Multigrid on Massively Parallel Architectures*

Robert D. Falgout and Jim E. Jones

Center for Applied Scientific Computing, Lawrence Livermore National
Laboratory, P.O. Box 808, L-561, Livermore, CA 94551, USA

Abstract. The scalable implementation of multigrid methods for machines with
several thousands of processors is investigated. Parallel performance models are
presented for three different structured-grid multigrid algorithms, and a descrip-
tion is given of how these models can be used to guide implementation. Potential
pitfalls are illustrated when moving from moderate-sized parallelism to large-scale
parallelism, and results are given from existing multigrid codes to support the dis-
cussion. Finally, the use of mixed programming models is investigated for multigrid
codes on clusters of SMPs.

1 Introduction

Computer simulations play an increasingly important role in scientific investi-
gations. As a result, codes are being developed to solve complex multi-physics
problems at very high resolutions. Such large-scale simulations require mas-
sively parallel computing, but this is not sufficient. One also needs scalable
algorithms such as multigrid, and scalable implementations of these algo-
rithms.

The development of scalable linear solver algorithms is difficult, and cur-
rently an active area of research in the numerical analysis community. These
solvers must be robust and have optimal computational complexity, but they
must also exhibit enough concurrency to be effectively parallelized. For exam-
ple, in Algebraic Multigrid, the coarsening procedure is inherently sequential,
so new parallel algorithms are needed. Once a scalable algorithm has been
developed, it is usually fairly straightforward (using a domain partitioning
approach) to write an effective parallel implementation for machines with a
few hundred or so processors. However, for machines with several thousands
of processors, scalable implementations are more challenging to achieve.

In Section 2 we present performance models for three different multigrid
algorithms. In Section 3 we describe how these models can be used to guide
the implementation of parallel multigrid codes, illustrating some potential
pitfalls when moving from moderate-sized parallelism to large-scale paral-
lelism. Supporting results from existing multigrid codes are given.

* This work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48.

2 Falgout-Jones

2 Parallel Performance Models

Consider a 3D problem, discretized on a logically rectangular grid 2°, and
assume that the problem is distributed in a domain-partitioned manner across
a logical p x p x p process grid. Assume that each process ¢ holds an n xn xn
subgrid ()2, so that the total problem size is N = (pn)3, and the total number
of processes is P = p>.

We use the same performance model analyzed in [2,3]. In the model, we
assume that the time to access m doubles from non-local memory is

a+ fm,

and the time to perform a floating-point operation is y. We will use the
following values for a, 3, and vy

a = 230usec, B = .16usec/double, ~ = .074usec/flop,

meant to model an early IBM SP, but chosen mainly for consistency with [2].

In all of the performance models presented below, we consider only the
cost of relaxation. Also, the distribution of the coarse grids 2! (I > 1) is
assumed to be the domain partitioning naturally induced by that of the fine
grid so that Qf] C Qg. Note that, as a result, processes will become “idle” on
the coarsest grids. See [4] for a discussion of this issue.

2.1 PFMG Model

In this section, we present the performance model for a semicoarsening multi-

grid algorithm, denoted PFMG (for historical reasons; it is similar to the

method described in [1]). This method uses semicoarsening to handle prob-

lem anisotropies, and works well when the anisotropies are uniform and grid-

aligned throughout the domain. The relaxation method used is point Jacobi.
To be precise, consider solving the PDE

—Ugy — E1Uyy — E2Uzz = f: 0<ex<ep <1, (1)

on the unit square. Assume a finite difference discretization on a uniform grid
with grid spacing h, so that the fine-grid operator is a 7-point operator.

The coarse grids are defined by first coarsening in the z-direction (by a
factor of 2) until the anisotropy in the xy-plane is made as small as possible.
That is, we coarsen ¢; times until

21h ~ ey /2.

Next, coarsening is done in both the z- and y-directions until anisotropy in
both the xz- and yz-planes is made as small as possible. That is, we coarsen
¢ times until

201tezp 52_1/2h.

