
Assessing Performan
e of Hybrid MPI/OpenMP Programs onSMP Clusters�Edmond Chowy and David HysomyzAbstra
tComputational experien
es with hybrid message passing and multithreading te
hniqueson SMP 
lusters generally show poorer performan
e than pure message passing approa
hes.This paper attempts to understand the performan
e of hybrid MPI and OpenMP programsby de
omposing and des
ribing performan
e using four parameters: multithreading eÆ
ien
y,relative 
a
he eÆ
ien
y, network interfa
e eÆ
ien
y, and message passing s
aled eÆ
ien
y.These parameters are used to assess a sparse matrix-ve
tor produ
t kernel, whi
h is typi
al ofmany parallel s
ienti�
 
omputations, running on an IBM SP 
omputer. Tests with variousproblem sizes using up to 216 nodes (864 pro
essors) reveal, for example, the bene�t of usinga hybrid implementation 
ompared to an MPI implementation when the 
omputation usessmall messages and is not network bandwidth limited. Otherwise, the MPI implementationgenerally shows superior performan
e.1 Introdu
tionLarge parallel 
omputers are in
reasingly built by 
onne
ting 
ommodity symmetri
 multipro-
essor (SMP) nodes via a relatively inexpensive inter
onne
t. Ea
h node 
onsists of a number ofpro
essors and a large pool of shared memory. Examples of these ma
hines in
lude re
ent IBMSP parallel 
omputers, Compaq AlphaServer 
lusters, and advan
ed Beowulf systems. Thesema
hines may be programmed by using message passing between all pro
essors on all nodesinvolved in a 
omputation, but there is the possibility of a
hieving better performan
e by usinga hierar
hi
al programming style that mat
hes the hierar
hi
al shared and distributed memoryar
hite
ture. We refer to a hybrid programming style as one that uses multithreading to useshared memory within a node and message passing to use memory distributed a
ross nodes.On the surfa
e, hybrid programs should give better performan
e than pure message passingapproa
hes for three reasons: 1) message passing within a node is repla
ed by fast sharedmemory a

esses, 2) there is smaller 
ommuni
ation volume on the inter
onne
t sin
e intra-node messages are not ne
essary (this might not a�e
t performan
e unless the inter
onne
t is�Te
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ongested), and 3) fewer pro
esses are involved in 
ommuni
ation, whi
h should lead to betters
alability, parti
ularly for global 
ommuni
ations. Despite these advantages, however, mosthybrid 
odes do not even a
hieve the performan
e of an equivalent message passing 
ode (or ashared memory 
ode), and in many 
ases, the performan
e is mu
h worse [8, 9, 21, 12, 16, 19, 15℄.Performan
e may only be 
omparable, for example, in appli
ations that are very parallel [5℄.Depending on the appli
ation program or 
omputing environment, various fa
tors have beenused to explain poor hybrid program performan
e, in
luding 1) 
riti
al se
tions that 
annot bemultithreaded, 2) thread sy
hronization, loop s
heduling, and other overheads, and 3) data par-titionings based on SMP nodes rather than threads, leading to poor 
a
he utilization 
omparedto pure message passing programs. The goal of this paper is to help quantify and better under-stand these and other fa
tors and the performan
e that 
an be a
hieved in hybrid programs.Some of the above diÆ
ulties 
an be over
ome by writing hybrid 
odes 
arefully, for example,by using 
oarse-grained thread parallelism and partitionings based on threads. These hybridprograms, however, 
an involve signi�
antly more e�ort to 
ode than message passing programs,e.g., see the overviews in [4, 17, 20, 7℄. In reality, many hybrid programs are simply adaptedfrom message passing programs.At Lawren
e Livermore National Laboratory, our early IBM SP system software only allowedslower IP mode 
ommuni
ations when it was desired to use more than one MPI task per node,making it imperative to use some form of hybrid programming for better performan
e. Users
ombined MPI with either Pthreads, OpenMP, or threaded libraries [17℄. The IP mode limitationhas now been removed, and the faster US mode may be used. However, US mode limits themaximum number of MPI tasks and this limit is smaller than the number of pro
essors on ourlargest IBM SP systems. Thus hybrid programming is still imperative in order to solve verylarge problems using all pro
essors of these large ma
hines.There are also algorithmi
 reasons why hybrid programs are important to investigate: 1)
omputation within a node 
an be automati
ally load balan
ed using multithreading, e.g., [14,12℄, and 2) the use of larger subproblems (one per node rather than one per pro
essor) givesmany numeri
al simulation algorithms better mathemati
al properties [13, 11℄. The hybrid andmessage passing programs are not mathemati
ally equivalent in the latter 
ase.A number of strategies are available for 
ombining message passing with multithreading.This paper studies perhaps the simplest strategy, that of 
ombining MPI and OpenMP. In thismodel, typi
ally one pro
ess is used per node, and only one thread in the pro
ess performsMPI 
ommuni
ations at any one time, i.e., in a 
riti
al se
tion. Loop iterations that 
an beparallelized are multithreaded with OpenMP dire
tives.Besides expli
itly 
ombining message passing and multithreading in a program, hybrid pro-gramming styles in
lude using versions of message passing libraries that use shared memorytransport when 
ommuni
ating within an SMP node [18℄. Other alternatives in
lude program-ming methodologies and libraries [1, 2℄ and various shared virtual memory environments. Thesesolutions generally trade ease of programming for some loss of performan
e.This paper proposes four measurable parameters that help explain the performan
e of hybridprograms on a given parallel 
omputer. This is done in se
tion 2 after introdu
ing the relevantissues. Se
tion 3 illustrates the use of these parameters for a sparse matrix-ve
tor produ
tkernel (SPMV) running on an IBM SP. This kernel models the behavior of many s
ienti�

