
Assessing Performane of Hybrid MPI/OpenMP Programs onSMP Clusters�Edmond Chowy and David HysomyzAbstratComputational experienes with hybrid message passing and multithreading tehniqueson SMP lusters generally show poorer performane than pure message passing approahes.This paper attempts to understand the performane of hybrid MPI and OpenMP programsby deomposing and desribing performane using four parameters: multithreading eÆieny,relative ahe eÆieny, network interfae eÆieny, and message passing saled eÆieny.These parameters are used to assess a sparse matrix-vetor produt kernel, whih is typial ofmany parallel sienti� omputations, running on an IBM SP omputer. Tests with variousproblem sizes using up to 216 nodes (864 proessors) reveal, for example, the bene�t of usinga hybrid implementation ompared to an MPI implementation when the omputation usessmall messages and is not network bandwidth limited. Otherwise, the MPI implementationgenerally shows superior performane.1 IntrodutionLarge parallel omputers are inreasingly built by onneting ommodity symmetri multipro-essor (SMP) nodes via a relatively inexpensive interonnet. Eah node onsists of a number ofproessors and a large pool of shared memory. Examples of these mahines inlude reent IBMSP parallel omputers, Compaq AlphaServer lusters, and advaned Beowulf systems. Thesemahines may be programmed by using message passing between all proessors on all nodesinvolved in a omputation, but there is the possibility of ahieving better performane by usinga hierarhial programming style that mathes the hierarhial shared and distributed memoryarhiteture. We refer to a hybrid programming style as one that uses multithreading to useshared memory within a node and message passing to use memory distributed aross nodes.On the surfae, hybrid programs should give better performane than pure message passingapproahes for three reasons: 1) message passing within a node is replaed by fast sharedmemory aesses, 2) there is smaller ommuniation volume on the interonnet sine intra-node messages are not neessary (this might not a�et performane unless the interonnet is�Teh. Report UCRL-JC-143957, Lawrene Livermore National Laboratory, Livermore, CA, 2001. This workwas performed under the auspies of the U.S. Department of Energy by University of California Lawrene Liver-more National Laboratory under ontrat No. W-7405-Eng-48.yCenter for Applied Sienti� Computing, Lawrene Livermore National Laboratory, L-560, Box 808, Liver-more, CA 94551 (ehow�llnl.gov).zComputer Siene Department, Old Dominion University, 228 Eduation Building, Norfolk, VA 23529(hysom�s.odu.edu). 1

ongested), and 3) fewer proesses are involved in ommuniation, whih should lead to bettersalability, partiularly for global ommuniations. Despite these advantages, however, mosthybrid odes do not even ahieve the performane of an equivalent message passing ode (or ashared memory ode), and in many ases, the performane is muh worse [8, 9, 21, 12, 16, 19, 15℄.Performane may only be omparable, for example, in appliations that are very parallel [5℄.Depending on the appliation program or omputing environment, various fators have beenused to explain poor hybrid program performane, inluding 1) ritial setions that annot bemultithreaded, 2) thread syhronization, loop sheduling, and other overheads, and 3) data par-titionings based on SMP nodes rather than threads, leading to poor ahe utilization omparedto pure message passing programs. The goal of this paper is to help quantify and better under-stand these and other fators and the performane that an be ahieved in hybrid programs.Some of the above diÆulties an be overome by writing hybrid odes arefully, for example,by using oarse-grained thread parallelism and partitionings based on threads. These hybridprograms, however, an involve signi�antly more e�ort to ode than message passing programs,e.g., see the overviews in [4, 17, 20, 7℄. In reality, many hybrid programs are simply adaptedfrom message passing programs.At Lawrene Livermore National Laboratory, our early IBM SP system software only allowedslower IP mode ommuniations when it was desired to use more than one MPI task per node,making it imperative to use some form of hybrid programming for better performane. Usersombined MPI with either Pthreads, OpenMP, or threaded libraries [17℄. The IP mode limitationhas now been removed, and the faster US mode may be used. However, US mode limits themaximum number of MPI tasks and this limit is smaller than the number of proessors on ourlargest IBM SP systems. Thus hybrid programming is still imperative in order to solve verylarge problems using all proessors of these large mahines.There are also algorithmi reasons why hybrid programs are important to investigate: 1)omputation within a node an be automatially load balaned using multithreading, e.g., [14,12℄, and 2) the use of larger subproblems (one per node rather than one per proessor) givesmany numerial simulation algorithms better mathematial properties [13, 11℄. The hybrid andmessage passing programs are not mathematially equivalent in the latter ase.A number of strategies are available for ombining message passing with multithreading.This paper studies perhaps the simplest strategy, that of ombining MPI and OpenMP. In thismodel, typially one proess is used per node, and only one thread in the proess performsMPI ommuniations at any one time, i.e., in a ritial setion. Loop iterations that an beparallelized are multithreaded with OpenMP diretives.Besides expliitly ombining message passing and multithreading in a program, hybrid pro-gramming styles inlude using versions of message passing libraries that use shared memorytransport when ommuniating within an SMP node [18℄. Other alternatives inlude program-ming methodologies and libraries [1, 2℄ and various shared virtual memory environments. Thesesolutions generally trade ease of programming for some loss of performane.This paper proposes four measurable parameters that help explain the performane of hybridprograms on a given parallel omputer. This is done in setion 2 after introduing the relevantissues. Setion 3 illustrates the use of these parameters for a sparse matrix-vetor produtkernel (SPMV) running on an IBM SP. This kernel models the behavior of many sienti�omputations. Some onlusions about the overall performane of SPMV in hybrid mode aredrawn in setion 4. 2