Multigrid on Massively Parallel Architectures 3

Finally, coarsening is done in all directions until some sufficiently small coarse
grid (e.g., a single point).

The coarse grid operators are formed by the Galerkin process, where inter-
polation is taken to be bi-linear interpolation. Hence, given a 7-point fine-grid
operator, the first ¢; coarse-grid operators are 15-point, and the remaining
operators are 27-point.

The time for doing relaxation in a V' (1,0)-cycle is given by

T = Koo + Kgn?B + K,n'y, (2)

where

Ko =6+ 14c; +26(co + L - 1),

Kg~12+42c; — (4/3)(27 4272 4277272,

K, ~22-6(277)—(36/7)(27*4™),
and where L = log,(pn). Estimating the first term of (2) involves counting
the number of messages sent in relaxation. Each process must communicate
with its neighbors on each grid level, and the number of neighbors depends

on the stencil size. Estimating the second term of (2) involves computing the
size of each plane of data communicated to neighboring processes. Thus,

c1
Kgm6+2) (14270427 +
=1

[
2y (@ '+2 2t 424y
=1

[ee]
22(2—02 . 4—[4 -cig—cz, 4—l 4o cigmce _4—l)
=1
=6+2c +4(1—-2") +

2(1+27°)(1—27%) + (2/3)(2")(1 - 47) +
(2/3)(27 4271272 £ 271472,

Estimating the third term of (2) involves computing the number of flops done
in relaxation, which is approximated by the stencil size times the number of
grid points on a process. Thus,

C1 c2 [ee]
Kym7+15) 270 427(270)) 47 4 27(2771472)) "8~
=1 =1 =1
=74+15(1—27) 4 9(271) (1 — 47°2) + (27/7)(27147°2).

2.2 SMG Model

In this section, we present the performance model for another semicoarsening
multigrid algorithm, denoted SMG. The algorithm was introduced in [5], and

4 Falgout-Jones

its model was derived in [2]. SMG is a particularly robust method, designed
primarily to solve the diffusion equation

-V (DVu)+ou=f (3)

on logically rectangular grids, where the diffusion coefficient, D, is a d x d
matrix in d dimensions, and o > 0.

The main difference between SMG and PFMG is the smoother. The SMG
algorithm semicoarsens in the z-direction and uses plane smoothing. The xy
plane-solves are effected by one V-cycle of the 2D SMG algorithm, which
semicoarsens in y and uses line smoothing.

The time for doing relaxation in a V' (1,0)-cycle is given by

T =~ (4L + 8L* + 8L*)a + 20Ln?p3 + 48ny, (4)

where L =~ log,(pn).

2.3 MG Model

In this section, we present the performance model for a full-coarsening multi-
grid algorithm, denoted MG. Here, the coarse grids are defined by coarsening
by a factor of 2 in all directions, and the relaxation method is point Jacobi.
The fine-grid and coarse-grid operators are all assumed to be 7-point.

The time for doing relaxation in a V'(1,0)-cycle is then given by

L—1 L—1
T =6La+6n°8Y 47" +7n’y) 8!
[=0 =0
~ 6La + 8n’f3 + 8n’y, (5)

where L = log,(pn) represents the number of grid levels.

3 Model-Guided Implementation

Parallel performance models such as the three presented in Section 2 can be
used to great advantage when implementing a multigrid algorithm. This is
particularly true when the target platform is a massively parallel computer
with upwards of ten thousand processors. In this section, we consider three
main implementation issues, primarily in the context of developing structured
multigrid codes.