omputations. Some 
on
lusions about the overall performan
e of SPMV in hybrid mode aredrawn in se
tion 4. 2



2 Hybrid program performan
e2.1 Fa
tors a�e
ting hybrid program performan
eIn this se
tion, we dis
uss the fa
tors that improve or degrade the performan
e of hybrid pro-grams 
ompared to equivalent message passing programs. Many of these fa
tors have beensuggested in the literature, and others are derived from our own experien
e. Most of these fa
-tors are pointed out in the ex
ellent paper by Cappello and Etiemble [8℄. The fa
tors a�e
tingperforman
e in a hybrid 
ode are:1. 
riti
al se
tions that 
annot be multithreaded,2. thread syn
hronization, loop s
heduling, and other overheads,3. data partitionings based on SMP nodes rather than threads, leading to poor 
a
he utiliza-tion 
ompared to pure message passing programs,4. memory bandwidth on a node limiting multithreaded performan
e,5. di�eren
es in 
ommuni
ation performan
e when fewer message passing pro
esses share anetwork interfa
e,6. di�eren
es in s
alability sin
e fewer pro
esses are involved in message passing 
ommuni-
ation.The �rst four fa
tors are related to 
omputation rather than 
ommuni
ation, and oftendegrade hybrid program performan
e. The last two fa
tors are related to 
ommuni
ation andmay either improve or degrade performan
e.The a
tual improvement or redu
tion in performan
e depends on both appli
ation program
hara
teristi
s and 
hara
teristi
s of the 
omputing environment. Fa
tors 1 to 3 are generallyprogram-spe
i�
 and 
an o

asionally be avoided or redu
ed in a 
arefully written hybrid pro-gram. Fa
tors 4 to 6 are less in the programmer's 
ontrol, but better hybrid programs 
an bewritten if these fa
tors are understood.Two of the fa
tors require more explanation. When fewer pro
esses share a network inter-fa
e (fa
tor 5), 
ommuni
ation laten
y de
reases and per-pro
ess bandwidth in
reases. Thismay improve hybrid program performan
e. However, experiments suggest that a single mes-sage passing pro
ess 
annot transfer data fast enough to the network interfa
e to a
hieve themaximum bandwidth of the network. Thus the aggregate bandwidth is lower when fewer mes-sage passing pro
esses are used. Thus programs that are bandwidth limited may su�er under ahybrid model.A potential advantage of hybrid programs over message passing programs is that for the samenumber of pro
essors in a 
omputation, only a fra
tion of those pro
essors need to be involvedin message passing (fa
tor 6). Parti
ularly when global 
ommuni
ations are involved, hybridprograms may be more s
alable. Unfortunately, if global 
ommuni
ation 
osts are logarithmi
in the number of pro
essors, the advantage of hybrid programs diminishes for larger numbers ofpro
essors.When there is no global 
ommuni
ation, programs still lose s
alability due to load imbal-an
es or imperfe
t sy
hronization between pro
esses when they need to 
ommuni
ate. Again,3