2 Hybrid program performane2.1 Fators a�eting hybrid program performaneIn this setion, we disuss the fators that improve or degrade the performane of hybrid pro-grams ompared to equivalent message passing programs. Many of these fators have beensuggested in the literature, and others are derived from our own experiene. Most of these fa-tors are pointed out in the exellent paper by Cappello and Etiemble [8℄. The fators a�etingperformane in a hybrid ode are:1. ritial setions that annot be multithreaded,2. thread synhronization, loop sheduling, and other overheads,3. data partitionings based on SMP nodes rather than threads, leading to poor ahe utiliza-tion ompared to pure message passing programs,4. memory bandwidth on a node limiting multithreaded performane,5. di�erenes in ommuniation performane when fewer message passing proesses share anetwork interfae,6. di�erenes in salability sine fewer proesses are involved in message passing ommuni-ation.The �rst four fators are related to omputation rather than ommuniation, and oftendegrade hybrid program performane. The last two fators are related to ommuniation andmay either improve or degrade performane.The atual improvement or redution in performane depends on both appliation programharateristis and harateristis of the omputing environment. Fators 1 to 3 are generallyprogram-spei� and an oasionally be avoided or redued in a arefully written hybrid pro-gram. Fators 4 to 6 are less in the programmer's ontrol, but better hybrid programs an bewritten if these fators are understood.Two of the fators require more explanation. When fewer proesses share a network inter-fae (fator 5), ommuniation lateny dereases and per-proess bandwidth inreases. Thismay improve hybrid program performane. However, experiments suggest that a single mes-sage passing proess annot transfer data fast enough to the network interfae to ahieve themaximum bandwidth of the network. Thus the aggregate bandwidth is lower when fewer mes-sage passing proesses are used. Thus programs that are bandwidth limited may su�er under ahybrid model.A potential advantage of hybrid programs over message passing programs is that for the samenumber of proessors in a omputation, only a fration of those proessors need to be involvedin message passing (fator 6). Partiularly when global ommuniations are involved, hybridprograms may be more salable. Unfortunately, if global ommuniation osts are logarithmiin the number of proessors, the advantage of hybrid programs diminishes for larger numbers ofproessors.When there is no global ommuniation, programs still lose salability due to load imbal-anes or imperfet syhronization between proesses when they need to ommuniate. Again,3

these losses may depend on the number of proesses partiipating in ommuniation and maybe di�erent for message passing and hybrid programs. Imperfet synhronization is not well-understood. Our results in setion 3.5 show a large variation in ommuniation timings, andthe variation depends on the number of proesses involved in the omputation as well as theprogramming model used.2.2 Parameters for assessing hybrid program performaneTo understand the performane of hybrid programs ompared to message passing programs, wepropose deomposing and desribing performane using four parameters. The �rst parameter,multithreading eÆieny, measures the loss in omputation rate due to multithreading, namely,the loss due to fators 1, 2, and 4. The seond parameter, relative ahe eÆieny identi�esahe utilization di�erenes between hybrid and message passing programs, i.e., fator 3. Thethird and fourth parameters, network interfae eÆieny and message passing saled eÆieny,measure the gain or loss in ommuniation performane due to fators 5 and 6, respetively. Allthe parameters exept the fourth parameter are with respet to a small number of nodes, to try toisolate these parameters from saling e�ets. These parameters and the ratio of ommuniation-to-omputation help determine the relative inuene of the various fators on overall hybridprogram performane.In the following, we denote ommuniation time and omputation time as tomm and tomp .Subsripts indiate the programming model used: tmpi and thyb indiate message passing andhybrid models, respetively, and tser indiates the hybrid model using a single thread per node(or the message passing model using one proessor per node). We also denote the number ofthreads per node as nt.2.3 Multithreading eÆienyMany programs do not have perfet speedup when they are multithreaded. This may be due toritial setions in the ode, synhronization and other overheads, and memory bandwidth thatis not suÆient for the multithreaded omputation. Multithreading eÆieny (emt) quanti�esthese fators by omparing the exeution time of a threaded program with its exeution timeif it had perfet speedup. More preisely, for a given program running on a given omputer,multithreading eÆieny is de�ned as emt = tompsernttomphyb :Multithreading eÆieny measures the eÆieny of the omputational part of the program anddoes not involve ommuniation. Therefore multithreading eÆieny an be measured by timinga multithreaded program and its nonthreaded ounterpart, eah running on a single node.The multithreading eÆieny parameter is a�eted by ahe utilization di�erenes betweenthe multithreaded and nonthreaded versions of the program. Usually, the multithreaded ver-sion will have better ahe utilization and eÆienies greater than unity are possible. Thusmultithreading eÆieny must be interpreted with this e�et in mind.Multithreading eÆieny may hange when the problem size or size of the omputation ishanged. This may help pinpoint whether or not the ineÆienies are due to �xed-ost overheads.4