To set the stage, consider the implementation of a parallel library of sparse
linear solvers, to be interfaced with parallel multi-physics codes to solve the
linear systems that arise from finite difference, finite volume, or finite element
discretizations of PDEs on logically rectangular grids. We assume that the
problem data has already been distributed, and is given to the solver library
in this distributed form. We also assume that the distribution represents a

Multigrid on Massively Parallel Architectures 5

partitioning of the domain into roughly equal-sized rectangular subdomains
with minimal surface-to-volume ratios. In particular, assume that it is not
advantageous to redistribute the data. These assumptions will generally hold
for multi-physics codes designed to run on large-scale parallel computers, as
well as a large number of codes designed for smaller-scale parallel computers.

In order to use the performance models derived earlier, much of the dis-
cussion in this section will be centered around problems that use the same
data-distribution given in the models. However, this is only to simplify the
presentation. It is important to keep in mind the more general library setting
described above.

3.1 Replicated Computations

Given a description of the fine grid and its distribution, consider the com-
putation of the coarse grids and their distributions. In the library setting
assumed here, a grid and its distribution can be represented by a list of bozes
and corresponding process numbers, where a box is defined to be a pair of
indexes in the 3D index-space,

T ={(i,j,k) : 1,7,k integers}.

That is, a box represents the “lower” and “upper” corner points of a subgrid
via the indices (i, ji, k1) € Z and (iy, ju, ku) € Z.

On each process ¢, the full description of each grid’s distribution is not
needed, only the description of the subgrid .Qf] and its “nearest” neighboring
subgrids. However, to compute this on all grid levels requires that at least one
of the processes—one containing a nonempty subgrid of the coarsest grid—
has information about the coarsening of every other subgrid. That is, for at
least one process, computing the coarsening information requires that all of
the subgrids on the fine grid be visited at least once. We will consider two
approaches for coarsening, denoted A1 and A2.

In A1, each process g coarsens subgrid .Qf] and receives neighbor informa-
tion from other processes. This requires O(1) computations and O(log, N)
communications. In A2, the coarsening procedure is replicated on all pro-
cesses, which requires O(P) computations and no communications. This lat-
ter approach works well for moderate numbers of processors, but becomes
prohibitive for large P.

To see this, we can use the models presented in Section 2. The dominant
cost in A1 is communication latency, and this is estimated by the a-term in
each model. The cost of A2 is just the cost of coarsening a subgrid, times the
number of subgrids, times the number of multigrid levels. We want to find
]3, such that for P >]5, A2 is less efficient than A1. For the MG algorithm,
we set,

6La = LPfy,

which yields .
P =(6/fs)(a/7), (6)

6 Falgout-Jones

where f; is the number of flops required to coarsen a subgrid. Letting fs = 90
(this is representative of what appears in the PFMG code mentioned below),
we have that P ~ 207. For the PFMG algorithm, we set

Koa=(c1 + ¢+ L)Pfyy,

which yields a P that depends on n, c¢;, and c3. However, we can bound P
as follows .

(6/fs)(a/y) < P < (26/fs)(a/7). (7)
In the case of an isotropic problem, the smoothing cost per V-cycle for the
PFMG algorithm is the same as for MG, hence the lower bound in (7). The
upper bound is roughly a factor of four larger, so that P =~ 898 for the
parameters being considered here. Note from (6) and (7) that P depends
strongly on the ratio of communication latency to computation speed.

This analysis also bears out in practice. In Figure 1, we present results
from an MPI-implementation of PFMG run on an Intel Paragon. The problem
solved was the anisotropic diffusion problem (1) with n = 40, ¢; = 1/10,
and e5 = 1/100. The figure compares the cost of coarsening using approach
A2 (labeled “Coarsen”) with the cost of a V-cycle. The time for A2 was
not computed directly, but estimated by taking the overall setup time, and
subtracting the setup time for the single processor run. The figure suggests
that the cost of replicating the grid coarsening procedure is greater than the
cost of a V(1,1) cycle when P is larger than about 500.

PFMG Results

——V-Cycle
= Coarsen

time (seconds)
w

O T T T
0 1000 2000 3000 4000

procs (problem size)

Fig.1. PFMG results on an Intel Paragon comparing the cost of grid coarsening
to the cost of a V-cycle.