these losses may depend on the number of pro
esses parti
ipating in 
ommuni
ation and maybe di�erent for message passing and hybrid programs. Imperfe
t syn
hronization is not well-understood. Our results in se
tion 3.5 show a large variation in 
ommuni
ation timings, andthe variation depends on the number of pro
esses involved in the 
omputation as well as theprogramming model used.2.2 Parameters for assessing hybrid program performan
eTo understand the performan
e of hybrid programs 
ompared to message passing programs, wepropose de
omposing and des
ribing performan
e using four parameters. The �rst parameter,multithreading eÆ
ien
y, measures the loss in 
omputation rate due to multithreading, namely,the loss due to fa
tors 1, 2, and 4. The se
ond parameter, relative 
a
he eÆ
ien
y identi�es
a
he utilization di�eren
es between hybrid and message passing programs, i.e., fa
tor 3. Thethird and fourth parameters, network interfa
e eÆ
ien
y and message passing s
aled eÆ
ien
y,measure the gain or loss in 
ommuni
ation performan
e due to fa
tors 5 and 6, respe
tively. Allthe parameters ex
ept the fourth parameter are with respe
t to a small number of nodes, to try toisolate these parameters from s
aling e�e
ts. These parameters and the ratio of 
ommuni
ation-to-
omputation help determine the relative in
uen
e of the various fa
tors on overall hybridprogram performan
e.In the following, we denote 
ommuni
ation time and 
omputation time as t
omm and t
omp .Subs
ripts indi
ate the programming model used: tmpi and thyb indi
ate message passing andhybrid models, respe
tively, and tser indi
ates the hybrid model using a single thread per node(or the message passing model using one pro
essor per node). We also denote the number ofthreads per node as nt.2.3 Multithreading eÆ
ien
yMany programs do not have perfe
t speedup when they are multithreaded. This may be due to
riti
al se
tions in the 
ode, syn
hronization and other overheads, and memory bandwidth thatis not suÆ
ient for the multithreaded 
omputation. Multithreading eÆ
ien
y (emt ) quanti�esthese fa
tors by 
omparing the exe
ution time of a threaded program with its exe
ution timeif it had perfe
t speedup. More pre
isely, for a given program running on a given 
omputer,multithreading eÆ
ien
y is de�ned as emt = t
ompserntt
omphyb :Multithreading eÆ
ien
y measures the eÆ
ien
y of the 
omputational part of the program anddoes not involve 
ommuni
ation. Therefore multithreading eÆ
ien
y 
an be measured by timinga multithreaded program and its nonthreaded 
ounterpart, ea
h running on a single node.The multithreading eÆ
ien
y parameter is a�e
ted by 
a
he utilization di�eren
es betweenthe multithreaded and nonthreaded versions of the program. Usually, the multithreaded ver-sion will have better 
a
he utilization and eÆ
ien
ies greater than unity are possible. Thusmultithreading eÆ
ien
y must be interpreted with this e�e
t in mind.Multithreading eÆ
ien
y may 
hange when the problem size or size of the 
omputation is
hanged. This may help pinpoint whether or not the ineÆ
ien
ies are due to �xed-
ost overheads.4



2.4 Relative 
a
he eÆ
ien
yHybrid and message passing programs may have di�erent 
a
he behavior. Most often, data forparallel programs is partitioned for ea
h pro
ess rather than for ea
h thread, and thus messagepassing programs may have better 
a
he utilization than hybrid programs. If ea
h thread inthe hybrid program and ea
h pro
ess in the message passing program perform the same work(i.e., the losses due to 
riti
al se
tions and overheads are negligible) then 
omparing the timingsof these two programs' 
omputation phases gives a rough indi
ation of the di�eren
es in 
a
heutilization. We de�ne relative 
a
he eÆ
ien
y (e
a
he) ase
a
he = t
ompmpit
omphyb :Here, we assume that the number threads per node in the hybrid program is equal to the numberof pro
essors on the node.2.5 Network interfa
e eÆ
ien
yNetwork interfa
e eÆ
ien
y (eni ), or NI eÆ
ien
y, 
ompares the 
ommuni
ation performan
ewhen di�erent numbers of pro
esses must share the same network interfa
e. In hybrid programs,fewer pro
esses share a network interfa
e than in message passing programs. Both laten
y andbandwidth (performan
e for both short and long messages) are a�e
ted, and thus NI eÆ
ien
ydepends on message length. We de�ne NI eÆ
ien
y aseni(m2) = t
ommmpi (m1)t
ommhyb (m2)where m1 and m2 are the typi
al message lengths in the message passing and hybrid programs.The message length in hybrid programs is typi
ally larger than the message length in equivalentmessage passing programs. To make sure that NI eÆ
ien
y is not a�e
ted by fa
tors related tothe number of pro
essors or nodes, it should be based on the 
ommuni
ation time of programsusing a small number of pro
essors or nodes.2.6 Message passing s
aled eÆ
ien
yMessage passing s
aled eÆ
ien
y (emp), or MP eÆ
ien
y, is the parameter that 
onsiders messagepassing 
ommuni
ation performan
e as a fun
tion of the number of nodes or pro
essors usedby a program. A pure message passing program using p pro
essors may be less s
alable thana hybrid program with p=nt pro
esses parti
ipating in message passing 
ommuni
ation. The
ommuni
ation time of the hybrid program 
annot be easily predi
ted from the 
ommuni
ationtime of the message passing program using p=nt pro
essors, sin
e the message passing programuses more pro
essors per network interfa
e. Thus NI eÆ
ien
y is embedded in MP eÆ
ien
y,and MP eÆ
ien
y also depends on message length.Another 
onsideration when many pro
esses are used is the time that pro
esses may need towait for ea
h other in order to 
ommuni
ate. When there are more pro
esses, it is more likelythat 
ommuni
ation is not perfe
tly syn
hronized, and \imperfe
t syn
hronization" is a fun
tion5



