reasons why hybrid programs are important to investigate: 1)
computation within a node can be automatically load balanced using multithreading, e.g., [14,
12], and 2) the use of larger subproblems (one per node rather than one per processor) gives
many numerical simulation algorithms better mathematical properties [13, 11]. The hybrid and
message passing programs are not mathematically equivalent in the latter case.

A number of strategies are available for combining message passing with multithreading.
This paper studies perhaps the simplest strategy, that of combining MPI and OpenMP. In this
model, typically one process is used per node, and only one thread in the process performs
MPI communications at any one time, i.e., in a critical section. Loop iterations that can be
parallelized are multithreaded with OpenMP directives.

Besides explicitly combining message passing and multithreading in a program, hybrid pro-
gramming styles include using versions of message passing libraries that use shared memory
transport when communicating within an SMP node [18]. Other alternatives include program-
ming methodologies and libraries [1, 2] and various shared virtual memory environments. These
solutions generally trade ease of programming for some loss of performance.

This paper proposes four measurable parameters that help explain the performance of hybrid
programs on a given parallel computer. This is done in section 2 after introducing the relevant
issues. Section 3 illustrates the use of these parameters for a sparse matrix-vector product
kernel (SPMV) running on an IBM SP. This kernel models the behavior of many scientific
computations. Some conclusions about the overall performance of SPMV in hybrid mode are
drawn in section 4.



2 Hybrid program performance

2.1 Factors affecting hybrid program performance

In this section, we discuss the factors that improve or degrade the performance of hybrid pro-
grams compared to equivalent message passing programs. Many of these factors have been
suggested in the literature, and others are derived from our own experience. Most of these fac-
tors are pointed out in the excellent paper by Cappello and Etiemble [8]. The factors affecting
performance in a hybrid code are:

1. critical sections that cannot be multithreaded,
2. thread synchronization, loop scheduling, and other overheads,

3. data partitionings based on SMP nodes rather than threads, leading to poor cache utiliza-
tion compared to pure message passing programs,

4. memory bandwidth on a node limiting multithreaded performance,

5. differences in communication performance when fewer message passing processes share a
network interface,

6. differences in scalability since fewer processes are involved in message passing communi-
cation.

The first four factors are related to computation rather than communication, and often
degrade hybrid program performance. The last two factors are related to communication and
may either improve or degrade performance.

The actual improvement or reduction in performance depends on both application program
characteristics and characteristics of the computing environment. Factors 1 to 3 are generally
program-specific and can occasionally be avoided or reduced in a carefully written hybrid pro-
gram. Factors 4 to 6 are less in the programmer’s control, but better hybrid programs can be
written if these factors are understood.

Two of the factors require more explanation. When fewer processes share a network inter-
face (factor 5), communication latency decreases and per-process bandwidth increases. This
may improve hybrid program performance. However, experiments suggest that a single mes-
sage passing process cannot transfer data fast enough to the network interface to achieve the
maximum bandwidth of the network. Thus the aggregate bandwidth is lower when fewer mes-
sage passing processes are used. Thus programs that are bandwidth limited may suffer under a
hybrid model.

A potential advantage of hybrid programs over message passing programs is that for the same
number of processors in a computation, only a fraction of those processors need to be involved
in message passing (factor 6). Particularly when global communications are involved, hybrid
programs may be more scalable. Unfortunately, if global communication costs are logarithmic
in the number of processors, the advantage of hybrid programs diminishes for larger numbers of
processors.

When there is no global communication, programs still lose scalability due to load imbal-
ances or imperfect sychronization between processes when they need to communicate. Again,



these losses may depend on the number of processes participating in communication and may
be different for message passing and hybrid programs. Imperfect synchronization is not well-
understood. Our results in section 3.5 show a large variation in communication timings, and
the variation depends on the number of processes involved in the computation as well as the
programming model used.

2.2 Parameters for assessing hybrid program performance

To understand the performance of hybrid programs compared to message passing programs, we
propose decomposing and describing performance using four parameters. The first parameter,
multithreading efficiency, measures the loss in computation rate due to multithreading, namely,
the loss due to factors 1, 2, and 4. The second parameter, relative cache efficiency identifies
cache utilization differences between hybrid and message passing programs, i.e., factor 3. The
third and fourth parameters, network interface efficiency and message passing scaled efficiency,
measure the gain or loss in communication performance due to factors 5 and 6, respectively. All
the parameters except the fourth parameter are with respect to a small number of nodes, to try to
isolate these parameters from scaling effects. These parameters and the ratio of communication-
to-computation help determine the relative influence of the various factors on overall hybrid
program performance.

