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Abstract

This paper describes and tests a parallel, message passing code for constructing sparse ap-
proximate inverse preconditioners using Frobenius norm minimization. The sparsity patterns
of the preconditioners are chosen as patterns of powers of sparsified matrices. Sparsification
is necessary when powers of a matrix have a large number of nonzeros, making the approx-
imate inverse computation expensive. For our test problems, the minimum solution time
is achieved with approximate inverses with fewer than twice the number of nonzeros of the
original matrix. Additional accuracy is not compensated by the increased cost per iteration.
The results lead to further understanding of how to use these methods and how well these
methods work in practice. In addition, this paper describes programming techniques required
for high performance, including one-sided communication, local coordinate numbering, and
load repartitioning.

1 Introduction

A sparse approximate inverse approximates the inverse of a matrix A by a sparse matrix M. This
approximation is based on the assumption that for many matrices arising from the discretization
of partial differential equations (PDEs), the inverses contain many small entries that may be
neglected. The primary motivation for the development of sparse approximate inverses has been
parallel preconditioning, i.e., the parallel, iterative solution of the linear system Ax = b by a
transformed system, for example,

MAx = Mb

where M ~ A~'. Each step of the iterative method involves a parallel sparse matrix-vector
multiplication involving M. For symmetric positive definite (SPD) problems, A~! is approxi-
mated by the factorization G*'G, where G is a sparse lower triangular matrix approximating the
inverse of the lower triangular Cholesky factor, L, of A.

In this paper, we consider parallel methods that construct M or G by minimizing the Frobe-
nius norm of the residual matrix (I — M A) or (I — GL), respectively. In the nonfactorized case
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(see 2.2.1 for the factorized case), the objective function can be minimized in parallel because
it can be decoupled as the sum of the squares of the 2-norms of the individual rows

n
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in which e/ and m! are the ith rows of the identity matrix and of the matrix M, respectively.
Thus, minimizing (1) is equivalent to minimizing the individual functions

el —ml'Alls, i=1,2,...,n. (2)

If no restriction is placed on M, the exact inverse will be found. To find an economical approx-
imation, each row in M is constrained to be sparse, by either specifying the nonzero entries in
M a priori before the minimizations, or during the minimizations with an adaptive procedure.
When the m; are sparse, each function in (2) can be minimized using a least squares method.
If A is nonsingular, then the least squares matrices have full rank. A right approximate inverse
may be computed by minimizing ||I — AM||% which is more suitable for right-preconditioning.
The left approximate inverse described above, however, is amenable to the common distribution
of parallel matrices by rows. In this paper we will assume that matrices are distributed by rows.

Adaptive procedures are based on updating a sparsity pattern and solving the resulting least
squares problem exactly or inexactly. This process is repeated until a threshold on the residual
norm has been satisfied, or a maximum number of nonzeros has been reached (Cosgrove, Diaz,
& Griewank, 1992; Grote & Huckle, 1997; Chow & Saad, 1998). These techniques have been
implemented in parallel by Huckle (1996b), Deshpande, Grote, Messmer, and Sawyer (1996),
Barnard and Clay (1997) and Barnard, Bernardo, and Simon (1999).

Adaptive techniques can produce accurate approximate inverses, but these techniques can be
expensive and the use of a priori patterns is often just as effective (Chow, 2000). Banded patterns
for banded matrices (Benson, Krettmann, & Wright, 1984; Grote & Simon, 1993) and the pattern
of A, A2, and other variants for more general matrices may be used (Huckle, 1997; Field, 1997,
1998). For dense matrices, sparsification to produce patterns for a sparse approximate inverse
has been successful (Kolotilina, 1988; Vavasis, 1992; Chen, 1998; Carpentieri, Duff, & Giraud,
2000).

1.1 Patterns of powers of sparsified matrices

In this paper, we use a priori patterns that are patterns of powers of sparsified matrices (Cos—
nuau, 1996; Alléon, Benzi, & Giraud, 1997; Tang & Wan, 2000; Field, 1999; Chow, 2000), i
patterns of AL, where A is a matrix constructed from A, for example, by numerically droppmg
entries in A that are small in magnitude. L is a small positive integer and L — 1 is known as
the level of the pattern. Dropping small entries has the effect of identifying the most impor-
tant interactions described by a matrix and the use of matrix powers incorporates “nearby”
interactions in a graph theory sense.

For a 2-D PDE with a 5-point stencil discretization, the discrete Green’s function can be
used to explain these sparsity patterns. Figure 1(a) shows the discrete Green’s function for an
anisotropic PDE at a point near the center of a square domain. The sparsity pattern for a given
row of the approximate inverse should correspond to the largest entries in the Green’s function.



Figure 1(b) plots the approximation to the Green’s function when the pattern of the original
matrix is used as the pattern of the approximate inverse. Note that some small entries in the
inverse are included in the pattern before other larger entries. Figure 1(c) plots the approxi-
mation to the Green’s function when the pattern of a sparsified discretization matrix is used.
Sparsification detects the anisotropy. Figure 1(d) plots the approximation using the pattern of
the square of the sparsified matrix (level 1 pattern). Now more large entries in the inverse are
identified. Higher matrix powers would only extend the pattern in the east and west directions
where there are small Green’s function entries; thus higher powers must be balanced with less
aggressive sparsification in this example.

In the factorized case, where GT'G ~ A~", the pattern for G should be chosen such that the
pattern of GTG is close in some sense to good patterns for approximating A~!'. Given a good
pattern for approximating A~!, then the lower triangular part of this pattern is a good pattern
for G since the pattern of G''G includes the given pattern.

1.2 Algorithmic Stages

The following two algorithms describe the stages for computing sparse approximate inverses
using least squares minimization and patterns of powers of sparsified matrices. We include a
post-processing stage called filtration (Kolotilina, Nikishin, & Yeremin, 1999), to be described in
section 2.3. Algorithm 1.1 outlines the nonfactorized case and Algorithm 1.2 outlines the SPD
factorized case. The input parameters are the threshold thresh in stage 1, the level level (L —1)
in stage 2, and the filter value filter in stage 4.

