
Crout versions of ILU for general sparse matrices ∗

Na Li† Yousef Saad† Edmond Chow‡

April 7, 2002

Abstract

This paper presents an efficient implementation of incomplete LU (ILU) factorizations that are derived
from the Crout version of Gaussian elimination (GE). At step k of the elimination, the k-th row of U and
the k-th column of L are computed using previously computed rows of U and columns of L. The data
structure and implementation borrow from already known techniques used in developing both sparse
direct solution codes and incomplete Cholesky factorizations. It is shown that this version of ILU has
many practical advantages. In particular, its data structure allows efficient implementation of more
rigorous and effective dropping strategies. Numerical tests show that the method is far more efficient
than standard threshold-based ILU factorizations computed row-wise or column-wise.

Key words: Incomplete LU factorization, ILU, Sparse Gaussian Elimination, Crout factorization, Preconditioning,

ILU with threshold, ILUT, Iterative methods, Sparse linear systems.

AMS subject classifications: 65F10, 65N06.

1 Introduction

The rich variety of existing Gaussian elimination algorithms has often been exploited, for example, to extract
the most efficient variant for a given computer architecture. It was noted in [11] that these variants can be
unraveled from the orderings of the three main loops in Gaussian elimination. A short overview here serves
the purpose of introducing notation. Gaussian elimination is often presented in the following form:

1. for k = 1 : n − 1
2. for i = k + 1 : n

3. for j = k + 1 : n

4. aij = aij − aik ∗ akj

where some calculations (e.g., pivots) have been omitted for simplicity. This form will be referred to as the
KIJ version, due to the ordering of the three loops. Swapping the first and second loops results in the IKJ

version:
1. for i = 2 : n

2. for k = 1 : i − 1
3. for j = k + 1 : n

∗This work was supported by the Army Research Office under grant DAAD19-00-1-0485, in part by the NSF under grants
NSF/ACI-0000443 and NSF/INT-0003274, and by the Minnesota Supercomputer Institute.

†Department of Computer Science and Engineering, University of Minnesota, 200 Union Street S.E., Minneapolis, MN 55455.
email: {nli,saad}@cs.umn.edu

‡Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, L-560, Box 808, Livermore, CA 94551,
email: echow@llnl.gov. The work of this author was performed under the auspices of the U.S. Department of Energy by
University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

1

4. aij = aij − aik ∗ akj

which is often referred to as the “delayed-update” version, and sometimes the Tinney-Walker algorithm (see,
e.g., [6]). There is also a column variant, which is the JKI version of GE.

Bordering methods can be viewed as modifications of the delayed-update methods. The loop starting
in Line 3 of the above IKJ version is shortened into “for j = k + 1 : i − 1” which computes the k-th
row of L. A similar loop is then added to compute the k-th column of U . In theory, these different
implementations of Gaussian elimination all yield the same (complete) factorization in exact arithmetic.
However, their computational patterns rely on different matrix kernels and this gave rise to specialized
techniques for different computer architectures. In the context of incomplete factorizations, these variants
result in important practical differences.

Incomplete LU factorizations can be derived from any of these variants, see, e.g., [14, 2, 1] although
the IKJ version has often been preferred because it greatly simplifies the data structure required by the
implementation. In fact, a key factor in selecting one of the options is the convenience of the data structure
that is used. For example, the KIJ algorithm requires rank-one updates and this causes up to n − k rows
and columns to be altered at step k. Since the matrices are stored in sparse mode, this is in not efficient for
handling the fill-ins introduced during the factorization [6]. However, other methods were developed as well.
For example, a technique based on bordering was advocated in [5].

This papers considers incomplete LU factorizations based on yet another version of Gaussian elimi-
nation known as the Crout variant, which which can seen as a combination of the IKJ algorithm shown
above to compute the U part and a transposed version to compute the L part. The k-th step will therefore
compute the pieces U(k, k : n) and L(k : n, k) of the factorization. This version of Gaussian elimination
was used in the Yale Sparse Matrix Package (YSMP) [7] to develop sparse Cholesky factorizations. More
recently, the Crout version was also used to develop an efficient incomplete Cholesky factorization in [10].
The current paper extends this method to nonsymmetric matrices and explores effective dropping strategies
that are enabled by the Crout variant.

2 The Crout LU and ILU

The main disadvantage of the standard delayed-update IKJ factorization is that it requires access to the
entries in the current row of L by topological order [8]. One topological order, which is perhaps most
appropriate for threshold-based incomplete factorizations, is increasing order by column number (since the
nonzero pattern of the factorization is not known beforehand). The entries in this order must be found
via searches, which are further complicated by the fact that the current row is dynamically being modified
by the fill-in process. In SPARSKIT [12], a simple linear search is used, which is suitable in the case of
small amounts of fill-in. When a high number of fill-ins are required, which is the case for more difficult
problems, the cost of searching for the leftmost pivot may make the factorization ineffective. An alternative
is to maintain the current row in a binary tree and to utilize binary searches. This strategy was mentioned
in [14] and was recently implemented by Bollhoefer in ILUT and ILUTP [4]. This code will be used for
comparisons later in this paper.