In the following, we denote communication time and computation time as and
Subscripts indicate the programming model used: #,,,; and %y, indicate message passing and
hybrid models, respectively, and %, indicates the hybrid model using a single thread per node
(or the message passing model using one processor per node). We also denote the number of
threads per node as n;.

tcomm tcomp .

2.3 Multithreading efficiency

Many programs do not have perfect speedup when they are multithreaded. This may be due to
critical sections in the code, synchronization and other overheads, and memory bandwidth that
is not sufficient for the multithreaded computation. Multithreading efficiency (em;) quantifies
these factors by comparing the execution time of a threaded program with its execution time
if it had perfect speedup. More precisely, for a given program running on a given computer,
multithreading efficiency is defined as
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Multithreading efficiency measures the efficiency of the computational part of the program and
does not involve communication. Therefore multithreading efficiency can be measured by timing
a multithreaded program and its nonthreaded counterpart, each running on a single node.

The multithreading efficiency parameter is affected by cache utilization differences between
the multithreaded and nonthreaded versions of the program. Usually, the multithreaded ver-
sion will have better cache utilization and efficiencies greater than unity are possible. Thus
multithreading efficiency must be interpreted with this effect in mind.

Multithreading efficiency may change when the problem size or size of the computation is
changed. This may help pinpoint whether or not the inefficiencies are due to fixed-cost overheads.



2.4 Relative cache efficiency

Hybrid and message passing programs may have different cache behavior. Most often, data for
parallel programs is partitioned for each process rather than for each thread, and thus message
passing programs may have better cache utilization than hybrid programs. If each thread in
the hybrid program and each process in the message passing program perform the same work
(i.e., the losses due to critical sections and overheads are negligible) then comparing the timings
of these two programs’ computation phases gives a rough indication of the differences in cache
utilization. We define relative cache efficiency (€cgche) as
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Here, we assume that the number threads per node in the hybrid program is equal to the number
of processors on the node.

2.5 Network interface efficiency

Network interface efficiency (en;), or NI efficiency, compares the communication performance
when different numbers of processes must share the same network interface. In hybrid programs,
fewer processes share a network interface than in message passing programs. Both latency and
bandwidth (performance for both short and long messages) are affected, and thus NI efficiency
depends on message length. We define NI efficiency as
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where m; and mg are the typical message lengths in the message passing and hybrid programs.
The message length in hybrid programs is typically larger than the message length in equivalent
message passing programs. To make sure that NI efficiency is not affected by factors related to
the number of processors or nodes, it should be based on the communication time of programs
using a small number of processors or nodes.

2.6 Message passing scaled efficiency

Message passing scaled efficiency (emp), or MP efficiency, is the parameter that considers message
passing communication performance as a function of the number of nodes or processors used
by a program. A pure message passing program using p processors may be less scalable than
a hybrid program with p/n; processes participating in message passing communication. The
communication time of the hybrid program cannot be easily predicted from the communication
time of the message passing program using p/n; processors, since the message passing program
uses more processors per network interface. Thus NI efficiency is embedded in MP efficiency,
and MP efficiency also depends on message length.

Another consideration when many processes are used is the time that processes may need to
wait for each other in order to communicate. When there are more processes, it is more likely
that communication is not perfectly synchronized, and “imperfect synchronization” is a function



Threads per node | Subdomain size
2 2n xnxXn
4 2n x 2n X n
8 2n X 2n X 2n

Table 1: Subdomain sizes depending on the number of threads (processors) per node.

of the number of processes and the programming model. This is a form of load imbalance and
causes imperfect scalability even when no global communication is used.

We define MP efficiency as the ratio of the communication time of a hybrid program to that
of an equivalent message passing program,
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where p is the number of processors used in the computation. The scaled efficiency is measured
using the communication timings for a computation with size proportional to the number of
processors.