Threads per node Subdomain size2 2n� n� n4 2n� 2n� n8 2n� 2n� 2nTable 1: Subdomain sizes depending on the number of threads (pro
essors) per node.of the number of pro
esses and the programming model. This is a form of load imbalan
e and
auses imperfe
t s
alability even when no global 
ommuni
ation is used.We de�ne MP eÆ
ien
y as the ratio of the 
ommuni
ation time of a hybrid program to thatof an equivalent message passing program,emp(p=nt) = t
ommhyb (p=nt)t
ommmpi (p)where p is the number of pro
essors used in the 
omputation. The s
aled eÆ
ien
y is measuredusing the 
ommuni
ation timings for a 
omputation with size proportional to the number ofpro
essors.3 Assessing hybrid performan
e for a model programThe parameters proposed in the previous se
tion help reveal how a program's 
hara
teristi
s and
hara
teristi
s of the hardware and system software a�e
t that program's performan
e in hybridmode. This se
tion des
ribes a model program that attempts to simulate the 
ommuni
ationpatterns and the 
ommuni
ation-to-
omputation ratio of many s
ienti�
 
omputing 
odes. Theabove parameters are then applied to help explain the performan
e of the model program.3.1 Model program3.1.1 Data partitioningParallel programs often partition a 
omputational spa
e into subdomains, with ea
h subdomainhandled by a pro
essor. A 
ommuni
ation phase allows the pro
essors to ex
hange subdomainboundary data, whi
h is then followed by a 
omputation phase. These phases are repeatedseveral times.The 
omputation that the model program performs is a sparse matrix-ve
tor produ
t (SPMV).This kernel is typi
al of many s
ienti�
 
omputing appli
ations. A simple 3-D 
omputationalspa
e is used and partitioned regularly into equal-sized subdomains to redu
e e�e
ts of loadimbalan
e.In the hybrid 
ase, Table 1 shows the subdomain sizes that are used, depending on thenumber of threads (pro
essors) that are used per node. These subdomains are not furtherpartitioned for ea
h thread, whi
h is 
onsistent with 
ommon pra
ti
e [17℄. In the table, n isused to parameterize the subdomain size (also 
alled the problem size in the tables), and variesfrom 5 to 40. The subdomains are arranged in a p� p� p topology when p3 nodes are used.6



In the pure message passing 
ase, the subdomains (of the hybrid 
ase) are further partitionedinto nt blo
ks, where nt is the number of pro
essors used per node. The resulting subdomainshave dimensions n�n�n. These dimensions make the message passing 
omputation 
omparableto the hybrid 
omputation.The sparse matrix used for SPMV is from a 27-point dis
retization of a 3-D partial di�erentialequation. The matrix has at most 27 nonzeros per row, and the arrangement of the nonzeros andthe partitioning implies that ea
h pro
essor or node will 
ommuni
ate with at most 26 others.3.1.2 Hybrid implementationThe stru
ture of SPMV is as follows:1. Fill bu�ers for outgoing data2. Send outgoing data (nonblo
king)3. Re
eive in
oming data (nonblo
king)4. Wait for sends and re
eives to 
omplete5. Perform lo
al part of sparse matrix-ve
tor multiplyIn the hybrid model, steps 1 and 5 (
omputation) are loops and are threaded using OpenMPdire
tives, while steps 2 to 4 (
ommuni
ation) 
omprise a serialized se
tion. There are no otherserial se
tions.Part of the 
ommuni
ation phase may be overlapped with the 
omputation phase. Also,in many s
ienti�
 appli
ations, the 
ommuni
ation phase in
ludes global 
ommuni
ation oper-ations. For simpli
ity, however, these two e�e
ts will not be 
onsidered in the model program.3.1.3 Timings 
olle
tedWe 
olle
ted timing data for the 
ommuni
ation and 
omputation phases of SPMV running inthree modes:SPMV-MPI Traditional message passing model using MPI.SPMV-Hybrid Hybrid model using MPI with OpenMP.SPMV-Serial The hybrid model using one thread per node; alternatively, this is the mes-sage passing model using one pro
essor per node. This model performs exa
tly the same
ommuni
ation as SPMV-Hybrid, but the 
omputational work is not multithreaded.These programs were exe
uted using various numbers of subdomains and subdomain sizes.We varied the subdomain sizes to alter the 
ommuni
ation-to-
omputation ratio and the messagesizes in a realisti
 fashion. Varying the number of subdomains revealed e�e
ts due to s
alabilityfa
tors.Individual 
ommuni
ation and 
omputation timings were measured. Communi
ation timingsvaried signi�
antly from run to run, however, espe
ially in the message passing and hybrid 
ases(but not in the serial 
ase). These variations are dis
ussed brie
y in se
tion 3.5. To assessaverage performan
e, we measured the total time for a set of 100 
alls to SPMV.Tests were performed on two IBM SP ma
hines at Lawren
e Livermore National Laboratory,one with 244 4-way nodes and another with 16 8-way nodes.7