ALGORITHM 1.1 Nonfactorized sparse approximate inverse, M ~ A~!

Threshold A to produce A

Compute the pattern A" for M

Compute the nonzero entries in M, by minimizing ||I — M A%
Filtration: drop small entries in M

=

ALGORITHM 1.2 Factorized sparse approximate inverse, G' G ~ A™!

1. Threshold A to produce A

Compute the pattern AL and let the pattern of G be the

lower triangular part of the pattern of AL

Compute the nonzero entries in G, as will be described in section 2.2.1
4. Filtration: drop small entries in G and rescale

©w

In section 2 of this paper, we describe stages 1, 3 and 4, in detail. These stages are straight-
forward to parallelize. Section 3 describes parallel implementation, in particular stage 2 and
additional issues such as one-sided communication, local coordinate numbering, and load bal-
ancing. Results of experimental tests are reported in section 4.



(a) Green’s function (b) Pattern of A

(c) Pattern of sparsified A (d) Level 1 pattern

Figure 1: Patterns illustrated using discrete Green'’s functions.



2 Algorithmic Considerations

2.1 Thresholding A
A binary matrix A is constructed from a matrix A such that

i, L1 ifi=jor|[(DTV2ADT2);;| > thresh
"1 0 otherwise

where the diagonal matrix D is

1 otherwise
and thresh is a nonnegative threshold. The scaling with D is necessary if A is poorly scaled.
The diagonal part of the sparsity pattern should be retained. Interprocessor communication is
needed for the nonlocal components of D.

Denser approximate inverses M tend to be more accurate, but the cost of the preconditioning
operation is higher, proportional to the number of nonzeros in M. Denser approximate inverses
are also more expensive to construct. Thus the threshold thresh and the level parameter should
be chosen to balance accuracy and cost.

2.2 Computing the nonzero entries
2.2.1 Factorized case

For symmetric positive definite (SPD) problems, minimizing ||/ — GL||% can be accomplished
without knowing the Cholesky factor L by solving the normal equations

{GLL"}ij ={L"}y, (i,5) € St (3)
where Sy, is a lower-triangular nonzero pattern for G. Equation (3) is equivalent to
{GA}; = Ly, (i,5) €S (4)

where G = D~'G and D is the diagonal of L, since {L”};; for (i,5) € St is a diagonal matrix.
Note that each row of G can be computed independently by solving a small SPD linear system.
The preconditioned matrix has the form

GAGT = DGAGTD (5)

but since D is not generally known, it is chosen such that the diagonal of GAG? is all ones. For
further information, see Kolotilina and Yeremin (1993).

Let diag(X) denote the diagonal matrix that is the diagonal of the matrix X. Then a few
simple propositions can be stated.

Proposition 2.1 (Kolotilina & Yeremin, 1993) If diag(DGAGT D) = I, then D = diag(G) /2.



Proposition 2.2 The preconditioned matriz is invariant to diagonal scalings of A.
PROOF. Let G denote the solution of (4) and let H denote the solution of
{HDADY;; = I;;, (i,j) €81 (6)

where D is a diagonal matrix. Without loss of generality, consider the computation of BT, the
ith row of H, and let J = {j | (i,7) € Sp}. (We have dropped reference to i for notational
convenience.) Denote by a subscript J the restriction onto the indices J. Then for (i,7) € S,
the nonzero entries of h” can be computed by solving

EEDJJAJJDJJ = (ezT)J
which is equivalent to
§§AJJ = (ezT)J
where g7 = D;;hYD,,. Thus G = DHD.
Now, from proposition 2.1, define the scalings
D, = diag(G)'?
Dy, = diag(H)Y?
= diag(D"'GD)/?
= DD
The preconditioned matrix for A is
GAG" = D{'GAG"D;!
= DY (DHD)A(DH'D)D;!
= D,'H(DAD)HTD,!
= H(DAD)HT
which is the preconditioned matrix for DAD. O

Proposition 2.3 If G is the computed approximate inverse factor for A and H 1is the approxi-
mate inverse factor for the symmetrically scaled matrizc DAD, then G = HD.

ProoOF. This follows immediately from the proof of proposition 2.2. O
Proposition 2.4 The diagonal entries of G are positive.

PROOF.  For each i, row i of G is the ith row of the inverse of A, . Since A7l is SPD, the
1th entry of this row is positive. Finally, G is just a positive scaling of G. O

The ith row of G can be computed independently of the other rows by solving a small linear
system with the sparse matrix

Azzy T={j|(ij) € Sr}

The system can be solved by using a dense direct method, a sparse direct method (Field, 1997),
or approximately by using an iterative method (Kolotilina, Nikishin, & Yeremin, 1992).



2.2.2 Nonfactorized case

In the nonfactorized case, the nonzero entries in the approximate inverse M may be computed
by minimizing (2) using dense QR factorization. See Huckle (1996a) for methods that treat the
least squares matrix as sparse.

For an SPD matrix, computing a nonfactorized approximate inverse requires about 32 times
more flops than computing the approximate inverse in factorized form. Let m denote the number
of nonzeros in a row of the approximate inverse or approximate inverse factor. In the nonfac-
torized case, if m' x m, (m' > m) is the size of the local least squares problem, then computing
the row requires 2m?m’ — 2m3/3, or at least 4m?/3 flops for computing the Householder QR.
factorization. In the factorized case, m?/3 flops are necessary to perform the m x m Cholesky
factorization. In addition, for a given sparsity pattern, the number of nonzeros per row is nom-
inally halved in the factorized case, giving the factor of 32. As an example, for a matrix with
a 5-point stencil, computing the approximate inverse with the same sparsity pattern requires
the equivalent number of flops as 50 matrix-vector multiplies in the nonfactorized case and 3
matrix-vector multiples in the factorized case. (These calculations include all the flops for com-
puting the row.) It is also possible to compute factorized approximate inverses for nonsymmetric
matrices (Kolotilina & Yeremin, 1993). Factorized forms require about 16 times fewer flops in
this case.