3 Assessing hybrid performance for a model program

The parameters proposed in the previous section help reveal how a program’s characteristics and
characteristics of the hardware and system software affect that program’s performance in hybrid
mode. This section describes a model program that attempts to simulate the communication
patterns and the communication-to-computation ratio of many scientific computing codes. The
above parameters are then applied to help explain the performance of the model program.

3.1 Model program
3.1.1 Data partitioning

Parallel programs often partition a computational space into subdomains, with each subdomain
handled by a processor. A communication phase allows the processors to exchange subdomain
boundary data, which is then followed by a computation phase. These phases are repeated
several times.

The computation that the model program performs is a sparse matrix-vector product (SPMV).
This kernel is typical of many scientific computing applications. A simple 3-D computational
space is used and partitioned regularly into equal-sized subdomains to reduce effects of load
imbalance.

In the hybrid case, Table 1 shows the subdomain sizes that are used, depending on the
number of threads (processors) that are used per node. These subdomains are not further
partitioned for each thread, which is consistent with common practice [17]. In the table, n is
used to parameterize the subdomain size (also called the problem size in the tables), and varies
from 5 to 40. The subdomains are arranged in a p X p x p topology when p? nodes are used.



In the pure message passing case, the subdomains (of the hybrid case) are further partitioned
into n; blocks, where n; is the number of processors used per node. The resulting subdomains
have dimensions n xn xn. These dimensions make the message passing computation comparable
to the hybrid computation.

The sparse matrix used for SPMYV is from a 27-point discretization of a 3-D partial differential
equation. The matrix has at most 27 nonzeros per row, and the arrangement of the nonzeros and
the partitioning implies that each processor or node will communicate with at most 26 others.

3.1.2 Hybrid implementation
The structure of SPMV is as follows:

1. Fill buffers for outgoing data

2. Send outgoing data (nonblocking)

3. Receive incoming data (nonblocking)

4. Wait for sends and receives to complete

5. Perform local part of sparse matrix-vector multiply

In the hybrid model, steps 1 and 5 (computation) are loops and are threaded using OpenMP
directives, while steps 2 to 4 (communication) comprise a serialized section. There are no other
serial sections.

Part of the communication phase may be overlapped with the computation phase. Also,
in many scientific applications, the communication phase includes global communication oper-
ations. For simplicity, however, these two effects will not be considered in the model program.

3.1.3 Timings collected

We collected timing data for the communication and computation phases of SPMV running in
three modes:

SPMV-MPI Traditional message passing model using MPI.
SPMV-Hybrid Hybrid model using MPI with OpenMP.

SPMYV-Serial The hybrid model using one thread per node; alternatively, this is the mes-
sage passing model using one processor per node. This model performs exactly the same
communication as SPMV-Hybrid, but the computational work is not multithreaded.

These programs were executed using various numbers of subdomains and subdomain sizes.
We varied the subdomain sizes to alter the communication-to-computation ratio and the message
sizes in a realistic fashion. Varying the number of subdomains revealed effects due to scalability
factors.

Individual communication and computation timings were measured. Communication timings
varied significantly from run to run, however, especially in the message passing and hybrid cases
(but not in the serial case). These variations are discussed briefly in section 3.5. To assess
average performance, we measured the total time for a set of 100 calls to SPMV.

Tests were performed on two IBM SP machines at Lawrence Livermore National Laboratory,
one with 244 4-way nodes and another with 16 8-way nodes.



3.2 Multithreading efficiency

Table 2 compares SPMV-Hybrid and SPMV-Serial, showing timings and multithreading efficien-
cies on one 4-way IBM SP node using various problem sizes. The table shows that SPMV-Hybrid
does not have perfect multithreading efficiency. This is the case although the model program
avoids several causes of inefficiency: 1) there are no critical sections when SPMV-Hybrid runs
on a single node, 2) the multithreading overheads in SPMV-Hybrid are very low relative to
the granularity of the thread parallel work (see for example [10, 3, 6] for estimates of OpenMP
overheads), and 3) SPMV-Hybrid should have better, rather than worse cache utilization with
regularly structured and partitioned problems.