3.2 Ghost Zones

The notion of ghost zones or shadow zones is commonly used in parallel
linear solver codes, and is simply the extra “layer” of data needed from off-
process to complete an on-process computation. The size of the ghost-zone

Multigrid on Massively Parallel Architectures 7

layer can vary depending on the algorithm implementation. We will consider
here the use of a single layer of ghost zones in the library setting described
earlier. Figure 2 illustrates (in 2D) the layout of data and ghost zones for
two 7 x 7 subgrids, and shows a typical communication pattern for a 5-point
stencil computation. Note that, to simplify code, subgrid data and ghost-
zone data are stored together as part of a single array in memory. To reduce
the number of copies, this extra ghost-zone memory is always present in the
vector data structure (note that ghost-zone memory is usually not persistent
in unstructured-grid multigrid codes).

o RIgjainaiAy] o o Rlalaaieny o

;
52
-
£
[
2

()
2

3
%
Q

%

AR

7o
o[o'e o @ o0
o7/
=

57

9
—
2
5
S

oo 0o 0 0 0|0
5575
o[o'e o 0o @

e
)

o ®© o 6 o o

o o o 0 O

o ®© o 6 o o

7
o

1578

7

-
19

o
-
2

e\l el\\@)\\o} el @i e [e\lel el e\\o) N} ‘o1 e)

o
f®

7

5

Fig. 2. Ghost zones and communications for a 5-point stencil and 7 x 7 subgrids.

For the MG and PFMG algorithms, the storage overhead associated with
ghost zones is quite acceptable. But, for more robust methods like SMG,
ghost zone storage can be problematic. To see this, we can again use the
models presented in Section 2. The coefficient multiplying 3 in each model
also estimates the amount of ghost-zone storage used. In Figure 3, we plot this
storage cost for the SMG algorithm relative to n3, the cost of storing a vector.
We see that the ghost-zone overhead is quite high, but we also note that the
growth rate is moderate. That is, a log, N dependence of the g-term in a
model does not necessarily produce a ghost-zone memory overhead problem.
For example, consider using alternating line relaxation in a full-coarsening
multigrid method. Using a similar derivation as for SMG, it is easy to see
that the ghost-zone storage cost is approximately 6Ln2, or about 30% that
of SMG. In comparison, the overhead for PFMG for the problem described
in Section 3.1 is about 0.6, and does not grow with P.

3.3 Mixed Programming Models

There is a recent trend to build large, parallel computers out of commodity
parts. The largest such computers are clusters of shared memory processors
(SMPs). In this section, we will discuss the use of mixed programming models
for implementing parallel multigrid methods.

8 Falgout-Jones

SMG Model (Ghost Overhead)

4K"

O T T T T
0 2000 4000 6000 8000 10000

procs (problem size)

#ghost / #gridpoints
w

Fig. 3. SMG model illustrating relative storage costs of ghost zones.

Figure 4 illustrates two basic approaches for distributing (and comput-
ing on) subgrid data on a 4-processor SMP node. Pictured on the left (the
mized model) is one large subgrid with ghost layer (for communicating with
other SMP nodes) and four regions of data, each assigned to different threads
(these will usually be run on different processors). Pictured on the right (the
message-passing model) are four subgrids with ghost layers, each subgrid as-
signed to different processes (again, these will usually be run on different
Processors).

message-passin
shared-memory P ___?__
s e e
L |2 |13 (14 E fintplptolete T -
E \ fopt [p2 |

Fig. 4. Schematic of mixed model and message-passing model for a single 4-
processor SMP node.

In theory, the mixed model has a couple of advantages over the pure
message-passing model. The first advantage is a reduction in the number
of messages going in and out of the SMP node. For example, for a 5-point
stencil computation, the mixed model depicted in the figure requires 4 com-
munications outside of the SMP and the message-passing model requires 8.
The second advantage is the ghost-zone memory savings due to the fewer

Multigrid on Massively Parallel Architectures 9

and larger subgrids in the mixed model. In the figure, the ghost-zone mem-
ory savings is a factor of two. On SMPs with larger numbers of processors,
the memory savings can be even more substantial.