2.3 Filtration

The sparse approximate inverse M (or the factor G) may contain many nonzero entries that are
small in magnitude. These entries may be dropped to reduce the cost of storing and multiplying
by M (Tang & Wan, 2000; Kolotilina et al., 1999). In the nonsymmetric case, the perturbation
to the preconditioning operation when nonzeros are dropped is proportional to the size of these
nonzeros. Experimentally, the number of nonzeros in M may be significantly reduced with little
degradation in convergence rate of the iterative method. Filtration is analogous to the dropping
that is performed in some adaptive approximate inverse techniques.

Entries in M may be dropped if they are smaller in magnitude than a threshold called the
filter value. To make this threshold independent of the scaling of A, entries in M are dropped if
the corresponding entry in D~'M D! is small, where D = diag(A) /2. In the factorized case,
we use proposition 2.3 and drop a nonzero in G if the corresponding nonzero in GD~! is small
in magnitude compared to the filter value. Thus M and G do not actually have to be scaled to
perform the filtration. In both the nonfactorized and factorized cases, the diagonal entries are
never dropped.

In the factorized case, Kolotilina et al. (1999) recommends rescaling G after small entries are
dropped to G = DG such that the diagonal of the preconditioned matrix GAGT is all ones.
Unlike the scaling in (5), this involves constructing the diagonal of GAG™. If G is stored by rows
and the local processor stores the rows of A that were needed to compute the local part of G,
then the diagonal of GAGT can be computed without interprocessor communication. Rescaling
may not be important, however, if the filter value is small.



3 Parallel Implementation

3.1 Parallel computation of sparse matrix powers

Powers of A can be computed by combining the rows of A. Denote the kth row of AZ by flﬁ
Then, : . :
Ak = ALT'A (7)

which is the combination of the rows of A corresponding to the nonzeros in Aﬁ Tl. Interprocessor

communication is required if the required rows of A are not stored locally.
An alternative to (7) is to use
A = Ay AV

which is the combination of the rows of AL~! corresponding to the nonzeros in Ak,;. Here, which
rows of each AL~! that need to be sent to other processors remains fixed (and are known by
the sending processor when A has symmetric structure). The volume of the communication,
however, can be much larger and all rows of AL~! must be available.

The required interprocessor communication can be visualized if A is interpreted as a graph,
with its nodes distributed among processors. Computing the pattern of sparse matrix powers is
equivalent to computing level sets about each node in the graph. To compute AL information
is required from the L — 1st level neighbors. Many other scientific computing algorithms only
require information from the first level neighbors.

Parallel organization

There are several alternatives to how the parallel computation of the pattern of sparse matrix
powers may be organized. First, each row of AL may be computed independently of each other.
This is efficient on data movement because all the merging required to form a row can be
performed at once. Processors must communicate asynchronously, however, when rows from
another processor are needed in the computation. In addition, this communication is one-sided.
This approach also precludes taking advantage of any symmetry in the pattern of A.

To avoid asynchronous communication, each power of A may be computed in sequence, with
an implied global synchronization between each power. All processors can exchange messages
before the new power of Ais computed. This may create periods of greater network contention,
but there are also fewer and longer messages, since all messages from a processor to another
may be grouped. In the symmetric case, if a processor makes requests to r other processors,
this processor will also receive requests from these r processors. The number of rows exchanged
between each pair of processors, however, is generally not the same. In the nonsymmetric case,
the number of requests that a processor will receive cannot be computed by the processor. All
processors tell all other processors how many requests it will send in an all-reduce type of global
communication. This parallel organization also requires storage of the previous power of A and
has much more data movement.

Asynchronous communication and the data movement problem can be avoided by using a
separate communication stage. In this stage, each processor maintains the composite pattern of
the all the local rows of flL, not the individual rows themselves. The composite pattern is used



to request off-processor rows that are needed to form the local part of each matrix power. The
composite pattern is then updated by merging it with these off-processor rows. These rows are
cached on the local processor for the subsequent computation stage where they can be used to
compute the pattern of individual rows without communication. The two stages are described
in Algorithm 3.1.

The use of the composite pattern makes it necessary to use an all-reduce global communi-
cation to determine the number of requests for rows that each processor will receive (even for
symmetric matrices). These global communications, however, are not significant compared to
the global communications required in the iterative solution method, e.g., two inner products
per iteration in the PCG method.

ALGORITHM 3.1 Computation of the pattern of AL

Communication stage

1. Forl=1,...,L
2. Request nonlocal rows of A corresponding to nonzeros in flé,:
that have not already been requested, where 1 is a local row
3. Determine number of requests this processor will receive (global communication)
4. Service requests for rows of A
5. Endloop
Computation stage
6. For all local row numbers 1
7. Forl=1,...,L
8. Compute the pattern of Ai:"l by merging the pattern of the rows of A
corresponding to nonzeros in fli
9. Endloop
10. Endloop

To compute the numerical values in M or G, rows from A are needed. If M has symmetric
structure, the processors that need to communicate can be determined beforehand. In general,
however, M is not symmetric and G is triangular. Thus we also use global communication here
to determine which pairs of processors need to communicate.

3.2 One-sided communication

A processor computing its portion of AL typically requires rows stored on other processors. These
other processors generally cannot predict that the first processor needs to communicate. This
one-sided communication can be accomplished with specialized software (Nieplocha, Littlefield,
& Rosing, 1995; Gropp, Huss-Lederman, Nitzberg, & Lusk, 1998), or can be simulated with
message passing.