Except for small problem sizes, the multithreading efficiency is approximately constant,
showing that the loss in efficiency is proportional to the amount of work done, and is not
due to fixed overhead losses (which would cause the efficiency to increase with problem size).
The best explanation for the loss in efficiency is that memory bandwidth limits the rate of
computation. In support of this, the SPMV-MPI computation timings are very similar to the
SPMV-Hybrid timings on a single node (see Table 5 for these timings). Also, as shown in Table
3, the multithreading efficiency is higher when fewer threads per node are used in SPMV-Hybrid.

The tables also check whether or not the execution time is proportional to the problem size
by computing the number of rows processed per second by the three programs. The results show
that for small problem sizes, the computation is much faster, which may be explained because
the matrix fits into cache for these sizes. For moderate sized problems, multithreading efficiency
can exceed 1, which may be explained if SPMV-Hybrid is operating in cache and SPMV-Serial
is not.

Multithreading efficiencies on an 8-way SMP node with larger cache and higher memory
bandwidth are shown in Table 4. The results are similar, showing that multithreading efficiency
improves when fewer threads per node are used.

3.3 Relative cache efficiency

Since SPMV-MPI and SPMV-Hybrid perform essentially the same work in their computational
phases, we can compare timings of these phases to check differences in cache utilization. Table
5 shows these timings and the relative cache efficiencies for various problem sizes. The results
show that except for very small problem sizes, the cache utilization is similar.

3.4 Network interface efficiency
3.4.1 Latency and bandwidth test

Tables 6 and 7 show measured latency and bandwidth for 4-way and 8-way SMP nodes, re-
spectively. Our benchmark program for measuring these parameters is slightly different from
standard benchmarks, but more closely matches our application code. Instead of measuring half
the roundtrip times for short and long messages (to compute latency and bandwidth, respec-
tively), we measure the time for all processors to send outgoing data (nonblocking) and then
receive incoming data (blocking). (The bandwidth we report is based on the number of bytes
sent per processor and is based on 1000 iterations.) In the test, each processor communicates
with one other processor, either off-node, or on-node. The tables show results when different



Prob. Time (s) Rows per second | em:
Size | Hybrid  Serial | Hybrid Serial
500 0.015  0.035 33333 14286 | 0.58

4000 0.216  0.779 18519 5135 | 0.90

13500 0.825 2.754 16364 4902 | 0.83

32000 1.997  6.764 16024 4731 | 0.85

62500 3.877 13.250 16121 4717 | 0.85

108000 6.888  23.500 15679 4596 | 0.85
171500 | 10.795 37.017 15887 4633 | 0.86
256000 | 16.228 55.988 15775 4572 | 0.86

Table 2: Computation timings, rates, and multithreading efficiencies for SPMV on a single 4-way
SMP node. Timings are the sums from 100 runs.

Prob. Time (s) Rows per second €mt
Size | Hybrid  Serial | Hybrid Serial
250 0.010 0.016 25000 15625 | 0.80

2000 0.179 0.371 11173 5390 | 1.04
6750 0.700 1.329 9642 5079 | 0.95

16000 1.749 3.330 9148 4804 | 0.95

31250 3.434 6.574 9100 4753 | 0.96

54000 5.992 11.492 9012 4698 | 0.96

85750 9.580 18.408 8950 4658 | 0.96

128000 14.628 28.103 8750 4554 | 0.96

Table 3: Computation timings, rates, and multithreading efficiencies for SPMYV on a single 4-way
SMP node, using 2 threads per node. Timings are the sums from 100 runs.

Prob. Multithreading efficiency
Size | 8 thr/node 4 thr/node 2 thr/node
1000 0.39 0.48 0.55
8000 0.92 0.87 0.87
27000 1.18 1.07 1.04
64000 1.07 1.08 1.06
125000 0.96 1.00 1.05
216000 0.89 0.95 1.01
343000 0.86 0.94 0.98
512000 0.85 0.92 0.97

Table 4: Multithreading efficiencies for SPMV on a single 8-way SMP node with respect to the
number of threads per node.



Prob. Time (s) €cache
Size MPI Hybrid
500 0.008 0.015 0.53

4000 0.200 0.216 0.93

13500 0.781 0.825 0.95

32000 1.889 1.997 0.95

62500 3.781 3.877 0.98

108000 6.632 6.888 0.96
171500 | 10.627 10.795 0.98
256000 | 16.079 16.228 0.99

Table 5: Computation timings and relative cache efficiency for SPMV, running on a single 4-way
SMP node. Timings are the sums from 100 runs.