2.4 Relative ahe eÆienyHybrid and message passing programs may have di�erent ahe behavior. Most often, data forparallel programs is partitioned for eah proess rather than for eah thread, and thus messagepassing programs may have better ahe utilization than hybrid programs. If eah thread inthe hybrid program and eah proess in the message passing program perform the same work(i.e., the losses due to ritial setions and overheads are negligible) then omparing the timingsof these two programs' omputation phases gives a rough indiation of the di�erenes in aheutilization. We de�ne relative ahe eÆieny (eahe) aseahe = tompmpitomphyb :Here, we assume that the number threads per node in the hybrid program is equal to the numberof proessors on the node.2.5 Network interfae eÆienyNetwork interfae eÆieny (eni), or NI eÆieny, ompares the ommuniation performanewhen di�erent numbers of proesses must share the same network interfae. In hybrid programs,fewer proesses share a network interfae than in message passing programs. Both lateny andbandwidth (performane for both short and long messages) are a�eted, and thus NI eÆienydepends on message length. We de�ne NI eÆieny aseni(m2) = tommmpi (m1)tommhyb (m2)where m1 and m2 are the typial message lengths in the message passing and hybrid programs.The message length in hybrid programs is typially larger than the message length in equivalentmessage passing programs. To make sure that NI eÆieny is not a�eted by fators related tothe number of proessors or nodes, it should be based on the ommuniation time of programsusing a small number of proessors or nodes.2.6 Message passing saled eÆienyMessage passing saled eÆieny (emp), or MP eÆieny, is the parameter that onsiders messagepassing ommuniation performane as a funtion of the number of nodes or proessors usedby a program. A pure message passing program using p proessors may be less salable thana hybrid program with p=nt proesses partiipating in message passing ommuniation. Theommuniation time of the hybrid program annot be easily predited from the ommuniationtime of the message passing program using p=nt proessors, sine the message passing programuses more proessors per network interfae. Thus NI eÆieny is embedded in MP eÆieny,and MP eÆieny also depends on message length.Another onsideration when many proesses are used is the time that proesses may need towait for eah other in order to ommuniate. When there are more proesses, it is more likelythat ommuniation is not perfetly synhronized, and \imperfet synhronization" is a funtion5

Threads per node Subdomain size2 2n� n� n4 2n� 2n� n8 2n� 2n� 2nTable 1: Subdomain sizes depending on the number of threads (proessors) per node.of the number of proesses and the programming model. This is a form of load imbalane andauses imperfet salability even when no global ommuniation is used.We de�ne MP eÆieny as the ratio of the ommuniation time of a hybrid program to thatof an equivalent message passing program,emp(p=nt) = tommhyb (p=nt)tommmpi (p)where p is the number of proessors used in the omputation. The saled eÆieny is measuredusing the ommuniation timings for a omputation with size proportional to the number ofproessors.3 Assessing hybrid performane for a model programThe parameters proposed in the previous setion help reveal how a program's harateristis andharateristis of the hardware and system software a�et that program's performane in hybridmode. This setion desribes a model program that attempts to simulate the ommuniationpatterns and the ommuniation-to-omputation ratio of many sienti� omputing odes. Theabove parameters are then applied to help explain the performane of the model program.3.1 Model program3.1.1 Data partitioningParallel programs often partition a omputational spae into subdomains, with eah subdomainhandled by a proessor. A ommuniation phase allows the proessors to exhange subdomainboundary data, whih is then followed by a omputation phase. These phases are repeatedseveral times.The omputation that the model program performs is a sparse matrix-vetor produt (SPMV).This kernel is typial of many sienti� omputing appliations. A simple 3-D omputationalspae is used and partitioned regularly into equal-sized subdomains to redue e�ets of loadimbalane.In the hybrid ase, Table 1 shows the subdomain sizes that are used, depending on thenumber of threads (proessors) that are used per node. These subdomains are not furtherpartitioned for eah thread, whih is onsistent with ommon pratie [17℄. In the table, n isused to parameterize the subdomain size (also alled the problem size in the tables), and variesfrom 5 to 40. The subdomains are arranged in a p� p� p topology when p3 nodes are used.6