3.2 Multithreading eÆ
ien
yTable 2 
ompares SPMV-Hybrid and SPMV-Serial, showing timings and multithreading eÆ
ien-
ies on one 4-way IBM SP node using various problem sizes. The table shows that SPMV-Hybriddoes not have perfe
t multithreading eÆ
ien
y. This is the 
ase although the model programavoids several 
auses of ineÆ
ien
y: 1) there are no 
riti
al se
tions when SPMV-Hybrid runson a single node, 2) the multithreading overheads in SPMV-Hybrid are very low relative tothe granularity of the thread parallel work (see for example [10, 3, 6℄ for estimates of OpenMPoverheads), and 3) SPMV-Hybrid should have better, rather than worse 
a
he utilization withregularly stru
tured and partitioned problems.Ex
ept for small problem sizes, the multithreading eÆ
ien
y is approximately 
onstant,showing that the loss in eÆ
ien
y is proportional to the amount of work done, and is notdue to �xed overhead losses (whi
h would 
ause the eÆ
ien
y to in
rease with problem size).The best explanation for the loss in eÆ
ien
y is that memory bandwidth limits the rate of
omputation. In support of this, the SPMV-MPI 
omputation timings are very similar to theSPMV-Hybrid timings on a single node (see Table 5 for these timings). Also, as shown in Table3, the multithreading eÆ
ien
y is higher when fewer threads per node are used in SPMV-Hybrid.The tables also 
he
k whether or not the exe
ution time is proportional to the problem sizeby 
omputing the number of rows pro
essed per se
ond by the three programs. The results showthat for small problem sizes, the 
omputation is mu
h faster, whi
h may be explained be
ausethe matrix �ts into 
a
he for these sizes. For moderate sized problems, multithreading eÆ
ien
y
an ex
eed 1, whi
h may be explained if SPMV-Hybrid is operating in 
a
he and SPMV-Serialis not.Multithreading eÆ
ien
ies on an 8-way SMP node with larger 
a
he and higher memorybandwidth are shown in Table 4. The results are similar, showing that multithreading eÆ
ien
yimproves when fewer threads per node are used.3.3 Relative 
a
he eÆ
ien
ySin
e SPMV-MPI and SPMV-Hybrid perform essentially the same work in their 
omputationalphases, we 
an 
ompare timings of these phases to 
he
k di�eren
es in 
a
he utilization. Table5 shows these timings and the relative 
a
he eÆ
ien
ies for various problem sizes. The resultsshow that ex
ept for very small problem sizes, the 
a
he utilization is similar.3.4 Network interfa
e eÆ
ien
y3.4.1 Laten
y and bandwidth testTables 6 and 7 show measured laten
y and bandwidth for 4-way and 8-way SMP nodes, re-spe
tively. Our ben
hmark program for measuring these parameters is slightly di�erent fromstandard ben
hmarks, but more 
losely mat
hes our appli
ation 
ode. Instead of measuring halfthe roundtrip times for short and long messages (to 
ompute laten
y and bandwidth, respe
-tively), we measure the time for all pro
essors to send outgoing data (nonblo
king) and thenre
eive in
oming data (blo
king). (The bandwidth we report is based on the number of bytessent per pro
essor and is based on 1000 iterations.) In the test, ea
h pro
essor 
ommuni
ateswith one other pro
essor, either o�-node, or on-node. The tables show results when di�erent8



Prob. Time (s) Rows per se
ond emtSize Hybrid Serial Hybrid Serial500 0.015 0.035 33333 14286 0.584000 0.216 0.779 18519 5135 0.9013500 0.825 2.754 16364 4902 0.8332000 1.997 6.764 16024 4731 0.8562500 3.877 13.250 16121 4717 0.85108000 6.888 23.500 15679 4596 0.85171500 10.795 37.017 15887 4633 0.86256000 16.228 55.988 15775 4572 0.86Table 2: Computation timings, rates, and multithreading eÆ
ien
ies for SPMV on a single 4-waySMP node. Timings are the sums from 100 runs.
Prob. Time (s) Rows per se
ond emtSize Hybrid Serial Hybrid Serial250 0.010 0.016 25000 15625 0.802000 0.179 0.371 11173 5390 1.046750 0.700 1.329 9642 5079 0.9516000 1.749 3.330 9148 4804 0.9531250 3.434 6.574 9100 4753 0.9654000 5.992 11.492 9012 4698 0.9685750 9.580 18.408 8950 4658 0.96128000 14.628 28.103 8750 4554 0.96Table 3: Computation timings, rates, and multithreading eÆ
ien
ies for SPMV on a single 4-waySMP node, using 2 threads per node. Timings are the sums from 100 runs.
Prob. Multithreading eÆ
ien
ySize 8 thr/node 4 thr/node 2 thr/node1000 0.39 0.48 0.558000 0.92 0.87 0.8727000 1.18 1.07 1.0464000 1.07 1.08 1.06125000 0.96 1.00 1.05216000 0.89 0.95 1.01343000 0.86 0.94 0.98512000 0.85 0.92 0.97Table 4: Multithreading eÆ
ien
ies for SPMV on a single 8-way SMP node with respe
t to thenumber of threads per node. 9