Number | Overhead Bandwidth (Mb/s)
of pairs (us) | Max per proc | Aggregate
off-node 1 43.5 42.9 42.9
2 71.5 38.2 76.4
3 98.1 27.6 82.8
4 125.2 20.8 83.2
on-node 1 76.1 36.8 73.6
2 136.0 20.7 82.8
on-node 1 28.2 54.8 109.6
(sh.mem) 2 30.3 59.8 939.2

Table 6: Communication parameters for 4-way SMP nodes.

numbers of pairs of processors are used. A single pair in the off-node case is analogous to a
hybrid program when a single MPI process is used per node. As anticipated, increasing the
number of pairs increases the latency, decreases the bandwidth per processor, and increases the
aggregate bandwidth up to the limit supported by the network.

For interest, we also show the measured latency and bandwidth when the communication is
purely on-node, with and without using shared memory in MPI. When shared memory is not
used, the parameters closely match the parameters in the off-node case (given the same number
of processors per node being used). With shared memory, the latency and bandwidth parameters
are improved, and seem mostly independent of the number of pairs involved in communication.

Since bandwidth is actually a function of message size, we plot bandwidth for the off-node and
on-node cases in Figure 1. Timings were measured for message sizes from 1 to 4194304 bytes
at intervals of powers of 2. Figure 1(a) plots the bandwidth per processor when one to four
processors on a node are communicating with the same number of processors on another node.
The bandwidth per processor is lower when more processors are performing communication in
a node. The kinks in the plots are due to a change in communication protocol (a rendezvous
communication protocol is used for message sizes above the eager limit) and may also be due to
better cache utilization when message sizes are small.

Figure 1(b) plots the bandwidth when communication is within an SMP node. When two or
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Number | Overhead Bandwidth (Mb/s)
of pairs (ps) | Max per proc | Aggregate
off-node 1 52.8 130.5 130.5
2 51.6 123.8 247.6
4 46.5 84.4 337.6
8 63.0 43.1 344.8
on-node 1 46.2 128.9 257.8
2 44.3 88.3 353.2
4 61.3 43.8 350.4
on-node 1 27.5 1754 350.8
(sh.mem) 2 28.7 174.3 697.2
4 30.3 168.8 1350.4

Table 7: Communication parameters for 8-way SMP nodes.

four processors on a node are communicating, the plots are very similar to the case where two or
four processors are communicating off-node. Figure 1(b) also plots the bandwidth when shared
memory MPI is used. In this case, the bandwidth is much higher. The maximum bandwidth
is achieved with a moderate message size rather than the largest message size. This is due to
cache effects in the implementation of shared memory MPI [18]. This curve is similar when four
processors on the node are communicating via shared memory MPI.

To determine network interface efficiency, we compare the communication timings for various
message lengths when 1 MPI process is used per node and when 4 processes are used per node.
When 1 MPI process is used, messages must be four times longer in order to compare to the
case when 4 processes are used. Figure 2(a) plots these communication timings. The use of a
single MPI process is faster for small message sizes, but for message sizes larger than about 5000
bytes, using 4 MPI processes is faster.

Figure 2(b) plots the network interface efficiency relative to 4 and to 2 MPI tasks per node.
(The first curve is the ratio of the two curves in 2(a).) It is also clear from Figure 2(b) that it is
not advantageous to use 2 MPI tasks per node to try to balance between latency and bandwidth
parameters. Although performance is improved for large message sizes, it is only improved
marginally and still does not match the pure MPI program’s communication performance.

The results are similar for the 8-way SMP nodes, except that the network interface efficiency
is lower. This machine also has a single network interface per node. Table 7 shows that the
latency does not deteriorate as severely when additional processors are used per node, however,
the single processor bandwidth is a smaller fraction of the maximum aggregate bandwidth.

We also tested the case where multiple threads within the same MPI task make calls to MPI.
IBM’s thread-safe MPI library was used. However, the latency and bandwidth test showed that
per-thread bandwidth was approximately halved when 2 or more threads share the same MPI
task this way. We conclude that this is not currently an effective strategy for hybrid codes.