In this paper we will make the case that among the various Gaussian elimination algorithms, the
Crout formulation provides perhaps the most practically useful option when developing incomplete LU
factorizations. It was observed in [10] that the Crout-based incomplete factorization is effective in the
symmetric positive definite case, as it bypasses the need for the costly searches mentioned above. As will be

2

seen, this can be easily generalized to the nonsymmetric case. Moreover, this version has one other compelling
advantage, namely that it leads to an efficient implementation of inverse-based dropping strategies [3]. These
strategies have been shown to be effective in [3] and this will be verified in the numerical experiments section
of this paper.

Figure 1: The computational pattern for the Crout factorization. The dark area shows the parts of the
factors being computed at the k-th step. The shaded areas show the parts of the factors being accessed at
the k-th step.

2.1 The Crout formulation

The Crout formulation can be viewed as yet another “delayed-update” form of GE. At step k the entries
ak+1:n,k (in the unit lower triangular factor, L) and ak,k:n (in the upper triangular factor, U) are computed
and the rank-one update which characterizes the KIJ version is postponed. At the k-th step, all the updates
of the previous steps are applied to the entries ak+1:n,k and ak,k:n. Thus it is natural to store L by columns
and U by rows, and to have A stored such that its lower triangular part is stored by columns and its upper
triangular part is stored by rows. The computational pattern for the factorization is shown in Figure 1.

Algorithm 2.1 Crout LU Factorization

1. For k = 1 : n Do :

2. For i = 1 : k − 1 and if aki �= 0 Do :

3. ak,k:n = ak,k:n − aki ∗ ai,k:n

4. EndDo

5. For i = 1 : k − 1 and if aik �= 0 Do :

6. ak+1:n.k = ak+1:n,k − aik ∗ ak+1:n,i

7. EndDo

8. aik = aik/akk for i = k + 1, ..., n

9. EndDo

The k-th step of the algorithm generates the k-th row of U and the k-th column of L. This step is schemat-
ically represented in Figure 2. Notice now that the updates to the k-th row of U (resp. the k-th column of
L) can be made in any order. There is also a certain symmetry in the data structure representing L and
U since the U matrix is accessed by rows and the L matrix by columns. By adapting Algorithm 2.1 for

3

Figure 2: Construction of the k-th row of U (left side) and the k-column of L (right side).

sparse computations and by adding a dropping strategy, the following Crout version of ILU (termed ILUC)
is obtained.

Algorithm 2.2 ILUC - Crout version of ILUC

1. For k = 1 : n Do :

2. Initialize row z: z1:k−1 = 0, zk:n = ak,k:n

3. For {i | 1 ≤ i ≤ k − 1 and lki �= 0} Do :

4. zk:n = zk:n − lki ∗ ui,k:n

5. EndDo

6. Initialize column w: w1:k = 0, wk+1:n = ak+1:n,k

7. For {i | 1 ≤ i ≤ k − 1 and uik �= 0} Do :

8. wk+1:n = wk+1:n − uik ∗ lk+1:n,i

9. EndDo

10. Apply a dropping rule to row z

11. Apply a dropping rule to column w

12. uk,: = z

13. l:,k = w/ukk, lkk = 1
14. Enddo

The operations in Lines 4 and 8 are sparse vector updates and must be done in sparse mode.

2.2 Implementation

There are two potential sources of difficulty in the sparse implementation of the algorithm just described.

1. Consider Lines 4 and 8. Only the section (k : n) of the i-th row of U is required, and similarly, only
the section (k + 1 : n) of the i-th column of L is needed. Accessing entire rows of U or columns of L

and then extracting only the desired part is an expensive option.

2. Consider Lines 3 and 7. The nonzeros in row k of L must be accessed easily, but L is stored by columns.
Similarly, the nonzeros in column k of U must be accessed easily, but U is stored by rows.

4

A solution to these difficulties was presented for the symmetric case in [7] and later in [10]. Here we
extend this technique to nonsymmetric problems. The extension is straightforward, except that we can no
longer use the optimizations available when L and U have the same nonzero pattern.

To address the first difficulty, consider the factor U and assume its nonzeros in each row are stored in
order by column number. Then, a pointer for row j, with j < k, can be used to signal the starting point of
row j needed to update the current row k. The pointers for each row are stored in a pointer array called
Ufirst. This pointer array is updated after each elimination step by incrementing each pointer to point to
the next nonzero in the row, if necessary. A pointer for row k is also added after the k-th step. There is a
similar pointer array for the L factor called Lfirst.

To address the second difficulty, consider again the factor U , and the need to traverse column k of U ,
although U is stored by rows. An implied linked list for the nonzeros in column k of U is used, called Ulist.
Ulist(k) contains the first nonzero in column k of U , and Ulist(Ulist(k)) contains the next nonzero, etc.
At the end of step k, Ulist is updated so that it becomes the linked list for column k + 1. Ulist is updated
when Ufirst is updated: when Ufirst(i) is incremented to point to a nonzero with column index c, then i is
added to the linked list for column c. For the L factor, there is a linked list called Llist.

In summary, we use four length n arrays: Ufirst, Ulist, Lfirst, and Llist, which we call a bi-index
structure. Figure 3 illustrates the relationship between the arrays in the bi-index structure.

a. Ufirst(i) points to the first entry with column index greater than or equal to k in row i of U , where
i = 1, ..., k − 1;

b. Ulist(k) points to a linked list of rows that will update row k;

c. Lfirst(i) points to the first entry with row index greater than or equal to k in column i of L, where
i = 1, ..., k − 1;

d. Llist(k) points to a linked list of columns that will update column k.