In a message passing implementation, processors send requests for rows that they need.
Processors must also occasionally probe for and service such requests. This is the technique
used by Barnard et al. (1999). The polling frequency must be chosen carefully to balance the
resultant latency and wasted CPU cycles. Exiting the polling loop can be tricky since it can



only happen when all processors have received replies to all their requests. In a multithreaded
environment, one or more threads may be dedicated to servicing these requests (Chow, 2000).

Intermittent probing is not needed if the one-sided communication is not asynchronous, as
in Algorithm 3.1. Communication occurs at well defined intervals. In addition, global communi-
cation may be used for each processor to determine the number of requests in will receive. This
type of synchronous one-sided communication can be implemented as in Algorithm 3.2. Each
request simply contains a list of row numbers. Each reply contains row lengths and column
indices for each requested row. Algorithm 3.2 describes the structure of one iteration of the
communication stage of Algorithm 3.1.

ALGORITHM 3.2 Synchronous one-sided communication

1. Let num_needed be the number of other processors with information
needed by the local processor

2. Loopi=1,..., num_needed
3. Send request i (nonblocking, no need to test for completion)
4. Endloop
5. Determine num_requests, the number of requests this processor
will receive, using global communication
6. Loop+t =1,..., num_requests
7. Receive a request (use probe, since don’t know request size)
8. Construct reply in its own buffer and send reply
(nonblocking, or else may deadlock)
9. Endloop
10. Loopi=1,..., num_needed
11. Receive a reply directly into buffers
(use probe, since don’t know reply size)
12. Endloop

13. Wait for all sends in line 8 to complete

3.3 Global and local coordinate numbering

A local numbering scheme is used for the matrix row and column indices on a processor. The
local numbering scheme numbers the local indices sequentially starting at 0, followed by the
external indices. The size of the matrix that each processor sees is much smaller than the global
matrix size. This allows sparse matrix operations that require full-length arrays (arrays of length
the global size) to be implemented scalably in memory.

Adding two sparse vectors is an example of such an operation. One vector is scattered into a
full-length array so that its nonzeros can be accessed quickly. The second vector is accumulated
into this full-length array, while keeping track of new nonzeros, and then the result is gathered
into a sparse sum. If global coordinate numbering is used, then the full-length array must have
length the order of the global matrix and memory usage becomes unscalable with increasing
numbers of processors. If local coordinate numbering is used, then the full-length array is
typically not much larger than the number of rows stored on the processor.
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Another operation that requires local coordinate numbering is the construction of A;, and
the least squares matrices in (2). This operation is costly and must be implemented efficiently.
A mapping of the indices to the numbering of A, is required and again is accomplished through
a full-length array.

Matrices and other data structures should use local coordinate numbering because it is faster
to convert local coordinates to global, rather than the reverse. Indices only need to be converted
to global coordinates when they are passed to other processors, or when they are output to the
user.

The alternative to full-length arrays is to use searching, i.e., search for a global coordinate
index to determine if it is nonzero or to look up associated data. This can be very slow if many
indices are involved. Using both global and local numbering schemes is complex but in many
cases should be designed into a parallel code in order to achieve scalable implementation and
high performance.

Implementation with hash tables

Converting an index from local coordinates to global coordinates can be accomplished efficiently
through an array. Efficient conversion from global to local coordinates can be accomplished
using hash tables.

A hash table can be used to store a set of objects when the number of keys is small compared
to the total number of possible keys. Hashing maps the key, in this case the global coordinate
index, to a location inside the table which stores data associated with the index. See, for example,
Gonnet and Baeza-Yates (1991), Cormen, Leiserson, and Rivest (1991) for more details. We
found that the modulus hash function can result in many hash table collisions on some regularly
structured problems; thus we currently use a multiplicative hash function (Knuth, 1973) instead.
Our hash table stores the keys in the table, with collisions resolved by linear probing, which has
better cache behavior than other schemes.

There are two potential difficulties with using hash tables for mapping global indices: an
upper limit on the number of unique global indices on a processor must be known beforehand,
and the performance is difficult to predict if collisions are frequent. The first problem can be
fixed by simply rehashing into a larger table whenever necessary. The second problem can be
fixed by choosing a good hash function and rehashing whenever the table is 50 percent full.

Each processor maintains a hash table in the data structure for the matrix. Each time a new
global coordinate is introduced on a processor (e.g., when the matrix is being defined, or when
a row is sent from another processor), the global coordinate is added to the hash table and a
new local coordinate is created.

3.4 Load Balancing

When the sparse approximate inverse is very sparse, e.g., fewer than 20 nonzeros per row, then
its computation is fast and little can be gained in the total solution time by attempting to rectify
any load imbalance. When the sparse approximate inverse has many nonzeros per row, however,
the computation of the nonzero values in the approximate inverse can be excessive. This stage
of the computation costs O(I?) for a row that contains / nonzeros in the approximate inverse.
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This high order complexity can cause this stage to be unbalanced, even when each processor
owns approximately the same number of rows of the matrix.

The cost of the numerical stage is known beforehand, after the pattern of the approximate
inverse has been determined, which is a quick computation. Thus we can then approximately
load balance the entire computation by repartitioning the rows to be computed by each processor.

We define load balance as the ratio of the average workload to the largest workload. Let m
denote the average workload, calculated as the average of the sum of the cubes of the lengths of
the local rows of AL. To achieve a load balance of at least (3, processors with greater than m/(3
workload must donate rows to compute to processors with less than the average workload. The
recipient processors accept work up to a total workload of m/3. After the work is performed,
the donated rows are returned. Each donor decides how many and which rows to donate. Since
row lengths may be unequal, however, it may be impossible to achieve the target load balance.

The repartitioning should be chosen to be an incremental modification to the existing parti-
tioning (Hendrickson & Devine, 2000). This reduces both the data transfer to perform the repar-
titioning and the data communication in the repartitioned problem. If the original partitioning
corresponds to a decomposition into subdomains, one for each processor, then incrementality
can be accomplished by transferring work as much as possible between processors corresponding
to neighboring subdomains.