3.4.2 Model program test

Table 8 shows communication timings for SPMV running on two nodes (8 processors) in various
modes. The results show the benefit of hybrid mode in this case. Note that although SPMV-
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Prob. Communication time (s) €ni
Size | MPI ~ MPI-sh.mem Hybrid Serial

500 | 0.041 0.033 0.010 0.020 | 0.410
4000 | 0.075 0.057 0.038 0.029 | 0.197
13500 | 0.081 0.068 0.067 0.072 | 0.121
32000 | 0.140 0.115 0.086 0.094 | 0.163
62500 | 0.202 0.126 0.125 0.102 | 0.162
108000 | 0.210 0.172 0.150 0.131 | 0.140
171500 | 0.315 0.253 0.195 0.163 | 0.162
256000 | 0.406 0.326 0.213 0.189 | 0.191

Table 8: Communication timings for SPMV on two nodes (8 processors) in various modes, and
the network interface efficiency. Timings are the sums from 100 runs.

Hybrid and SPMV-Serial perform the same communication, the communication timings are
different. This may be due to cache and/or memory bandwidth considerations affecting the
communication performance.

The hierarchical partitioning of the computational domain for SPMV-MPI allowed us to
test the efficacy of shared memory MPI, i.e., shared memory transport is used for on-node
communication. The results, shown in Table 8 as MPI-sh.mem, are not significantly better than
the SPMV-MPI timings. This was also verified in tests up to 216 nodes. This result suggests
that the off-node communication masked the gains of the on-node communication.

3.5 Message passing scaled efficiency

Figure 3 plots 100 communication timings for SPMV in ascending order for three examples with
different numbers of nodes and different problem sizes. The graphs show high variability, e.g.,
from about 5 ms to almost 300 ms in Figure 3(a) for the SPMV-MPI and SPMV-Hybrid cases.
It is believed that these variations are caused by system daemons briefly interrupting the work
done on one or more processors.

Given that this variation is not nearly as strong in SPMV-Serial, which places lower demand
on the memory system, this variation may be related to memory bandwidth limits. Also, the
communication timing variation is larger in the 125 node case than in the 27 node case in the
sense that there are more cases when the communication time is extraordinarily large. This
suggests that the variation is stronger when there are more nodes.

Despite these variations, a few observations can be made. Communication time for problem
size 500 is about 5 times lower than for problem size 256000. In addition, for the smaller problem
size, SPMV-Hybrid (and SPMV-Serial) communication timings are better than SPMV-MPI
communication timings. This is in agreement with the observation in the previous subsection
that not sharing network interfaces is preferred when small messages are used.

In practice, an average or aggregate communication timing must be used to determine the
performance of a program that executes SPMV several times. This is used in Table 9, which
shows timings for all three implementations for various local problem sizes and numbers of nodes.
Since SPMV-Hybrid and SPMV-MPI occasionally have very large communication timings, their
average communication time is larger than the average communication time for SPMV-Serial.
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Graphs of MP efficiency are plotted in Figure 4 for three problem sizes. For the smallest
problem size, 500, the SPMV-Hybrid communication time is always less than the MPI communi-
cation time (the curve remains below 1). For the larger problem sizes, 32000 and 256000, hybrid
communication is faster for small numbers of nodes and slower for large numbers of nodes.

Finally, we note that programs that perform global communication may give very different
scalability results.

4 Conclusions

In this paper, the performance of hybrid programs was decomposed into various factors. For
programs where computation dominates communication, the performance of hybrid programs
is mostly determined by the size of overheads and critical sections and the memory bandwidth.
These factors are captured by the multithreading efficiency parameter. The relative cache effi-
ciency parameter can be used in some cases to check the difference in cache utilization between
hybrid and message passing codes. For SPMV computation time, these parameters show that
limited memory bandwidth causes a loss of about 15 percent. This loss is the same for both
hybrid and message passing codes.

The results in Table 9 show that hybrid programs can perform better than message passing
programs when small problem sizes are used. This effect is related to lower latency when network
interfaces are not shared, and is quantified by the network interface efficiency parameter.

It is somewhat surprising that SPMV-Hybrid was not better than SPMV-MPI for large
numbers of nodes. The MP efficiency parameter shows that SPMV-MPI communication is more
scalable than SPMV-Hybrid communication for moderate to large problem sizes. From timings
shown in Figure 3, we infer that this is due to occasional extraordinarily large communication
timings in SPMV-Hybrid.