In the pure message passing ase, the subdomains (of the hybrid ase) are further partitionedinto nt bloks, where nt is the number of proessors used per node. The resulting subdomainshave dimensions n�n�n. These dimensions make the message passing omputation omparableto the hybrid omputation.The sparse matrix used for SPMV is from a 27-point disretization of a 3-D partial di�erentialequation. The matrix has at most 27 nonzeros per row, and the arrangement of the nonzeros andthe partitioning implies that eah proessor or node will ommuniate with at most 26 others.3.1.2 Hybrid implementationThe struture of SPMV is as follows:1. Fill bu�ers for outgoing data2. Send outgoing data (nonbloking)3. Reeive inoming data (nonbloking)4. Wait for sends and reeives to omplete5. Perform loal part of sparse matrix-vetor multiplyIn the hybrid model, steps 1 and 5 (omputation) are loops and are threaded using OpenMPdiretives, while steps 2 to 4 (ommuniation) omprise a serialized setion. There are no otherserial setions.Part of the ommuniation phase may be overlapped with the omputation phase. Also,in many sienti� appliations, the ommuniation phase inludes global ommuniation oper-ations. For simpliity, however, these two e�ets will not be onsidered in the model program.3.1.3 Timings olletedWe olleted timing data for the ommuniation and omputation phases of SPMV running inthree modes:SPMV-MPI Traditional message passing model using MPI.SPMV-Hybrid Hybrid model using MPI with OpenMP.SPMV-Serial The hybrid model using one thread per node; alternatively, this is the mes-sage passing model using one proessor per node. This model performs exatly the sameommuniation as SPMV-Hybrid, but the omputational work is not multithreaded.These programs were exeuted using various numbers of subdomains and subdomain sizes.We varied the subdomain sizes to alter the ommuniation-to-omputation ratio and the messagesizes in a realisti fashion. Varying the number of subdomains revealed e�ets due to salabilityfators.Individual ommuniation and omputation timings were measured. Communiation timingsvaried signi�antly from run to run, however, espeially in the message passing and hybrid ases(but not in the serial ase). These variations are disussed briey in setion 3.5. To assessaverage performane, we measured the total time for a set of 100 alls to SPMV.Tests were performed on two IBM SP mahines at Lawrene Livermore National Laboratory,one with 244 4-way nodes and another with 16 8-way nodes.7

3.2 Multithreading eÆienyTable 2 ompares SPMV-Hybrid and SPMV-Serial, showing timings and multithreading eÆien-ies on one 4-way IBM SP node using various problem sizes. The table shows that SPMV-Hybriddoes not have perfet multithreading eÆieny. This is the ase although the model programavoids several auses of ineÆieny: 1) there are no ritial setions when SPMV-Hybrid runson a single node, 2) the multithreading overheads in SPMV-Hybrid are very low relative tothe granularity of the thread parallel work (see for example [10, 3, 6℄ for estimates of OpenMPoverheads), and 3) SPMV-Hybrid should have better, rather than worse ahe utilization withregularly strutured and partitioned problems.Exept for small problem sizes, the multithreading eÆieny is approximately onstant,showing that the loss in eÆieny is proportional to the amount of work done, and is notdue to �xed overhead losses (whih would ause the eÆieny to inrease with problem size).The best explanation for the loss in eÆieny is that memory bandwidth limits the rate ofomputation. In support of this, the SPMV-MPI omputation timings are very similar to theSPMV-Hybrid timings on a single node (see Table 5 for these timings). Also, as shown in Table3, the multithreading eÆieny is higher when fewer threads per node are used in SPMV-Hybrid.The tables also hek whether or not the exeution time is proportional to the problem sizeby omputing the number of rows proessed per seond by the three programs. The results showthat for small problem sizes, the omputation is muh faster, whih may be explained beausethe matrix �ts into ahe for these sizes. For moderate sized problems, multithreading eÆienyan exeed 1, whih may be explained if SPMV-Hybrid is operating in ahe and SPMV-Serialis not.Multithreading eÆienies on an 8-way SMP node with larger ahe and higher memorybandwidth are shown in Table 4. The results are similar, showing that multithreading eÆienyimproves when fewer threads per node are used.3.3 Relative ahe eÆienySine SPMV-MPI and SPMV-Hybrid perform essentially the same work in their omputationalphases, we an ompare timings of these phases to hek di�erenes in ahe utilization. Table5 shows these timings and the relative ahe eÆienies for various problem sizes. The resultsshow that exept for very small problem sizes, the ahe utilization is similar.3.4 Network interfae eÆieny3.4.1 Lateny and bandwidth testTables 6 and 7 show measured lateny and bandwidth for 4-way and 8-way SMP nodes, re-spetively. Our benhmark program for measuring these parameters is slightly di�erent fromstandard benhmarks, but more losely mathes our appliation ode. Instead of measuring halfthe roundtrip times for short and long messages (to ompute lateny and bandwidth, respe-tively), we measure the time for all proessors to send outgoing data (nonbloking) and thenreeive inoming data (bloking). (The bandwidth we report is based on the number of bytessent per proessor and is based on 1000 iterations.) In the test, eah proessor ommuniateswith one other proessor, either o�-node, or on-node. The tables show results when di�erent8

Prob. Time (s) Rows per seond emtSize Hybrid Serial Hybrid Serial500 0.015 0.035 33333 14286 0.584000 0.216 0.779 18519 5135 0.9013500 0.825 2.754 16364 4902 0.8332000 1.997 6.764 16024 4731 0.8562500 3.877 13.250 16121 4717 0.85108000 6.888 23.500 15679 4596 0.85171500 10.795 37.017 15887 4633 0.86256000 16.228 55.988 15775 4572 0.86Table 2: Computation timings, rates, and multithreading eÆienies for SPMV on a single 4-waySMP node. Timings are the sums from 100 runs.
Prob. Time (s) Rows per seond emtSize Hybrid Serial Hybrid Serial250 0.010 0.016 25000 15625 0.802000 0.179 0.371 11173 5390 1.046750 0.700 1.329 9642 5079 0.9516000 1.749 3.330 9148 4804 0.9531250 3.434 6.574 9100 4753 0.9654000 5.992 11.492 9012 4698 0.9685750 9.580 18.408 8950 4658 0.96128000 14.628 28.103 8750 4554 0.96Table 3: Computation timings, rates, and multithreading eÆienies for SPMV on a single 4-waySMP node, using 2 threads per node. Timings are the sums from 100 runs.
Prob. Multithreading eÆienySize 8 thr/node 4 thr/node 2 thr/node1000 0.39 0.48 0.558000 0.92 0.87 0.8727000 1.18 1.07 1.0464000 1.07 1.08 1.06125000 0.96 1.00 1.05216000 0.89 0.95 1.01343000 0.86 0.94 0.98512000 0.85 0.92 0.97Table 4: Multithreading eÆienies for SPMV on a single 8-way SMP node with respet to thenumber of threads per node. 9