In [10] the entire diagonal of the LDLT factorization is updated at the end of each elimination step.
In contrast, Eisenstat et. al [7] only update the k-th entry of D at the k-th step. In the symmetric case,
there is no additional cost incurred in updating all D. In the nonsymmetric case, this update, which can be
written as

ui,i := ui,i − li,kuk,i, i = k + 1, . . . , n. (1)

may increase the computational cost slightly because l:,k and uk,: do not in general have the same pattern.
However, the option of having the entire updated diagonal at each step may be attractive when developing
other possible variants of the algorithm and will be considered in our future work.

3 Dropping Strategies

Any dropping rule can be applied in Lines 10 and 11 of Algorithm 2.2. In this section, we consider a
number of different options which were implemented and tested. The most straightforward of these options
is a threshold-based technique that is similar to the one used in ILUT. A very important consideration
with ILUC is that its data structure allows options that were not practically feasible with standard IKJ

implementations of ILU or their column-based equivalent. In particular, note that at step k the first k

columns (resp. rows) of L (resp. U) are available. In particular, this enables us to obtain dropping
techniques that utilize estimates of the inverse factors which were shown to be quite successful in [3]. These
two techniques are considered in turn. Several other strategies were also tested but lead to mixed results.

5

Llist

k

k

ptr

ptr

Lfirst(ptr)

Llist(k)

Ufirst(ptr)

Ulist Ulistk

k

ptr

ptr

Ulist(k)

Ufirst(ptr)

Lfirst(ptr)

Llist

Figure 3: Procedure for updating row k of U and column k of L.

3.1 Standard dual criterion dropping strategy

The dual dropping strategy, similar to the one in ILUT [13, 14], consists of the following two steps.

1. Any element of L or U whose magnitude is less than a tolerance τ (relative to the norm of the k-th
column of L or the k-th row of U respectively) is dropped.

2. Then, only the “Lfil” largest elements in magnitude in the k-th column of L are kept. Similarly the
“Lfil” largest elements in the k-th row of U in addition to the diagonal element are kept. This controls
the total storage that can be used by the preconditioner.

The above strategy is referred to as the “standard strategy” in the experiments. It is often observed that it
is more effective to use a drop tolerance only, rather than to force a limited fill-in. This means that better
results are often achieved by taking a large value of “Lfil” and varying the parameter τ to achieve a given
amount of fill-in.

3.2 Dropping based on condition number estimators

In order to reduce the impact of dropping an element on the subsequent steps of Gaussian elimination, it is
useful to devise dropping strategies which estimate the norms of the rows of L−1 and the columns of U−1.
Such techniques were proved to be quite effective in the ILU context by Bollhoefer [3]. The guiding criterion
is to drop an entry ljk at step k when it satisfies

|ljk| ‖eT
k L−1‖ ≤ ε

where ek denotes the k-th unit vector, and ε is the ILU drop tolerance. A similar criterion is used for
the U part: drop ukj when |ukj |‖U−1ek‖ ≤ ε. In the sequel we only discuss the strategy for the L part.
The justification for this criterion given in [3] was based on exploiting the connection with the approximate
inverse. Here we use a similar, although somewhat simpler, argument.

6

It is well-known that for ILU preconditioners, the error made in the inverses of the factors is more
important to control than the errors in the factors themselves, because when A = LU , and

L̃−1 = L−1 + X Ũ−1 = U−1 + Y,

then the preconditioned matrix is given by

L̃−1AŨ−1 = (L−1 + X)A(U−1 + Y) = I + AY + XA + XY.

This means that if the errors X and Y in the inverses of L and U are small, then the preconditioned matrix
will be guaranteed to be close to the identity matrix. In contrast, small errors in the factors themselves may
yield arbitrarily large errors in the preconditioned matrix.

Let Lk denote the matrix composed of the first k rows of L and the last n − k rows of the identity
matrix. Consider a term ljk with j > k that is dropped at step k. Then, the resulting perturbed matrix L̃k

differs from Lk by ljkeje
T
k . Noticing that Lkej = ej we have

L̃k = Lk − ljkeje
T
k = Lk(I − ljkeje

T
k)

from which we can obtain the following relation between the inverses:

L̃−1
k = (I − ljkeje

T
k)−1L−1

k = L−1
k + ljkeje

T
k L−1

k .

Therefore, the inverse of Lk will be perturbed by ljk times the k-th row of L−1
k . This perturbation will affect

the j-th row of L−1
k . Hence, using the infinity norm for example, it is important to limit the norm of this

perturbing row which is ‖ljkeje
T
k L−1

k ‖∞ = |ljk| ‖eT
k L−1

k ‖∞.
However, the matrix L−1 is not available and it is not feasible to compute it. Instead, in [3] standard

techniques used for estimating condition numbers [9] are adapted for estimating the norm of the k-th row of
L−1 (resp. k-th column of U−1). In this paper we only use the simplest of these techniques. The idea is to
construct a vector b with entries +1 or −1, by following a greedy strategy to try to make L−1b large at each
step. Since the first k columns of L are available, this is easy to achieve. The problem to estimate ‖eT

k L−1‖∞
can be reduced to that of dynamically constructing a right-hand side b to the linear system Lx = b so that
the k-th component of the solution is the largest possible. Thus, if b is the current right-hand side at step
k, we write,