Algorithm 3.3 shows how the workload should be repartitioned, given p processors, each
with a workload ¢;. The target load balance 8 may be set less than 1, to reduce the overhead
of repartitioning. This algorithm can be run independently after each processor broadcasts the
size of its workload to all other processors. In the algorithm, a processor can donate work to
more than one processor and a processor may accept work from more than one processor. The
algorithm does not attempt to minimize the number of processors that must exchange data.

It is also possible to reduce the data transfer by transferring long rows rather than short
rows, since the work is proportional to the cube of the length of the rows. The gains, however,
may not be large so we do not utilize this in the algorithm.

ALGORITHM 3.3 Repartitioning

1. Setm = %Eci and set upper = m/(3
2. Loop on i over all processors
3. If (¢; > upper) then must donate work:
4. Set the quantity of work to move: move = ¢; — upper
5. Loop over all other processors j
6. If (cj <'m) then j has below average workload:
7. accept = min(move, upper — c;)
8. c; = ¢; — accept
9. ¢j = ¢; + accept
10. If (¢; < upper) then exit loop (done balancing processor i)
11. Endif
12. Endloop
13. Endif
14. Endloop
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proc | unbalanced | balanced
0 51.7 75.9
1 59.8 76.5
2 71.0 78.6
3 119.7 74.5
max 119.7 78.6
ave 75.6 76.4

Table 1: Timings for original and load balanced computations with 4 processors.

Table 1 shows an example calculation of a sparse approximate inverse with timings for four
processors with no load balancing, and with load balancing set with 8 = 1. The total time
(maximum time) is reduced in the balanced case. The average time shows that there is not a
significant repartitioning overhead for this case. Load balancing is scalable if each processor is
only required to communicate with a small number of processors independently of the number
of processors.

3.5 Parallel sparse matrix-vector multiplication

In an iterative solver, the sparse matrix-vector multiplication kernel should be as efficient as
possible. Any matrix data structure should be designed such that this kernel can be implemented
efficiently. See, for example, Saad and Malevsky (1995), Tuminaro, Shadid, and Hutchinson
(1998) and Gropp, Kaushik, Keyes, and Smith (1999).

Parallel sparse matrix-vector multiplication should also be implemented with local coordinate
numbering, with the external indices from a given processor grouped together in the numbering.
Thus external values collected from a processor do not need to be reordered before they are
used.

If an approximate inverse factor G is lower triangular and stored row-wise, applying the
factorized preconditioner involves multiplications by G and G7. The indices that are sent by
a processor in the G multiplication are the indices that are received by that processor in the
G" multiplication. Thus, setting up the matrix-vector multiplications for both a matrix and its
transpose can be simplified.

The multiplication by the triangular matrix G typically does not require load balancing
because each processor normally has approximately the same number of nonzeros of G. This is
clear when G has the pattern of the lower triangular part of a matrix from a PDE discretization.
Thus we do not attempt to repartition G in our work.

In any case, whether or not the multiplication by G needs to be load balanced can be
determined by comparing its time to the time for multiplying by the coefficient matrix A, scaled
by the ratio of the numbers of nonzeros in the two matrices. If G is repartitioned to balance the
matrix-vector multiplication, then the result of the multiply needs to be redistributed to match
the partitioning of A. It is also possible to find one partitioning for both A and G such that
the overall computation is balanced, using a weighted partitioning method (Karypis & Kumar,
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1998).

3.6 Matrix data structure

For many preconditioners such as incomplete factorizations, constructing the preconditioner
requires only one access to each row of the matrix A. This is not the case for sparse approximate
inverse preconditioners based on Frobenius norm minimization. Thus A should be stored or
copied into in a data structure that has efficient access by rows.

The rows in the sparse approximate inverse matrix should be stored contiguously in memory
so that matrix-vector products with the matrix can be cache efficient. This typically requires
memory to be allocated for the preconditioner before any part of the preconditioner is stored.
We use a data structure where most of the rows are stored contiguously without needing to
know the size of the preconditioner beforehand. Rows are stored contiguously in large blocks of
memory; additional blocks are allocated as needed. Some memory is wasted in the final block.
All blocks are deallocated when the matrix is no longer needed. This storage scheme requires
pointers to the memory locations of the beginning of each row.

4 Experimental Results

4.1 Detailed study of an elasticity problem

We begin with a detailed study of one problem, a finite element elasticity model of three con-
centric spherical shells. The two outer shells are hard materials (steel) and the inner shell is a
soft material (lucite). “Slide surface” boundary conditions between the shells allow the shells to
move tangentially relative to one other. The small example linear system that we study from
this model has 18205 equations with 1.4 million nonzeros and is SPD.

In all tests described in this paper, we use the factorized preconditioner with preconditioned
conjugate gradients (PCG) to reduce the initial residual norm by 8 orders of magnitude. Timings
were taken on an IBM SP with PowerPC 604e (332 MHz) processors. For this small problem, 4
processors (1 node) were used. The IBM implementation of the MPI library was used.

In the tables, the total solution time is decomposed as the time required for constructing
the preconditioner (“Setup”) and the time required for the iterative solve phase (“Solve”). All
timings are reported in seconds. The sparsity ratio, denoted by “Ratio,” is the ratio of the
number of nonzeros in the preconditioner to the number of nonzeros in the original matrix and
“Iter” is the number of iterations to convergence.

In Table 2, results using simple a prior: patterns are shown. The lowest total time is achieved
by using the pattern of the original matrix A. The more accurate preconditioner using the
pattern of A% has both higher construction cost and higher iteration cost. The pattern of A2
averages 350 nonzeros per row, which leads to very high construction costs. The sparsity ratio
of 4.65 for the more accurate preconditioner is not compensated by the better convergence rate.