Prob. Time (s) e
a
heSize MPI Hybrid500 0.008 0.015 0.534000 0.200 0.216 0.9313500 0.781 0.825 0.9532000 1.889 1.997 0.9562500 3.781 3.877 0.98108000 6.632 6.888 0.96171500 10.627 10.795 0.98256000 16.079 16.228 0.99Table 5: Computation timings and relative 
a
he eÆ
ien
y for SPMV, running on a single 4-waySMP node. Timings are the sums from 100 runs.Number Overhead Bandwidth (Mb/s)of pairs (�s) Max per pro
 Aggregateo�-node 1 43.5 42.9 42.92 71.5 38.2 76.43 98.1 27.6 82.84 125.2 20.8 83.2on-node 1 76.1 36.8 73.62 136.0 20.7 82.8on-node 1 28.2 54.8 109.6(sh.mem) 2 30.3 59.8 239.2Table 6: Communi
ation parameters for 4-way SMP nodes.numbers of pairs of pro
essors are used. A single pair in the o�-node 
ase is analogous to ahybrid program when a single MPI pro
ess is used per node. As anti
ipated, in
reasing thenumber of pairs in
reases the laten
y, de
reases the bandwidth per pro
essor, and in
reases theaggregate bandwidth up to the limit supported by the network.For interest, we also show the measured laten
y and bandwidth when the 
ommuni
ation ispurely on-node, with and without using shared memory in MPI. When shared memory is notused, the parameters 
losely mat
h the parameters in the o�-node 
ase (given the same numberof pro
essors per node being used). With shared memory, the laten
y and bandwidth parametersare improved, and seem mostly independent of the number of pairs involved in 
ommuni
ation.Sin
e bandwidth is a
tually a fun
tion of message size, we plot bandwidth for the o�-node andon-node 
ases in Figure 1. Timings were measured for message sizes from 1 to 4194304 bytesat intervals of powers of 2. Figure 1(a) plots the bandwidth per pro
essor when one to fourpro
essors on a node are 
ommuni
ating with the same number of pro
essors on another node.The bandwidth per pro
essor is lower when more pro
essors are performing 
ommuni
ation ina node. The kinks in the plots are due to a 
hange in 
ommuni
ation proto
ol (a rendezvous
ommuni
ation proto
ol is used for message sizes above the eager limit) and may also be due tobetter 
a
he utilization when message sizes are small.Figure 1(b) plots the bandwidth when 
ommuni
ation is within an SMP node. When two or10