Although hybrid programs are not currently advantageous for computations like SPMV on
IBM SP machines, as SMP nodes are built with even more processors and system software is
improved, this situation may change. The parameters proposed in this paper can help track
progress in this area. Further, the proposed parameters abstract the characteristics of hybrid
programs and their computing environments and may lead to models that can predict hybrid
program performance.
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Prob. | Number Total time (s) Communication time (s)
Size | of Nodes MPI Hybrid Serial | MPI Hybrid  Serial
500 1 0.029 0.015 0.035 | 0.021 0.000  0.000
8 0.071 0.042 0.090 | 0.063 0.027 0.055
27 0.119 0.101 0.157 | 0.111 0.086 0.122
64 0.141 0.126 0.173 | 0.133 0.111 0.138

125 0.297 0.148 0.182 | 0.289 0.133 0.147

216 0.416 0.182 0.182 | 0.408 0.167 0.147

4000 1 0.232 0.216 0.779 | 0.032 0.000 0.000
8 0.336 0.327 0.892 | 0.136 0.111 0.113
27 0.434 0.425 1.021 | 0.234 0.209 0.242
64 0.474 0.454 1.031 | 0.274 0.238 0.252

125 | 0.833 0.491 1.035 | 0.633 0.275  0.256

216 1.436 0.790 1.044 | 1.236 0.574  0.265

13500 1 0.838 0.825 2.754 | 0.057 0.000  0.000
8 | 0.988 1.002 3.001 | 0.207 0.177  0.247
27 1.216 1.139 3.266 | 0.435 0.314 0.512
64 | 1.338 1.554  3.275 | 0.557 0.729  0.521

125 1.349 1.592 3.305 | 0.568 0.767  0.551

216 2.769 2.488 3.339 | 1.988 1.663 0.585

32000 1 1.985 1.997  6.764 | 0.096 0.000  0.000
8 2.217 2.305 7.197 | 0.328 0.308 0.433
27 | 2.375 2.737  7.546 | 0.486 0.740  0.782
64 | 2.708 3.299  7.604 | 0.819 1.302  0.840

125 3.374 3.686 7.643 | 1.485 1.689 0.879

216 | 4.253 5.286  7.680 | 2.364 3.289  0.916

62500 1 3.938 3.877 13.250 | 0.157 0.000 0.000
8 4.216 4.478 14.011 | 0.435 0.601 0.761
27 | 4.697 5.207 14.511 | 0.916 1.330 1.261
64 4.910 5.712 14.652 | 1.129 1.835 1.402

125 | 6.228 7.338 14.646 | 2.447 3.461 1.396

216 6.922 8.204 14.732 | 3.141 4.327 1.482

108000 1 6.818 6.888 23.500 | 0.186 0.000  0.000
8 | 7.351 7.369 24.312 | 0.719 0.481 0.812
27 7.896 8.7563  25.232 | 1.264 1.865 1.732
64 | 9.183 10.213 25.335 | 2.551 3.325 1.835

125 9.885 11.103  25.351 | 3.253 4.215 1.851

216 | 10.004  12.399 25.577 | 3.372 5.511 2.077

171500 1] 10909 10.795 37.017 | 0.282 0.000  0.000
8 | 11.594  11.748 38.509 | 0.967 0.953 1.492
27 | 12.518 13.451 39.704 | 1.891 2.656  2.687
64 | 13.478 15.344  39.657 | 2.851 4.549 2.640

125 | 14.358 16.293 39.945 | 3.731 5.498 2.928

216 | 15.278 16.614 39.859 | 4.651 5.819  2.842

256000 1 | 16.359 16.228  55.988 | 0.280 0.000 0.000
8 | 17.614 17.399 57.850 | 1.535 1.171 1.862
27 | 19.103 19.912  59.499 | 3.024 3.684 3.511
64 | 19.472  21.960 59.773 | 3.393 5.732 3.785

125 | 20.331  22.859 59.837 | 4.252 6.631 3.849

216 | 21.178  24.057 59.982 | 5.099 7.829 3.994

Table 9: Timings for SPMV. Timings are the sums from 100 runs. For perfect scalability, the
timings should be the same for a given problem size.
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32000, and 256000.
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