When constructing the preconditioner, computing the pattern takes much less time than
computing the values (0.2 and 2.7 seconds, respectively, using the pattern of A, and 1.9 and
75.9 seconds, respectively, using the pattern of A?).
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Ratio | Iter | Setup Solve Total
diagonal scaling 1992 78.2
pattern of A 1.00 | 705 3.1 584 615
pattern of A? 4.65 | 470 78.9 121.3 200.2

Table 2: Results using simple a prior: patterns.

Thresh | Ratio | Iter | Setup Solve Total
0.00 4.65 | 470 78.9 121.3 200.2
0.01 3.52 | 475 38.8 96.5 135.3
0.05 0.97 | 504 2.9 428 458
0.10 0.27 | 869 0.8 46.6 474

Table 3: Results using different sparsification thresholds (level = 1).

Table 3 shows that sparsification can produce preconditioners which are cheaper to use and
construct. Various sparsification thresholds were tested with the pattern of A2. A threshold
of 0 indicates that no dropping was used. Thresholding reduces both the setup and solve
timings. It reduces the setup timings because sparser approximate inverses are more economical
to construct. It reduces the solve timings because each step of an iterative solver costs less,
because the preconditioner is sparser. The number of iterations does not increase substantially
when small thresholds are used.

Filtration can further reduce the iteration time. Table 4 shows results using various filter
values along with sparsification. When a filter value of 0.1 is used, 78 percent of the nonzeros
in the initial preconditioner are dropped, while the number of iterations does not increase sub-
stantially. A small increase in the setup time due to filtering can be noted in Table 4. The size
of this increase is related to the number of nonzeros that must participate in the rescaling after
small entries are dropped. Tests on several problems show that filter values of 0.05 to 0.1 are
usually best, corroborating the preliminary result of Kolotilina et al. (1999).

We note that sparsification interacts with filtration and that it is typical in this case for a
smaller fraction of nonzeros to be dropped by the filtration procedure. The best filter values
are the same, except when very large sparsification thresholds are used, in which case filtration
does not significantly reduce the number of nonzeros.

It is possible to make approximate inverses very accurate and sparse by computing an initial
approximate inverse that has high sparsity ratio and then applying the filtration procedure to
produce a very sparse approximate inverse. The initial approximate inverse is expensive to
compute, but the very sparse filtered pattern can be very accurate. In a sequence of solves when
the matrix does not change significantly, the filtered pattern can be reused to generate very
accurate preconditioners at low cost. In Table 5, the sparsity ratio before filtering was 6.89 and
the values for this preconditioner were costly to compute. Filtration produced a preconditioner
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Filter | Ratio | Iter | Setup Solve Total
0.001 | 0.94 | 504 4.7  43.1 478
0.010 | 0.72 | 503 4.1 378 419
0.050 | 0.35 | 548 3.5 313 3438
0.100 | 0.21 | 579 3.3 290 323
0.200 | 0.10 | 719 3.2 347 379

Table 4: Results using different filter values (thresh = 0.05, level = 1).

Thresh Level Filter | Ratio | Iter | Setup Solve Total
0.05 3 0.05 | 0.84 | 146 | 240.1 11.5 251.5
pattern from above 0.84 | 156 3.1 11.8 149

Table 5: Accurate sparse approximate inverse patterns.

with sparsity ratio 0.84. This filtered pattern was used to generate a preconditioner for the same
matrix very cheaply.

In Table 6, we show results for various combinations of threshold and level. As mentioned
in section 2.1, these parameters must be balanced for best results; the best level depends on the
threshold and vice-versa.

4.2 Patterns for PDE systems problems

A system of m PDEs is often discretized with m variables at each grid point, leading to matrices
containing block entries of size m x m. It is possible to retain this block structure in a sparse
approximate inverse to take advantage of efficient computations with blocks. However, the
patterns of the largest entries in the inverses of these matrices generally do not have block
structure; the inverses often show stronger couplings between like variables instead of between
variables at the same grid point.

For these problems, we propose using dual threshold patterns, or patterns of matrices of the
form

A AL 4+ AL A, (8)

where A; and A, are sparsified matrices using two different thresholds. This allows more complex
sparsity patterns to be specified. For example, the matrix Ay should only capture the couplings
between like variables. Since this matrix is very sparse, high powers of this matrix are feasible
and emulate the strong couplings between like variables in the inverse. The matrix A; should be
denser and represent more global couplings. Two terms are needed in (8) to make it symmetric.

For the problem studied in section 4.1, the best timing can be further reduced by using these
dual threshold patterns, as shown in Table 7.

As another example of the use of dual threshold patterns, we consider problem “s3dkt3m2,”
which is a very difficult problem for sparse approximate inverse preconditioners. The problem,
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Thresh | Level | Ratio | Iter | Setup Solve Total
0.01 0 0.25 754 2.0 393 413
0.01 1 0.47 539 40.0  33.7  T3.7
0.01 2 0.80 243 | 491.2  20.4 511.6
0.05 0 0.17 804 0.9 40.7 415
0.05 1 0.35 548 3.5 313 3438
0.05 2 0.57 252 33.5 179 513
0.05 3 0.84 146 | 240.1 11.5 251.5
0.10 0 0.09 | 1062 0.6 474  48.0
0.10 1 0.18 886 1.1 431 442
0.10 2 0.28 729 2.3 403 426
0.10 3 0.38 569 6.7 33.5 40.2
0.10 4 0.50 507 273 323  59.7
0.10 5 0.62 456 | 104.6 323 136.9

Table 6: Results varying thresh and level (filter = 0.05).