Prob. Time (s) eaheSize MPI Hybrid500 0.008 0.015 0.534000 0.200 0.216 0.9313500 0.781 0.825 0.9532000 1.889 1.997 0.9562500 3.781 3.877 0.98108000 6.632 6.888 0.96171500 10.627 10.795 0.98256000 16.079 16.228 0.99Table 5: Computation timings and relative ahe eÆieny for SPMV, running on a single 4-waySMP node. Timings are the sums from 100 runs.Number Overhead Bandwidth (Mb/s)of pairs (�s) Max per pro Aggregateo�-node 1 43.5 42.9 42.92 71.5 38.2 76.43 98.1 27.6 82.84 125.2 20.8 83.2on-node 1 76.1 36.8 73.62 136.0 20.7 82.8on-node 1 28.2 54.8 109.6(sh.mem) 2 30.3 59.8 239.2Table 6: Communiation parameters for 4-way SMP nodes.numbers of pairs of proessors are used. A single pair in the o�-node ase is analogous to ahybrid program when a single MPI proess is used per node. As antiipated, inreasing thenumber of pairs inreases the lateny, dereases the bandwidth per proessor, and inreases theaggregate bandwidth up to the limit supported by the network.For interest, we also show the measured lateny and bandwidth when the ommuniation ispurely on-node, with and without using shared memory in MPI. When shared memory is notused, the parameters losely math the parameters in the o�-node ase (given the same numberof proessors per node being used). With shared memory, the lateny and bandwidth parametersare improved, and seem mostly independent of the number of pairs involved in ommuniation.Sine bandwidth is atually a funtion of message size, we plot bandwidth for the o�-node andon-node ases in Figure 1. Timings were measured for message sizes from 1 to 4194304 bytesat intervals of powers of 2. Figure 1(a) plots the bandwidth per proessor when one to fourproessors on a node are ommuniating with the same number of proessors on another node.The bandwidth per proessor is lower when more proessors are performing ommuniation ina node. The kinks in the plots are due to a hange in ommuniation protool (a rendezvousommuniation protool is used for message sizes above the eager limit) and may also be due tobetter ahe utilization when message sizes are small.Figure 1(b) plots the bandwidth when ommuniation is within an SMP node. When two or10

Number Overhead Bandwidth (Mb/s)of pairs (�s) Max per pro Aggregateo�-node 1 52.8 130.5 130.52 51.6 123.8 247.64 46.5 84.4 337.68 63.0 43.1 344.8on-node 1 46.2 128.9 257.82 44.3 88.3 353.24 61.3 43.8 350.4on-node 1 27.5 175.4 350.8(sh.mem) 2 28.7 174.3 697.24 30.3 168.8 1350.4Table 7: Communiation parameters for 8-way SMP nodes.four proessors on a node are ommuniating, the plots are very similar to the ase where two orfour proessors are ommuniating o�-node. Figure 1(b) also plots the bandwidth when sharedmemory MPI is used. In this ase, the bandwidth is muh higher. The maximum bandwidthis ahieved with a moderate message size rather than the largest message size. This is due toahe e�ets in the implementation of shared memory MPI [18℄. This urve is similar when fourproessors on the node are ommuniating via shared memory MPI.To determine network interfae eÆieny, we ompare the ommuniation timings for variousmessage lengths when 1 MPI proess is used per node and when 4 proesses are used per node.When 1 MPI proess is used, messages must be four times longer in order to ompare to thease when 4 proesses are used. Figure 2(a) plots these ommuniation timings. The use of asingle MPI proess is faster for small message sizes, but for message sizes larger than about 5000bytes, using 4 MPI proesses is faster.Figure 2(b) plots the network interfae eÆieny relative to 4 and to 2 MPI tasks per node.(The �rst urve is the ratio of the two urves in 2(a).) It is also lear from Figure 2(b) that it isnot advantageous to use 2 MPI tasks per node to try to balane between lateny and bandwidthparameters. Although performane is improved for large message sizes, it is only improvedmarginally and still does not math the pure MPI program's ommuniation performane.The results are similar for the 8-way SMP nodes, exept that the network interfae eÆienyis lower. This mahine also has a single network interfae per node. Table 7 shows that thelateny does not deteriorate as severely when additional proessors are used per node, however,the single proessor bandwidth is a smaller fration of the maximum aggregate bandwidth.We also tested the ase where multiple threads within the same MPI task make alls to MPI.IBM's thread-safe MPI library was used. However, the lateny and bandwidth test showed thatper-thread bandwidth was approximately halved when 2 or more threads share the same MPItask this way. We onlude that this is not urrently an e�etive strategy for hybrid odes.3.4.2 Model program testTable 8 shows ommuniation timings for SPMV running on two nodes (8 proessors) in variousmodes. The results show the bene�t of hybrid mode in this ase. Note that although SPMV-11