‖eT
k L−1‖∞ ≈ ‖eT

k L−1b‖∞
‖b‖∞ ,

where ‖eT
k L−1‖ was estimated as the k-th component of the solution x of the system Lx = b. The imple-

mentation given next uses the simplest criterion which amounts to selecting bk = ±1 at each step k, in such
a way as to maximize the norm of the k-th component of L−1b. The notation for the algorithm is as follows.
At the k step we have available the first k − 1 columns of L. The k-th component of the solution x is

ξk = bk − eT
k Lk−1xk−1

This makes the choice clear: if ξk is to be large in modulus, then its sign should be of the opposite sign as
as eT

k Lk−1xk−1. Once bk is selected, xk is then known and all the eT
j Lkxk are updated. These scalars are

called νj below. Details may be found in [9].

7

Algorithm 3.1 Estimating the norms ‖eT
k L−1‖∞

1. Set ξ1 = 1, νi = 0, i = 1, . . . , n

2 For k = 2, . . . , n do

3 ξ+ = 1 − νk ; ξ− = −1− νk ;

4 if |ξ+| > |ξ−| then ξk = ξ+ else ξk = ξ−
5 For j = k + 1 : n and for ljk �= 0 Do

6 νj = νj + ξkljk

7 EndDo

8. EndDo

The paper [3] also presents an improved variant of this algorithm which is also derived from a dense
version described in [9]. In this variant, the ξk’s are selected to encourage growth not only in the solution
xk but also in the νi’s. Calling pj the vector with components νi at step j, this is achieved by using as a
criterion for selecting ξk, the weight

|ξk| + ‖pk‖1 (2)

which depends on the choice made for ξk. Note that ‖pk‖1 = ‖pk−1 + ξkl:,k‖1 so, we need to compute the
weight (2) for both of the choices in Line 3 and select the choice that gives the largest weight.

4 Diagonal compensation strategies

It is sometimes helpful to modify the diagonal entries in the ILU factorization to compensate for the elements
being dropped during factorization. In the simplest row-oriented ILU techniques, the sum of all elements
being dropped in computing a given row of the L, U pair, is added to the diagonal entry. This makes the
product LU and A have the same row-sum, and as a result the preconditioned matrix will have one eigenvalue
equal to one with associated eigenvector the vector of all ones.

In the context of ILUC, we can also enforce a similar condition. In fact it is possible, as well as natural,
to enforce both a row-sum and a column-sum condition. Consider the equation which defines the k-th column
of L for the equivalent A = LDU factorization,

l̃k+1:n,k = ak+1:n,k −
k−1∑

j=1

uj,kdj,jlk+1:n,j . (3)

After this column is calculated it undergoes dropping and then scaling,

l̂k+1:n,k := l̃k+1:n,k + sk+1:n,k, lk+1:n,k := l̂k+1:n,k/dk.

As a result we have

ak+1:n,k =
k∑

j=1

uj,kdj,jlk+1:n,j + sk+1:n,k.

Therefore, it may be possible to enforce a column-sum condition on the strict lower part of A, and in a
similar fashion, a row-sum condition on the strict upper part of A. We can do better with a little additional
work. The above relation can be extended to the entire column

a:,k =
k∑

j=1

uj,kdj,jl:,j + s:,k.

8

While sk+1:n is available at step k, the elements s1:k represent terms dropped from the U -part in earlier
steps. It is possible to keep a running sum of these elements for each column as the algorithm proceeds. If
e is a vector of all ones, then

eT a:,k = eT
k∑

j=1

uj,kdj,jl:,j + eT s1:k,k + eT sk+1:n,k.

The term eT sk+1:n,k is the sum of elements dropped while computing l:,k and is therefore easily available.
The second term, eT s1:k,k, is the sum of elements dropped in previous steps in the U part of the matrix. Note
that eT s1:k,k = eT s1:k−1,k, since no elements are dropped from the diagonal. This second sum is available
provided we maintain and update a row-vector which runs all the column-sums of the terms dropped for
each column. Thus, once the row Uk,: is determined, this row, call it rsum will be updated by adding to it
all elements dropped while building Uk,:. Similarly, a column, say tsum, is maintained which adds up all the
terms dropped when computing the successive columns of L.

5 Experimental results

The performance of ILUC was compared to standard ILUT [13] in both row-wise (r-ILUT) and column-wise
(c-ILUT) forms. The codes were written in C, and the experiments were conducted on a 866 MHz Pentium
III computer with 1 GB of main memory. The codes were compiled with -O3 for optimization.

The test matrices can be described using a measure of structural symmetry called the relative symmetry
match (RSM) [12]. This measures the total number of matches between aij �= 0 and aji �= 0 divided by the
total number of nonzero elements (RSM = 1 for matrices with symmetric patterns). All 10 test matrices
are nonsymmetric and of those, five have a nonsymmetric pattern. Some generic information about the test
matrices is shown in Table 1. The BARTHT1A matrix was supplied by T. Barth of NASA Ames. The
SHERMAN2 matrix is from the Boeing-Harwell collection and is available from the Matrix Market.1 The
matrices CAVA0000 and CAVA01002 resulted from the simulation of a driven cavity problem. The domain
of interest is 2-dimensional and the discretization uses quadrilateral elements with bi-quadratic functions
for velocities and linear (discontinuous) functions for pressures. Using 40 elements in each direction yields a
matrix of size n = 17, 922 and nnz = 567, 467 nonzero elements. These linear systems are indefinite and can
be difficult to solve. The Reynolds number was used as a continuation parameter; the test matrices have
Reynolds numbers 0 and 100. The other matrices are available from the University of Florida sparse matrix
collection.3 In the table, n is the dimension of the matrix and nnz represents the total number of nonzero
elements.