Thresh Level Filter | Ratio | Iter | Setup Solve Total
0.05/0.2 2 0.05 | 0.36 | 316 2.8 182 21.0

Table 7: Result using the pattern of A;A43 + A3A; where A; was created with threshold 0.05
and As was created with threshold 0.2. The sparsity ratio before filtering was 0.71.
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Thresh  Level Filter | Ratio | Iter | Setup Solve Total
0.00 4 0.00 | 12.35 | 1422 | 163.8 613.6 777.3
0.01 4 0.00 | 12.26 | 1386 | 163.3 632.3 795.6
0.00 4 0.01 8.27 | 1396 | 174.5 441.2 615.7
0.01 4 0.01 8.23 | 1413 | 171.5 454.8 626.3

0.01/0.10 3 0.01 6.36 | 1590 | 102.6 386.8 489.3

Table 8: Results for s3dkt3m2. The last row shows that dual threshold patterns can be used to
generate sparser preconditioners for PDE systems problems. The sparsity ratio before filtering
for the dual threshold pattern was 10.00.

from Reijo Kouhia, models a cylindrical shell (radius/thickness=1000). The matrix is of order
90449 and has 3.8 million nonzeros. This problem could not be solved with sparse approximate
inverses with levels up to 3 and with thresholds and filter values much larger than 0.01. The
results are shown in Table 8, using 16 processors.

The sparsity ratios in the first two rows of Table 8 are similar, meaning that sparsification
was not helpful to reduce the cost of constructing the preconditioner. This is a difficulty with
systems problems. The last row in Table 8 shows that a sparser and less costly preconditioner
can be constructed using a dual threshold pattern.

4.3 Comprehensive tests

We collected large SPD matrices from various sources and selected large representative problems
and problems that have been tested with approximate inverses by others (Field, 1997; Benuzi,
Kouhia, & Tuma, 1998; Kolotilina et al., 1999; Benzi, Cullum, & Tuma, 2000). Most of the
problems are from structures or solid mechanics applications, but radiation diffusion and pressure
Poisson problems are also represented. Table 9 lists the test matrices. Four of these problems
could be solved using diagonal preconditioning and are listed in Table 10 for comparison.

We note that there were several problems that we could not solve efficiently. These prob-
lems were “besstk35” (automobile seat frame and body attachment), “besstk37” (track ball),
“ct20stif” (engine block), and “vibrobox” (Vibroacoustic problem). These problems are not
shown in Table 9.

The test results are shown in Table 11. For each matrix, the first row in the table is the result
using the pattern of the original matrix A and the second row shows the best result based on
total time. Thresholds of 0, 0.01, 0.02, 0.05, 0.1, 0.2 and levels of 0, 1, 2, 3 were systematically
tested. A filter value of 0.05 and a load balance parameter of 0.9 was used in all cases. “Ratiol”
and “Ratio2” are the sparsity ratios before and after filtration, respectively. Initial guesses of
zero were used and random right-hand sides were used if right-hand sides were not provided.
Timings were taken on 4 processors (1 node) on the IBM SP except for problems “pwtk” and
” where 16 processors (4 nodes) were used. The results show that best sparsity ratio after
filtration is less than 2 for this set of problems.

“Sm
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n nnz | nnz/n
sls 18205 | 1358897 74.6 | spherical shell, 2 slides
besstkl7 10974 428650 39.0 | elevated pressure vessel
besstk36 23052 | 1143140 49.5 | shock absorber assembly
cfd2 123440 | 3087898 25.0 | pressure matrix, Rothberg
small_ic 15492 | 1213038 78.3 | integrated circuit

eltgroth 68921 | 1543652 22.3 | radiation diffusion
msc23052 | 23052 | 1154814 50.0 | MSC/Nastran problem
nasasrb 54870 | 2677324 48.7 | shuttle rocket booster

pwtk 217918 | 11634424 53.3 | pressurized wind tunnel
skirt 45361 2533123 55.8 | structure from NASA
smt 25710 3753184 145.9 | surface mounted transistor

Table 9: Test matrices (all SPD).

Iter | Solve
sls 1992 | 78.2
besstk17 | 2995 | 46.2
eltgroth 206 | 17.6
smt 2053 | 299.8

Table 10: Problems that could be solved with diagonal preconditioning, Cf. Table 11.
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Thresh Level | Ratiol Ratio2 | Iter | Setup Solve Total

sls 705 3.0 587 61.8
0.05 1 0.97 0.35 547 3.4 340 374

besstkl17 619 0.6 180 18.6
0.20 2 0.76 0.47 458 0.8 10.2 11.0

bcsstk36 1524 1.6 135.3 136.9
0.02 1 2.84 1.47 664 10.3 734  83.7

cfd2 2566 3.1 680.4 683.6
0.00 1 4.22 1.83 1131 21.3 381.4 402.7

small_ic 2577 3.4 253.6 257.0
0.10 2 2.01 0.56 702 12.7 577 704

eltgroth 116 1.8 15,7 17.5
0.01 1 0.56 0.45 81 2.5 8.4 10.9

msc23052 1321 3.4 1764 179.8
0.05 1 2.35 1.14 584 11.8 89.2 101.0

nasasrb 2567 3.4 383.6 387.0
0.10 2 2.27 1.06 | 1180 154 207.8 223.3

pwtk 1 4.1 T T
0.00 1 2.78 1.32 1943 25.9 531.2 557.1

skirt 2800 3.6 489.3 492.9
0.10 2 3.08 0.79 | 1177 39.0 185.3 224.3

smt 561 4.4 382 426
0.10 1 0.85 0.29 300 53 147 19.9

Table 11: Comprehensive test results. For each matrix, the first row in the table is the result
using the pattern of the original matrix A and the second row shows the best result based on
total time.

20



Thresh Level Filter | Ratio | Iter | Setup Solve Total
diagonal preconditioner 264 24.7
.00 0 .00 1.00 | 129 16.2 16.5 32.8
.01 0 .05 0.20 | 120 22 116 138
.01 1 .05 0.46 | 84 10.6 9.9  20.6

Table 12: Nonfactorized algorithm on problem “eltgroth.”