Number Overhead Bandwidth (Mb/s)of pairs (�s) Max per pro
 Aggregateo�-node 1 52.8 130.5 130.52 51.6 123.8 247.64 46.5 84.4 337.68 63.0 43.1 344.8on-node 1 46.2 128.9 257.82 44.3 88.3 353.24 61.3 43.8 350.4on-node 1 27.5 175.4 350.8(sh.mem) 2 28.7 174.3 697.24 30.3 168.8 1350.4Table 7: Communi
ation parameters for 8-way SMP nodes.four pro
essors on a node are 
ommuni
ating, the plots are very similar to the 
ase where two orfour pro
essors are 
ommuni
ating o�-node. Figure 1(b) also plots the bandwidth when sharedmemory MPI is used. In this 
ase, the bandwidth is mu
h higher. The maximum bandwidthis a
hieved with a moderate message size rather than the largest message size. This is due to
a
he e�e
ts in the implementation of shared memory MPI [18℄. This 
urve is similar when fourpro
essors on the node are 
ommuni
ating via shared memory MPI.To determine network interfa
e eÆ
ien
y, we 
ompare the 
ommuni
ation timings for variousmessage lengths when 1 MPI pro
ess is used per node and when 4 pro
esses are used per node.When 1 MPI pro
ess is used, messages must be four times longer in order to 
ompare to the
ase when 4 pro
esses are used. Figure 2(a) plots these 
ommuni
ation timings. The use of asingle MPI pro
ess is faster for small message sizes, but for message sizes larger than about 5000bytes, using 4 MPI pro
esses is faster.Figure 2(b) plots the network interfa
e eÆ
ien
y relative to 4 and to 2 MPI tasks per node.(The �rst 
urve is the ratio of the two 
urves in 2(a).) It is also 
lear from Figure 2(b) that it isnot advantageous to use 2 MPI tasks per node to try to balan
e between laten
y and bandwidthparameters. Although performan
e is improved for large message sizes, it is only improvedmarginally and still does not mat
h the pure MPI program's 
ommuni
ation performan
e.The results are similar for the 8-way SMP nodes, ex
ept that the network interfa
e eÆ
ien
yis lower. This ma
hine also has a single network interfa
e per node. Table 7 shows that thelaten
y does not deteriorate as severely when additional pro
essors are used per node, however,the single pro
essor bandwidth is a smaller fra
tion of the maximum aggregate bandwidth.We also tested the 
ase where multiple threads within the same MPI task make 
alls to MPI.IBM's thread-safe MPI library was used. However, the laten
y and bandwidth test showed thatper-thread bandwidth was approximately halved when 2 or more threads share the same MPItask this way. We 
on
lude that this is not 
urrently an e�e
tive strategy for hybrid 
odes.3.4.2 Model program testTable 8 shows 
ommuni
ation timings for SPMV running on two nodes (8 pro
essors) in variousmodes. The results show the bene�t of hybrid mode in this 
ase. Note that although SPMV-11
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Prob. Communi
ation time (s) eniSize MPI MPI-sh.mem Hybrid Serial500 0.041 0.033 0.010 0.020 0.4104000 0.075 0.057 0.038 0.029 0.19713500 0.081 0.068 0.067 0.072 0.12132000 0.140 0.115 0.086 0.094 0.16362500 0.202 0.126 0.125 0.102 0.162108000 0.210 0.172 0.150 0.131 0.140171500 0.315 0.253 0.195 0.163 0.162256000 0.406 0.326 0.213 0.189 0.191Table 8: Communi
ation timings for SPMV on two nodes (8 pro
essors) in various modes, andthe network interfa
e eÆ
ien
y. Timings are the sums from 100 runs.Hybrid and SPMV-Serial perform the same 
ommuni
ation, the 
ommuni
ation timings aredi�erent. This may be due to 
a
he and/or memory bandwidth 
onsiderations a�e
ting the
ommuni
ation performan
e.The hierar
hi
al partitioning of the 
omputational domain for SPMV-MPI allowed us totest the eÆ
a
y of shared memory MPI, i.e., shared memory transport is used for on-node
ommuni
ation. The results, shown in Table 8 as MPI-sh.mem, are not signi�
antly better thanthe SPMV-MPI timings. This was also veri�ed in tests up to 216 nodes. This result suggeststhat the o�-node 
ommuni
ation masked the gains of the on-node 
ommuni
ation.3.5 Message passing s
aled eÆ
ien
yFigure 3 plots 100 
ommuni
ation timings for SPMV in as
ending order for three examples withdi�erent numbers of nodes and di�erent problem sizes. The graphs show high variability, e.g.,from about 5 ms to almost 300 ms in Figure 3(a) for the SPMV-MPI and SPMV-Hybrid 
ases.It is believed that these variations are 
aused by system daemons brie
y interrupting the workdone on one or more pro
essors.Given that this variation is not nearly as strong in SPMV-Serial, whi
h pla
es lower demandon the memory system, this variation may be related to memory bandwidth limits. Also, the
ommuni
ation timing variation is larger in the 125 node 
ase than in the 27 node 
ase in thesense that there are more 
ases when the 
ommuni
ation time is extraordinarily large. Thissuggests that the variation is stronger when there are more nodes.Despite these variations, a few observations 
an be made. Communi
ation time for problemsize 500 is about 5 times lower than for problem size 256000. In addition, for the smaller problemsize, SPMV-Hybrid (and SPMV-Serial) 
ommuni
ation timings are better than SPMV-MPI
ommuni
ation timings. This is in agreement with the observation in the previous subse
tionthat not sharing network interfa
es is preferred when small messages are used.In pra
ti
e, an average or aggregate 
ommuni
ation timing must be used to determine theperforman
e of a program that exe
utes SPMV several times. This is used in Table 9, whi
hshows timings for all three implementations for various lo
al problem sizes and numbers of nodes.Sin
e SPMV-Hybrid and SPMV-MPI o

asionally have very large 
ommuni
ation timings, theiraverage 
ommuni
ation time is larger than the average 
ommuni
ation time for SPMV-Serial.13



Graphs of MP eÆ
ien
y are plotted in Figure 4 for three problem sizes. For the smallestproblem size, 500, the SPMV-Hybrid 
ommuni
ation time is always less than the MPI 
ommuni-
ation time (the 
urve remains below 1). For the larger problem sizes, 32000 and 256000, hybrid
ommuni
ation is faster for small numbers of nodes and slower for large numbers of nodes.Finally, we note that programs that perform global 
ommuni
ation may give very di�erents
alability results.4 Con
lusionsIn this paper, the performan
e of hybrid programs was de
omposed into various fa
tors. Forprograms where 
omputation dominates 
ommuni
ation, the performan
e of hybrid programsis mostly determined by the size of overheads and 
riti
al se
tions and the memory bandwidth.These fa
tors are 
aptured by the multithreading eÆ
ien
y parameter. The relative 
a
he eÆ-
ien
y parameter 
an be used in some 
ases to 
he
k the di�eren
e in 
a
he utilization betweenhybrid and message passing 
odes. For SPMV 
omputation time, these parameters show thatlimited memory bandwidth 
auses a loss of about 15 per
ent. This loss is the same for bothhybrid and message passing 
odes.The results in Table 9 show that hybrid programs 
an perform better than message passingprograms when small problem sizes are used. This e�e
t is related to lower laten
y when networkinterfa
es are not shared, and is quanti�ed by the network interfa
e eÆ
ien
y parameter.It is somewhat surprising that SPMV-Hybrid was not better than SPMV-MPI for largenumbers of nodes. The MP eÆ
ien
y parameter shows that SPMV-MPI 
ommuni
ation is mores
alable than SPMV-Hybrid 
ommuni
ation for moderate to large problem sizes. From timingsshown in Figure 3, we infer that this is due to o