Although the mixed model has these attractive features, our efforts to
outperform the message-passing model have not yet succeeded in practice.
We have developed two implementations of the mixed programming model,
using MPT to do the message-passing in both cases. The first implementation
uses POSIX threads, but we will discuss here only the second implementation,
which uses OpenMP compiler directives. The approach taken was straight-
forward loop-level parallelism of the computational kernels in the code. Each
of the kernels is a triply-nested loop over data associated with a subgrid. The
OpenMP directives can only parallelize a single loop, so effective parallelism
can only be achieved when the size of this loop is at least as large as the
number of processors. Since multigrid methods—especially semicoarsening
methods—produce grids of varying shapes and sizes, a fourth outer loop was
added that explicitly decomposes the subgrid into roughly equal sized regions
to be assigned to the different threads.

To be clear, consider the 2D example pictured on the left in Figure 4. Here,
we have an outer loop as just described, but with only a doubly-nested inner
loop. The outer loop has length four, and on each iteration, the inner loops
iterate over the tall rectangular regions. If the outer loop is threaded using
OpenMP, this means that each iteration is assigned to a different thread.
Hence, the computations on each region in the figure are handled by different
processors. The decomposition of the subgrid is done by simply subdividing
the largest subgrid dimension by the number of threads being used.

In Figure 5, we show results comparing the MPI implementation to the
mixed MPI-OpenMP implementation for conjugate gradient (CG) and CG
with three different preconditioners: SMG, PFMG, and diagonal-scaling. We
plot MPI time over MPI-OpenMP time. The MPI implementation is fastest
in all cases.

MPI vs. MPI-OpenMP

1
£
g — , ——— ~SMGCG
O 06 : -=- PFMG-CG
E 0.4 -+ DS-CG
= CG
z 02
E O T T T

0 200 400 600

procs (problem size)

Fig. 5. Comparison of MPI and mixed MPI-OpenMP implementations of various
solvers on an IBM SP2.

10

4

Falgout-Jones

Conclusions

Extra care must be taken when developing codes for large-scale parallel ar-
chitectures. Techniques commonly used for moderate-sized parallelism can
be problematic for large-scale parallelism. Parallel performance models can
provide useful implementation guidance, especially regarding the tradeoffs
of replicating computations in order to reduce communications. On clusters
of SMPs, mixed programming models have several advantages over straight
message-passing, but these advantages are not yet born out in practice.

References

1.

S. F. Ashby and R. D. Falgout. A parallel multigrid preconditioned conjugate
gradient algorithm for groundwater flow simulations. Nuclear Science and En-
gineering, 124(1):145-159, September 1996. Also available as LLNL Technical
Report UCRL-JC-122359.

. P. N. Brown, R. D. Falgout, and J. E. Jones. Semicoarsening multigrid on

distributed memory machines. To appear in the SIAM Journal on Scientific
Computing special issue on the Fifth Copper Mountain Conference on Iterative
Methods. Also available as LLNL technical report UCRL-JC-130720, 1999.

W. D. Gropp and D. E. Keyes. Complexity of parallel implementation of domain
decomposition techniques for elliptic partial differential equations. STAM J. Sci.
Stat. Comput., 9:312-326, 1988.

J. E. Jones and S. F. McCormick. Parallel multigrid methods. In Keyes, Sameh,
and Venkatakrishnan, editors, Parallel Numerical Algorithms, pages 203-224.
Kluwer Academic, 1997.

. S. Schaffer. A semi-coarsening multigrid method for elliptic partial differential

equations with highly discontinuous and anisotropic coefficients. SIAM J. Seci.
Comput., 20(1):228-242, 1998.