Artificial right-hand sides were generated, and GMRES(60) was used to solve the systems using a
random initial guess. The iterations were stopped when the residual norm was reduced by 8 orders of
magnitude or when the maximum iteration count of 300 was reached.

Table 2 compares the timings to build the preconditioners (“Pr-sec.”) and the iteration timings (“Its
sec.”) for ILUC, r-ILUT and c-ILUT on the matrices from the set that have symmetric patterns. “Lfil”
is the dropping parameter described in Section 3.1. We selected “Lfil” by basing it on the ratio γ = nnz

2n ,
which is an average number of nonzeros in each row or column of the upper or lower triangular part of
the matrix. “Its” denotes the number of iterations to convergence. The symbol “-” in the table indicates

1http://math.nist.gov/MatrixMarket/
2Matrices available from the authors.
3http://www.cise.ufl.edu/ davis/sparse/

9

Matrix RSM n nnz
BARTHT1A 1.0000 14075 481125
RAEFSKY1 1.0000 3242 294276
RAEFSKY2 1.0000 3242 294276
RAEFSKY3 1.0000 21200 1488768
VENKAT25 1.0000 62424 1717792
UTM.3060 0.5591 3060 42211
UTM.5940 0.5624 5940 83842
SHERMAN2 0.6862 1080 23094
CAVA0000 0.9773 17922 567467
CAVA0100 0.9773 17922 567467

Table 1: Information on the 10 matrices used for tests

that convergence was not obtained in 300 iterations. “Pr-Mem.” denotes the number of memory locations
required by the preconditioners and “Ratio” denotes the fill-factor, i.e., the value of nnz(L + U)/nnz(A).

There are two main observations that can be made in Table 2. First, the setup timings for ILUC
are significantly smaller than those for r-ILUT and c-ILUT. The difference can be seen to be larger when
a larger amount of fill-in is allowed. Second, ILUC may be more robust than r-ILUT and c-ILUT or may
require fewer iterations to converge (see BARTHT1A and VENKAT25). For most other problems however,
the iterations counts for ILUC and the other variants are similar. In general, the overall solution time is
reduced by using ILUC.

Figure 4 shows the timings required for computing three preconditioners as a function of “Lfil” for
the matrix RAEFSKY3. The drop tolerance was τ = 0.001. The figure also shows the timings for an IKJ

version of ILUT (i.e., r-ILUT) when searching for the leftmost pivot is accomplished using binary search
trees. This version of ILUT, which is referred to as b-ILUT [4], was coded in FORTRAN. The figure shows
that ILUC is faster than all the other variants, and that the ILUC setup time increases more slowly with
increasing amounts of fill-in.

Table 3 shows results which are analogous to those of Table 2 for the 5 matrices in the test set that
have nonsymmetric patterns. The superiority of ILUC is not as compelling as in Table 2 which involved
only matrices with symmetric patterns. The time to compute the preconditioner is still generally smaller
than with the other versions. Sometimes, ILUC did help GMRES achieve convergence as shown in the case
of the matrix UTM.5940. In other cases, it caused GMRES to fail to converge or to converge slowly, while
r-ILUT and/or c-ILUT yielded good convergence. This is illustrated by the results with SHERMAN2 and
CAVA0100.

The next tests compare the two dropping strategies described in Section 3, namely the standard
threshold-based technique (termed “standard”) with the technique based on norm estimates of the inverse
triangular factors (termed “inverse-based”). For these tests we added four symmetric-pattern test matrices
to study the effect of nonsymmetry. These matrices arise from two-dimensional finite element convection-
diffusion problems. They were obtained using linear triangular elements and have 205761 equations and
1436480 nonzeros. The four matrices correspond to different sizes of the convection term, leading to increasing
degrees of nonsymmetry; see Table 4.

Table 5 shows the results for those matrices in the set which have a symmetric patterns and Table 6
shows the results for the matrices with nonsymmetric patterns. In order to obtain a better comparison of
the effect of the dropping strategy, we set Lfil to infinity for these tests. This means that the total number

10

Matrix Lfil Pr-alg. Pr-sec. Its sec. Its Pr-Mem. Ratio
ILUC 0.920 - - 815037 1.694

2.0γ ≈ 34 r-ILUT 1.990 - - 923060 1.919
c-ILUT 2.210 - - 937685 1.949
ILUC 1.160 7.550 78 986395 2.050

BARTHT1A 2.5γ ≈ 42 r-ILUT 2.340 - - 1113073 2.313
γ ≈ 17.1 c-ILUT 2.870 - - 1147112 2.384

ILUC 1.450 5.900 55 1166370 2.424
3.0γ ≈ 51 r-ILUT 2.870 - - 1319407 2.742

c-ILUT 3.690 - - 1378620 2.865
ILUC 0.460 0.700 22 289594 0.984

1.0γ ≈ 45 r-ILUT 1.520 0.570 18 288136 0.979
c-ILUT 1.620 0.530 18 288168 0.979
ILUC 0.790 0.760 20 427595 1.453