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

10

20

30

40

50

60

Message size (bytes)

B
yt

es
 s

en
t p

er
 s

ec
on

d
pe

r
pr

oc
es

so
r

(×
 1

06)

(a) O�-node ommuniation using 1 (top urve)to 4 (bottom urve) proessors per node 10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

10

20

30

40

50

60

Message size (bytes)

B
yt

es
 s

en
t p

er
 s

ec
on

d
pe

r
pr

oc
es

so
r

(×
 1

06)

On−node with shared memory MPI
On−node with 1 and 2 proc pairs

(b) On-node ommuniation with 1 and 2 proes-sors per node; the dashed urve shows the sharedmemory MPI ase between 1 pair of proessorsFigure 1: Megabytes sent per seond per proessor, o�-node and on-node ases.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
1

10
2

10
3

10
4

10
5

Total number of bytes sent

C
om

m
un

ic
at

io
n

tim
e

(µ
 s

)

1 MPI task per node
4 MPI tasks per node

(a) Communiation time with 1 proessor pernode (solid urve) and 4 proessors per node(dashed urve) 10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

0.5

1

1.5

2

2.5

3

3.5

Message size (bytes)

C
om

m
un

ic
at

io
n

sp
ee

du
p

w
he

n
us

in
g

1
M

P
I t

as
k

pe
r

no
de

Relative to 4 MPI tasks per node
Relative to 2 MPI tasks per node

(b) Network interfae eÆieny: ratio of messagepassing to hybrid ommuniation timingsFigure 2: Communiation time and network interfae eÆieny.12

Prob. Communiation time (s) eniSize MPI MPI-sh.mem Hybrid Serial500 0.041 0.033 0.010 0.020 0.4104000 0.075 0.057 0.038 0.029 0.19713500 0.081 0.068 0.067 0.072 0.12132000 0.140 0.115 0.086 0.094 0.16362500 0.202 0.126 0.125 0.102 0.162108000 0.210 0.172 0.150 0.131 0.140171500 0.315 0.253 0.195 0.163 0.162256000 0.406 0.326 0.213 0.189 0.191Table 8: Communiation timings for SPMV on two nodes (8 proessors) in various modes, andthe network interfae eÆieny. Timings are the sums from 100 runs.Hybrid and SPMV-Serial perform the same ommuniation, the ommuniation timings aredi�erent. This may be due to ahe and/or memory bandwidth onsiderations a�eting theommuniation performane.The hierarhial partitioning of the omputational domain for SPMV-MPI allowed us totest the eÆay of shared memory MPI, i.e., shared memory transport is used for on-nodeommuniation. The results, shown in Table 8 as MPI-sh.mem, are not signi�antly better thanthe SPMV-MPI timings. This was also veri�ed in tests up to 216 nodes. This result suggeststhat the o�-node ommuniation masked the gains of the on-node ommuniation.3.5 Message passing saled eÆienyFigure 3 plots 100 ommuniation timings for SPMV in asending order for three examples withdi�erent numbers of nodes and di�erent problem sizes. The graphs show high variability, e.g.,from about 5 ms to almost 300 ms in Figure 3(a) for the SPMV-MPI and SPMV-Hybrid ases.It is believed that these variations are aused by system daemons briey interrupting the workdone on one or more proessors.Given that this variation is not nearly as strong in SPMV-Serial, whih plaes lower demandon the memory system, this variation may be related to memory bandwidth limits. Also, theommuniation timing variation is larger in the 125 node ase than in the 27 node ase in thesense that there are more ases when the ommuniation time is extraordinarily large. Thissuggests that the variation is stronger when there are more nodes.Despite these variations, a few observations an be made. Communiation time for problemsize 500 is about 5 times lower than for problem size 256000. In addition, for the smaller problemsize, SPMV-Hybrid (and SPMV-Serial) ommuniation timings are better than SPMV-MPIommuniation timings. This is in agreement with the observation in the previous subsetionthat not sharing network interfaes is preferred when small messages are used.In pratie, an average or aggregate ommuniation timing must be used to determine theperformane of a program that exeutes SPMV several times. This is used in Table 9, whihshows timings for all three implementations for various loal problem sizes and numbers of nodes.Sine SPMV-Hybrid and SPMV-MPI oasionally have very large ommuniation timings, theiraverage ommuniation time is larger than the average ommuniation time for SPMV-Serial.13