asional extraordinarily large 
ommuni
ationtimings in SPMV-Hybrid.Although hybrid programs are not 
urrently advantageous for 
omputations like SPMV onIBM SP ma
hines, as SMP nodes are built with even more pro
essors and system software isimproved, this situation may 
hange. The parameters proposed in this paper 
an help tra
kprogress in this area. Further, the proposed parameters abstra
t the 
hara
teristi
s of hybridprograms and their 
omputing environments and may lead to models that 
an predi
t hybridprogram performan
e.A
knowledgmentsThe authors wish to thank Bronis de Supinski, Mi
hael A. Heroux, Leonid Oliker and Je�rey S.Vetter for helpful dis
ussions during the preparation of this paper.
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Prob. Number Total time (s) Communi
ation time (s)Size of Nodes MPI Hybrid Serial MPI Hybrid Serial500 1 0.029 0.015 0.035 0.021 0.000 0.0008 0.071 0.042 0.090 0.063 0.027 0.05527 0.119 0.101 0.157 0.111 0.086 0.12264 0.141 0.126 0.173 0.133 0.111 0.138125 0.297 0.148 0.182 0.289 0.133 0.147216 0.416 0.182 0.182 0.408 0.167 0.1474000 1 0.232 0.216 0.779 0.032 0.000 0.0008 0.336 0.327 0.892 0.136 0.111 0.11327 0.434 0.425 1.021 0.234 0.209 0.24264 0.474 0.454 1.031 0.274 0.238 0.252125 0.833 0.491 1.035 0.633 0.275 0.256216 1.436 0.790 1.044 1.236 0.574 0.26513500 1 0.838 0.825 2.754 0.057 0.000 0.0008 0.988 1.002 3.001 0.207 0.177 0.24727 1.216 1.139 3.266 0.435 0.314 0.51264 1.338 1.554 3.275 0.557 0.729 0.521125 1.349 1.592 3.305 0.568 0.767 0.551216 2.769 2.488 3.339 1.988 1.663 0.58532000 1 1.985 1.997 6.764 0.096 0.000 0.0008 2.217 2.305 7.197 0.328 0.308 0.43327 2.375 2.737 7.546 0.486 0.740 0.78264 2.708 3.299 7.604 0.819 1.302 0.840125 3.374 3.686 7.643 1.485 1.689 0.879216 4.253 5.286 7.680 2.364 3.289 0.91662500 1 3.938 3.877 13.250 0.157 0.000 0.0008 4.216 4.478 14.011 0.435 0.601 0.76127 4.697 5.207 14.511 0.916 1.330 1.26164 4.910 5.712 14.652 1.129 1.835 1.402125 6.228 7.338 14.646 2.447 3.461 1.396216 6.922 8.204 14.732 3.141 4.327 1.482108000 1 6.818 6.888 23.500 0.186 0.000 0.0008 7.351 7.369 24.312 0.719 0.481 0.81227 7.896 8.753 25.232 1.264 1.865 1.73264 9.183 10.213 25.335 2.551 3.325 1.835125 9.885 11.103 25.351 3.253 4.215 1.851216 10.004 12.399 25.577 3.372 5.511 2.077171500 1 10.909 10.795 37.017 0.282 0.000 0.0008 11.594 11.748 38.509 0.967 0.953 1.49227 12.518 13.451 39.704 1.891 2.656 2.68764 13.478 15.344 39.657 2.851 4.549 2.640125 14.358 16.293 39.945 3.731 5.498 2.928216 15.278 16.614 39.859 4.651 5.819 2.842256000 1 16.359 16.228 55.988 0.280 0.000 0.0008 17.614 17.399 57.850 1.535 1.171 1.86227 19.103 19.912 59.499 3.024 3.684 3.51164 19.472 21.960 59.773 3.393 5.732 3.785125 20.331 22.859 59.837 4.252 6.631 3.849216 21.178 24.057 59.982 5.099 7.829 3.994Table 9: Timings for SPMV. Timings are the sums from 100 runs. For perfe
t s
alability, thetimings should be the same for a given problem size.16
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