RAEFSKY1 1.5γ ≈ 68 r-ILUT 2.810 0.610 16 430724 1.464
γ ≈ 45.4 c-ILUT 3.010 0.580 16 430937 1.464

ILUC 1.250 0.790 18 557364 1.894
2.0γ ≈ 90 r-ILUT 4.980 0.680 15 562961 1.913

c-ILUT 5.150 0.620 15 563896 1.916
ILUC 0.460 0.860 27 291078 0.989

1.0γ ≈ 45 r-ILUT 1.950 0.730 23 288367 0.980
c-ILUT 1.910 0.750 25 288345 0.980
ILUC 0.790 0.800 21 431255 1.465

RAEFSKY2 1.5γ ≈ 68 r-ILUT 3.760 0.680 18 431369 1.466
γ ≈ 45.4 c-ILUT 3.710 0.730 20 431394 1.466

ILUC 1.240 0.800 18 560577 1.905
2.0γ ≈ 90 r-ILUT 5.910 0.730 16 565818 1.923

c-ILUT 5.910 0.670 16 566890 1.926
ILUCT 1.520 2.080 13 1197935 0.805

1.0γ ≈ 35 r-ILUT 5.320 2.950 17 1467232 0.986
c-ILUT 4.920 1.790 11 1467145 0.985
ILUC 2.290 2.180 12 1647174 1.106

RAEFSKY3 1.5γ ≈ 52 r-ILUT 8.460 2.720 14 1965430 1.320
γ ≈ 35.1 c-ILUT 7.470 1.840 10 1966184 1.321

ILUC 3.350 2.000 10 2076087 1.395
2.0γ ≈ 70 r-ILUT 12.450 2.650 12 2406591 1.616

c-ILUT 11.120 2.010 10 2406519 1.616
ILUC 1.580 59.530 160 1668586 0.971

1.0γ ≈ 13 r-ILUT 3.720 91.780 241 1680052 0.978
c-ILUT 9.760 - - 1681197 0.979
ILUC 2.680 29.610 73 2537005 1.477

VENKAT25 1.5γ ≈ 20 r-ILUT 7.180 41.500 102 2545032 1.482
γ ≈ 13.8 c-ILUT 17.160 50.220 126 2547584 1.483

ILUC 4.210 20.480 48 3405086 1.982
2.0γ ≈ 27 r-ILUT 10.740 30.230 69 3399380 1.979

c-ILUT 23.260 27.240 63 3407450 1.984

Table 2: Performance of ILUC, r-ILUT and c-ILUT on symmetric pattern matrices, τ = 0.001

11

Matrix Lfil Pr-alg. Pr-sec. Its sec. Its Pr-Mem. Ratio
ILUC 0.080 1.860 156 91568 2.169

2.5γ ≈ 17 r-ILUT 0.150 - - 94910 2.248
c-ILUT 0.130 0.840 75 91739 2.173
ILUC 0.110 0.780 58 106731 2.529

UTM.3060 3.0γ ≈ 20 r-ILUT 0.180 - - 110196 2.611
γ ≈ 6.9 c-ILUT 0.150 0.600 51 105762 2.506

ILUC 0.130 0.800 56 126396 2.994
3.5γ ≈ 24 r-ILUT 0.210 - - 130066 3.081

c-ILUT 0.180 0.580 47 124268 2.944
ILUC 0.320 5.470 180 289406 3.452

4.0γ ≈ 28 r-ILUT 0.600 - - 294066 3.507
c-ILUT 0.550 - - 283592 3.382
ILUC 0.350 3.780 119 318232 3.796

UTM.5940 4.5γ ≈ 31 r-ILUT 0.650 - - 322226 3.843
γ ≈ 7.1 c-ILUT 0.620 - - 311632 3.717

ILUC 0.410 3.950 118 356279 4.249
5.0γ ≈ 35 r-ILUT 0.730 - - 360560 4.300

c-ILUT 0.690 - - 346272 4.130
ILUC 0.010 - - 11727 0.508

1.0γ ≈ 10 r-ILUT 0.030 - - 16855 0.730
c-ILUT 0.010 0.190 51 20345 0.881
ILUC 0.010 1.130 294 13539 0.586

SHERMAN2 1.5γ ≈ 16 r-ILUT 0.020 - - 23587 1.021
γ ≈ 10.7 c-ILUT 0.010 0.040 13 26674 1.155

ILUC 0.020 1.120 293 14045 0.608
2.0γ ≈ 21 r-ILUT 0.020 0.060 18 26466 1.146

c-ILUT 0.010 0.020 9 28100 1.217
ILUC 1.330 5.820 48 1103714 1.945

2.0γ ≈ 31 r-ILUT 3.050 5.150 45 1084765 1.912
c-ILUT 3.290 4.840 42 1116973 1.968
ILUC 1.780 42.710 300 1382548 2.436

CAVA0000 2.5γ ≈ 39 r-ILUT 3.830 5.620 43 1357450 2.392
γ ≈ 15.8 c-ILUT 4.390 7.710 58 1398952 2.465