4.4 Nonfactorized test

As mentioned in section 2.2.2, the nonfactorized algorithm requires much more computation than
the factorized algorithm. To illustrate this experimentally, we use the nonfactorized algorithm
on the problem “eltgroth.” This problem is actually SPD so that we can compare these results to
the results in Table 11. GMRES(50) was used in the nonfactorized test since the preconditioned
matrix is no longer symmetric.

The results in Table 12 show that for the same set of parameters, the setup time is many
times higher for the nonfactorized case. The best set of parameters in the nonfactorized case
also results in a preconditioner that is much sparser. Note that using the pattern of the original
matrix is worse than using diagonal preconditioning.

4.5 Parallel implementation scalability

The implementation scalability was tested using a 3-D constant coefficient anisotropic diffusion
problem

AUgy + by +cu,, =1 in Q= (0, 1)3
u=0 on 0N

discretized using finite differences on a uniform mesh, with the anisotropic parameters a = 0.1,
b=1, and ¢ = 10.

The results are shown in Table 13. The local problem size was 60 x 60 x 60 grid points,
and the global problem size N was scaled up with the number of processors, “Nproc.” A level
3 pattern with sparsification gave a sparsity ratio of 1.25. As desired, the setup time scales
better than the time per iteration, since it has fewer global communications. Timings for non-
overhead components of the setup phase (computing the pattern and values, given by “Patt”
and “Values”) are also shown. In addition, the number of iterations to convergence varies as
the cube root of N, which is in agreement with theory, see e.g., Johnson (1987, p. 135).

4.6 Speed-up test

Speed-up is the ratio of the single-processor timing to the multi-processor timing while the
problem size is fixed. We test speed-up on the problem “pwtk.” The parameters used were the
best parameters shown in Table 11. Figure 2 plots the speed-up of the setup and solve phases;
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Nproc N | Tter | Patt Values | Setup  Solve | /Iter
1 216,000 | 107 2.2 9.5 12.1 75.3 | 0.70

8| 1,728,000 | 204 | 2.6 104 | 13.8 2479 | 1.22

27 5,832,000 | 305 | 2.9 11.0 | 14.6 392.7 | 1.29
64 | 13,824,000 | 399 3.2 11.4 154  536.6 | 1.34
125 | 27,000,000 | 497 | 3.2 11.3 15.5  670.9 | 1.35
216 | 46,656,000 | 595 3.6 11.5 15.8 856.4 | 1.44
343 | 74,088,000 | 694 | 4.0 11.6 16.3 1092.7 | 1.57
512 | 110,592,000 | 790 4.0 12.4 174 1278.8 | 1.62
729 | 157,464,000 | 884 4.4 12.8 18.4 1485.7 | 1.68
1000 | 216,000,000 | 979 | 4.2 12.1 17.1 1710.7 | 1.75

Table 13: The implementation scalability is tested by increasing the problem size N with the
number of processors “Nproc.” As desired, the setup time scales better than the time per
iteration, which has more global communications.

Nproc | Patt Values | Setup  Solve  Total
4 9.7 68.8 92.6 2021.8 2114.5

81 5.0 34.3 | 46.3  995.2 1041.5

16 | 2.7 18.6 25.1  540.5  565.5

32| 1.7 9.7 13.7  296.0 309.7

64 1.1 5.1 7.7 163.4 171.0

Table 14: Timings for problem “pwtk” with increasing numbers of processors.

the base case is four-processors. Load balancing was critical to obtain these speed-up rates.
Table 14 shows the raw timing results.

5 Conclusions

This paper describes and tests the use of patterns of powers of sparsified matrices for least
squares sparse approximate inverse preconditioners and describes the parallel implementation
of the software. To obtain high performance, load balancing and the use of local coordinate
numbering is necessary. Load balancing is accomplished by repartitioning based on the workload
on each processor after the sparsity pattern has been determined.

Sparsification of the matrix before taking matrix powers (called levels) is necessary when
powers of a matrix have a large number of nonzeros, making the computation of the approximate
inverse excessively expensive. Difficult problems that need high matrix powers will typically
require sparsification.

To use higher matrix powers, a higher threshold must often also be used. This threshold
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Figure 2: Speed-up curves for “pwtk.”

must not be too high or else the approximate inverse will be too inaccurate. Thus, the threshold
and level must be balanced with each other. In our tests, patterns up to level 4 were practical
and thresholds less than 0.3 were accurate. Higher levels are feasible for matrices that have very
few nonzeros per row.

The test results also show that the minimum solution time is usually achieved by using
very sparse approximations, since denser approximations require more time per iteration and
this additional time is usually not compensated by the improved preconditioner accuracy. Also,
nonfactorized approximate inverses require much more computation than factorized forms and
must be even sparser to be practical to compute.

Computing the pattern for a sparse approximate inverse is much less expensive than com-
puting its values. In practical usage, when a good set of parameters is not known, the cost of
computing the approximate inverse can be determined after the pattern has been computed.
This technique can be used to abort a lengthy computation of approximate inverses with large
numbers of nonzeros.

Filtration of the small nonzeros in the approximate inverse reduces the time per iteration,
sometimes dramatically. A filter value between 0.05 to 0.1 does not significantly degrade accu-
racy and gives good overall results. The use of higher powers or lower thresholds combined with
filtration can produce patterns that yield very accurate approximate inverses. These patterns
may be reused in a sequence of linear solves.

To solve very large problems, the input parameters may be tuned using smaller versions of the
same problem. The sparsity ratios should be similar across problem sizes and the preconditioner
construction times should scale linearly. However, the convergence rate would be worse for larger
problems and a larger fraction of the time would be spent in the iterative method. Tuning using
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a smaller problem should take this effect into account by assuming a worse convergence rate for
the smaller problem.

The software described in this paper is available at http://www.11lnl.gov/CASC/parasails/.
The software was designed for both SPD factorized and general nonfactorized problems.
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