Graphs of MP eÆieny are plotted in Figure 4 for three problem sizes. For the smallestproblem size, 500, the SPMV-Hybrid ommuniation time is always less than the MPI ommuni-ation time (the urve remains below 1). For the larger problem sizes, 32000 and 256000, hybridommuniation is faster for small numbers of nodes and slower for large numbers of nodes.Finally, we note that programs that perform global ommuniation may give very di�erentsalability results.4 ConlusionsIn this paper, the performane of hybrid programs was deomposed into various fators. Forprograms where omputation dominates ommuniation, the performane of hybrid programsis mostly determined by the size of overheads and ritial setions and the memory bandwidth.These fators are aptured by the multithreading eÆieny parameter. The relative ahe eÆ-ieny parameter an be used in some ases to hek the di�erene in ahe utilization betweenhybrid and message passing odes. For SPMV omputation time, these parameters show thatlimited memory bandwidth auses a loss of about 15 perent. This loss is the same for bothhybrid and message passing odes.The results in Table 9 show that hybrid programs an perform better than message passingprograms when small problem sizes are used. This e�et is related to lower lateny when networkinterfaes are not shared, and is quanti�ed by the network interfae eÆieny parameter.It is somewhat surprising that SPMV-Hybrid was not better than SPMV-MPI for largenumbers of nodes. The MP eÆieny parameter shows that SPMV-MPI ommuniation is moresalable than SPMV-Hybrid ommuniation for moderate to large problem sizes. From timingsshown in Figure 3, we infer that this is due to oasional extraordinarily large ommuniationtimings in SPMV-Hybrid.Although hybrid programs are not urrently advantageous for omputations like SPMV onIBM SP mahines, as SMP nodes are built with even more proessors and system software isimproved, this situation may hange. The parameters proposed in this paper an help trakprogress in this area. Further, the proposed parameters abstrat the harateristis of hybridprograms and their omputing environments and may lead to models that an predit hybridprogram performane.AknowledgmentsThe authors wish to thank Bronis de Supinski, Mihael A. Heroux, Leonid Oliker and Je�rey S.Vetter for helpful disussions during the preparation of this paper.
14

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

T
im

e
(m

s)

Test number, sorted by communication time

MPI
Hybrid
Serial

(a) 27 nodes, Prob. size = 256000 0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

T
im

e
(m

s)

Test number, sorted by communication time

MPI
Hybrid
Serial

(b) Close-up of (a)

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

T
im

e
(m

s)

Test number, sorted by communication time

MPI
Hybrid
Serial

() 125 nodes, Prob. size = 256000 0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

T
im

e
(m

s)

Test number, sorted by communication time

MPI
Hybrid
Serial

(d) Close-up of ()

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

T
im

e
(m

s)

Test number, sorted by communication time

MPI
Hybrid
Serial

(e) 125 nodes, Prob. size = 500 0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

T
im

e
(m

s)

Test number, sorted by communication time

MPI
Hybrid
Serial

(f) Close-up of (e)Figure 3: Communiation timings in 100 tests, in asending order.15

Prob. Number Total time (s) Communiation time (s)Size of Nodes MPI Hybrid Serial MPI Hybrid Serial500 1 0.029 0.015 0.035 0.021 0.000 0.0008 0.071 0.042 0.090 0.063 0.027 0.05527 0.119 0.101 0.157 0.111 0.086 0.12264 0.141 0.126 0.173 0.133 0.111 0.138125 0.297 0.148 0.182 0.289 0.133 0.147216 0.416 0.182 0.182 0.408 0.167 0.1474000 1 0.232 0.216 0.779 0.032 0.000 0.0008 0.336 0.327 0.892 0.136 0.111 0.11327 0.434 0.425 1.021 0.234 0.209 0.24264 0.474 0.454 1.031 0.274 0.238 0.252125 0.833 0.491 1.035 0.633 0.275 0.256216 1.436 0.790 1.044 1.236 0.574 0.26513500 1 0.838 0.825 2.754 0.057 0.000 0.0008 0.988 1.002 3.001 0.207 0.177 0.24727 1.216 1.139 3.266 0.435 0.314 0.51264 1.338 1.554 3.275 0.557 0.729 0.521125 1.349 1.592 3.305 0.568 0.767 0.551216 2.769 2.488 3.339 1.988 1.663 0.58532000 1 1.985 1.997 6.764 0.096 0.000 0.0008 2.217 2.305 7.197 0.328 0.308 0.43327 2.375 2.737 7.546 0.486 0.740 0.78264 2.708 3.299 7.604 0.819 1.302 0.840125 3.374 3.686 7.643 1.485 1.689 0.879216 4.253 5.286 7.680 2.364 3.289 0.91662500 1 3.938 3.877 13.250 0.157 0.000 0.0008 4.216 4.478 14.011 0.435 0.601 0.76127 4.697 5.207 14.511 0.916 1.330 1.26164 4.910 5.712 14.652 1.129 1.835 1.402125 6.228 7.338 14.646 2.447 3.461 1.396216 6.922 8.204 14.732 3.141 4.327 1.482108000 1 6.818 6.888 23.500 0.186 0.000 0.0008 7.351 7.369 24.312 0.719 0.481 0.81227 7.896 8.753 25.232 1.264 1.865 1.73264 9.183 10.213 25.335 2.551 3.325 1.835125 9.885 11.103 25.351 3.253 4.215 1.851216 10.004 12.399 25.577 3.372 5.511 2.077171500 1 10.909 10.795 37.017 0.282 0.000 0.0008 11.594 11.748 38.509 0.967 0.953 1.49227 12.518 13.451 39.704 1.891 2.656 2.68764 13.478 15.344 39.657 2.851 4.549 2.640125 14.358 16.293 39.945 3.731 5.498 2.928216 15.278 16.614 39.859 4.651 5.819 2.842256000 1 16.359 16.228 55.988 0.280 0.000 0.0008 17.614 17.399 57.850 1.535 1.171 1.86227 19.103 19.912 59.499 3.024 3.684 3.51164 19.472 21.960 59.773 3.393 5.732 3.785125 20.331 22.859 59.837 4.252 6.631 3.849216 21.178 24.057 59.982 5.099 7.829 3.994Table 9: Timings for SPMV. Timings are the sums from 100 runs. For perfet salability, thetimings should be the same for a given problem size.16