ILUC 2.180 6.930 47 1660151 2.926
3.0γ ≈ 47 r-ILUT 4.570 4.880 36 1630057 2.873

c-ILUT 4.980 4.720 36 1675004 2.952
ILUC 1.310 6.540 53 1085455 1.913

2.0γ ≈ 31 r-ILUT 3.090 5.130 43 1094607 1.929
c-ILUT 3.250 5.170 45 1083709 1.910
ILUC 1.710 43.460 300 1359356 2.395

CAVA0100 2.5γ ≈ 39 r-ILUT 3.850 5.340 42 1367359 2.410
γ ≈ 15.8 c-ILUT 4.130 5.360 43 1356124 2.390

ILUC 2.160 28.830 179 1631668 2.875
3.0γ ≈ 47 r-ILUT 4.620 4.290 32 1638681 2.888

c-ILUT 5.020 4.690 35 1627911 2.869

Table 3: Performance of ILUC, r-ILUT and c-ILUT on nonsymmetric pattern matrices, τ = 0.001

12

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

Lfil

P
re

co
nd

iti
on

 T
im

e

RAEFSKY3 (n=21,200; nnz=1,488,768)

ILUTC
r−ILUT
c−ILUT
b−ILUT

Figure 4: Precondition time vs. Lfil for ILUC, r-ILUT, c-ILUT and b-ILUT (τ = 0.001)

Matrix η
CONVDIFF0 3× 10−4

CONVDIFF1 3× 10−3

CONVDIFF2 3× 10−2

CONVDIFF3 3× 10−1

Table 4: Four symmetric-pattern matrices from a convection-diffusion problem. The matrices have 205761
equations and 1436480 nonzeros. The value η measures the degree of nonsymmetry, ‖A−AT ‖F /‖A+AT‖F .

13

Matrix Drop-strategy Droptol Pr-sec. Its sec. Its Ratio
BARTHT1A Inverse-based 0.1 2.880 6.460 49 3.501

Standard 0.01 2.820 8.480 60 3.382
Inverse-based 0.01 28.560 5.100 19 9.660
Standard 0.001 35.140 6.490 22 10.890

RAEFSKY1 Inverse-based 0.01 0.500 0.560 18 0.924
Standard 0.1 0.470 0.670 20 1.096
Inverse-based 0.001 7.710 0.700 10 3.670
Standard 0.01 6.190 0.820 12 3.522

RAEFSKY2 Inverse-based 0.01 1.060 0.730 17 1.736
Standard 0.1 0.630 0.700 19 1.325
Inverse-based 0.001 13.270 0.810 9 5.074
Standard 0.01 8.300 0.900 12 4.030

RAEFSKY3 Inverse-based 0.1 7.070 13.510 57 1.391
Standard 0.1 - - - 1.083
Inverse-based 0.01 18.180 2.360 9 2.280
Standard 0.01 14.800 2.190 8 2.402

VENKAT25 Inverse-based 0.1 7.330 63.920 127 2.539
Standard 0.1 2.900 37.000 91 1.522
Inverse-based 0.01 68.450 24.710 25 9.300
Standard 0.01 30.800 15.180 21 6.175

CONVDIFF0 Inverse-based 0.01 5.800 100.550 95 3.644
Standard 0.01 5.840 165.450 132 3.909
Inverse-based 0.001 15.820 38.340 34 7.137
Standard 0.001 21.320 83.010 46 9.391

CONVDIFF1 Inverse-based 0.01 5.930 123.110 97 3.646
Standard 0.01 5.950 153.840 116 3.910
Inverse-based 0.001 15.840 36.860 33 7.139
Standard 0.001 19.910 71.250 43 9.389

CONVDIFF2 Inverse-based 0.01 6.170 52.120 49 3.665
Standard 0.01 6.100 82.310 60 3.924
Inverse-based 0.001 16.110 16.540 17 7.174
Standard 0.001 20.900 32.700 22 9.323

CONVDIFF3 Inverse-based 0.1 2.400 98.260 100 1.523
Standard 0.1 2.450 102.970 101 1.744
Inverse-based 0.01 6.340 12.520 17 3.848
Standard 0.01 6.670 19.840 21 4.221

Table 5: Performance of two dropping strategies used by ILUC on symmetric pattern matrices, Lfil = ∞

14

Matrix Drop-strategy Droptol Pr-sec. Its sec. Its Ratio
UTM.3060 Inverse-based 0.6 - - - 1.224

Standard 0.1 0.050 2.130 150 1.455
Inverse-based 0.06 0.210 0.680 37 4.251
Standard 0.01 0.180 0.590 31 4.178

UTM.5940 Inverse-based 0.1 0.850 4.720 115 6.251
Standard 0.01 0.500 2.650 54 5.217
Inverse-based 0.01 5.530 2.290 31 15.279
Standard 0.001 4.430 2.080 25 14.771

SHERMAN2 Inverse-based 0.1 0.030 0.030 7 1.444
Standard 5e-5 0.020 0.060 14 1.155
Inverse-based 0.01 0.060 0.010 2 2.196
Standard 5e-6 0.050 0.020 5 1.927

CAVA0000 Inverse-based 0.0008 22.660 6.640 27 6.824
Standard 0.01 38.580 40.390 128 6.491
Inverse-based 0.005 45.580 7.620 24 9.539
Standard 0.001 49.480 28.060 74 10.013

CAVA0100 Inverse-based 0.1 19.910 24.920 88 5.500
Standard 0.6 31.330 51.800 204 5.905
Inverse-based 0.01 6.680 5.010 23 4.310
Standard 0.06 65.230 14.440 46 8.832

Table 6: Performance of two dropping strategies used by ILUC on nonsymmetric pattern matrices, Lfil = ∞

of nonzeros in the rows of U or columns of L is limited only by the drop tolerance. In addition, an effort was
made to obtain LU factors that use more or less the same amount of memory for the preconditioners being
compared, as reflected by the fill ratios. This was accomplished by a trial and error process, where various
drop tolerances were tested for each matrix. As can be seen, the inverse-based method seems to drop small
elements more precisely than the standard technique, in the sense that elements are dropped when they are
least likely to affect convergence of the iteration. The tests also show that, in most cases, fewer GMRES
iterations are needed to converge with the inverse-based dropping version.