1 8 27 64 125 216
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of Nodes

M
P

I S
ca

la
bi

lit
y

500
32000
256000

Figure 4: Message passing saled eÆieny: ratio of hybrid to message passing ommuniationtimings as a funtion of the number of nodes. The urves are shown for problem sizes 500,32000, and 256000.

17

Referenes[1℄ S. B. Baden and S. J. Fink. A programming methodology for dual-tier multiomputers.IEEE Trans. Softw. Eng., to appear.[2℄ D. A. Bader and J. J�aJ�a. SIMPLE: A methodology for programming high performanealgorithms on lusters of symmetri multiproessors (SMPs). Tehnial Report UMIACS-TR-97-48, University of Maryland, College Park, 1997.[3℄ R. Berrendorf and G. Nieken. Performane harateristis for OpenMP onstruts on dif-ferent parallel omputer arhitetures. In First European Workshop on OpenMP, Lund,Sweden, 1999.[4℄ S. Bova, C. Breshears, R. Eigenmann, H. Gabb, G. Gaertner, B. Kuhn, B. Magro, S. Salvini,and V. Vatsa. Combining message-passing and diretives in parallel appliations. SIAMNews, 32, 1999.[5℄ S. W. Bova, C. P. Breshears, C. E. Cuihi, Z. Demirbilek, and H. A. Gabb. Dual-levelparallel analysis of harbor wave response using MPI and OpenMP. Intl. J. High Perf.Comput. Appl., 14:49{64, 2000.[6℄ J. M. Bull. Measuring synhronisation and sheduling overheads in OpenMP. In FirstEuropean Workshop on OpenMP, Lund, Sweden, 1999.[7℄ I. J. Bush, C. J. Noble, and R. J. Allan. Mixed OpenMP and MPI for parallel Fortranappliations. In European Workshop on OpenMP 2000, Edinburgh, UK, 2000.[8℄ F. Cappello and D. Etiemble. MPI versus MPI+OpenMP on IBM SP for the NAS benh-marks. In Superomputing 2000, 2000.[9℄ F. Cappello, O. Rihard, and D. Etiemble. Investigating the performane of two program-ming models for lusters of SMP PCs. In IEEE HPCA6, 2000.[10℄ B. de Supinski and J. May. Benhmarking Pthreads performane. In Intl. Conf. on Paralleland Distributed Proessing Tehniques and Appliations (PDPTA), 1999.[11℄ W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith. High-performane parallelCFD. Parallel Computing, 27:337{362, 2001.[12℄ D. S. Henty. Performane of hybrid message-passing and shared-memory parallelism fordisrete element modeling. In Superomputing 2000, 2000.[13℄ M. A. Heroux. Exploiting distributed shared memory arhitetures in sparse matrix om-putations. In Solving Irregularly Strutured Problems in Parallel, 5th International Sympo-sium, Berkeley, CA, 1998.[14℄ W. Huang and D. Tafti. A parallel omputing framework for dynami power balaningin adaptive mesh re�nement appliations. In Proeedings of Parallel Computational FluidDynamis, Williamsburg, VA, 1999. 18

[15℄ P. Lanuara and S. Rovida. Conjugate-gradients algorithms: An MPI-OpenMP implemen-tation on distributed shared memory systems. In First European Workshop on OpenMP,pages 76{78, Lund, Sweden, 1999.[16℄ D. J. Mavriplis. Parallel performane investigations of an unstrutured mesh Navier-Stokessolver. Tehnial Report 2000-13, ICASE, Hampton, VA, 2000.[17℄ J. May and B. de Supinski. Experiene with mixed MPI/threaded programming models. InIntl. Conf. on Parallel and Distributed Proessing Tehniques and Appliations (PDPTA),1999.[18℄ Boris V. Protopopov and Anthony Skjellum. Shared-memory ommuniation approahesfor an MPI message-passing library. Conurreny: Pratie and Experiene, 12:799{820,2000.[19℄ H. Shan, J. P. Singh, L. Oliker, and R. Biswas. Message passing and shared address spaeparallelism on an SMP luster. Parallel Computing, submitted.[20℄ L. Smith. Mixed mode MPI/OpenMP programming. Tehnial Report Tehnology Wath1, UK High-End Computing, EPCC, Edinburgh, UK, 2000.[21℄ L. Smith and P. Kent. Development and performane of a mixed OpenMP/MPI quantumMonte Carlo ode. Conurreny: Pratie and Experiene, 12:1121{1129, 2000.

19