This observation is further illustrated by the plots shown in Figure 5 which compare iteration times
required by GMRES to converge when the fill-in ratio is varied for the two strategies. This is done for the four
matrices BARTHT1A, CONVDIFF2 (symmetric patterns) and UTM.5940 and CAVA0100 (nonsymmetric
patterns). Of the four cases, only UTM.5940 showed poorer overall performance for the inverse-based
dropping. For reasons which are unclear, ILUC does not perform as well, relatively speaking, for matrices
with nonsymmetric patterns.

6 Conclusion

The new version of ILU presented in this paper has several advantages over standard ILU techniques. The
most obvious of these, which provided the primary motivation for this work, is that it leads to an efficient
implementation that bypasses the need for searches. These costly searches constitute the main drawback of
standard delayed-update implementations. Perhaps more significant is the advantage that this new version
of ILU enables efficient implementations of some variations that were not practically possible with standard
ILUT. For example, the more rigorous dropping strategies based on estimating the norms of the inverse

15

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
20

25

30

35

40

45

50

55

60
BARTHT1A (n=14,075; nnz=481,125)

Ratio (nnz(L+U)/nnz(A))

Ite
ra

tio
n

T
im

es

Inverse−based
Standard

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
15

20

25

30

35

40

45

50

55

60

65

Ratio (nnz(L+U)/nnz(A))

Ite
ra

tio
n

T
im

es

CONVDIFF2 (n=205,761; nnz=1,436,480)

Inverse−based
Standard

(a) (b)

4 6 8 10 12 14 16
20

30

40

50

60

70

80

90

100

110

120
UTM.5940 (n=5,940; nnz=83842)

Ratio (nnz(L+U)/nnz(A))

Ite
ra

tio
n

T
im

es

Inverse−based
Standard

5.5 6 6.5 7 7.5 8 8.5 9 9.5
0

50

100

150

200

250

300
CAVA0100 (n=17,922; nnz=567,467)

Ratio (nnz(L+U)/nnz(A))

Ite
ra

tio
n

T
im

es

Inverse−based
Standard

(c) (d)

Figure 5: Iteration times vs fill-in ratio for inverse-based dropping and standard dropping

16

factors described in [3] can easily be implemented and lead to effective algorithms. In the same vein, this
version of ILU also allows the implementation of potentially more effective pivoting strategies. This was not
considered in this paper but will be the subject of a forthcoming study.

References

[1] M. Bollhöfer and Y. Saad. A factored approximate inverse preconditioner with pivoting. SIAM Journal
on Matrix Analysis and Applications, 2001. to-appear.

[2] M. Bollhöfer and Y. Saad. On the relations between ilus and factored approximate inverses. Technical
Report umsi-2001-67, Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, MN,
2001. To appear, SIMAX.

[3] Matthias Bollhöfer. A robust ILU with pivoting based on monitoring the growth of the inverse factors.
Linear Algebra and its Applications, 338(1–3):201–218, 2001.

[4] Matthias Bollhöfer. Binary search tree implementation of ILUT and ILUTP. Personal Communication,
2002.

[5] E. Chow and Y. Saad. ILUS: an incomplete LU factorization for matrices in sparse skyline format.
International Journal for Numerical Methods in Fluids, 25:739–748, 1997.

[6] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. Clarendon Press, Oxford,
1986.

[7] S. C. Eisenstat, M. H. Schultz, and A. H. Sherman. Algorithms and data structures for sparse symmetric
Gaussian elimination. SIAM Journal on Scientific Computing, 2:225–237, 1981.

[8] J. R. Gilbert and T. Peierls. Sparse partial pivoting in time proportional to artithmetic operations.
SIAM Journal on Scientific Computing, 9:862–874, 1988.

[9] G. H. Golub and 3rd edn C. Van Loan. Matrix Computations. The John Hopkins University Press,
Baltimore, 1996.

[10] M. Jones and P. Plassman. An improved incomplete Choleski factorization. ACM Transactions on
Mathematical Software, 21:5–17, 1995.

[11] J. M. Ortega. Introduction to Parallel and Vector Solution of Linear Systems. Plenum Press, New York,
1988.

[12] Y. Saad. SPARSKIT: A basic tool kit for sparse matrix computations. Technical Report RIACS-90-20,
Research Institute for Advanced Computer Science, NASA Ames Research Center, Moffet Field, CA,
1990.

[13] Y. Saad. ILUT: a dual threshold incomplete ILU factorization. Numerical Linear Algebra with Appli-
cations, 1:387–402, 1994.

[14] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS publishing, New York, 1996.

17

