BoomerAMG: a Parallel Algebraic Multigrid
Solver and Preconditioner

Van Emden Henson and Ulrike Meier Yang

Center for Applied Scientific Computing, Lawrence Livermore National
Laboratory, Livermore, CA, 94550. Email: {vhenson, umyang} @linl.gov

DEDICATED TO THE MEMORY OF RUDIGER WEISS

Abstract

Driven by the need to solve linear systems arising from problems posed on extremely
large, unstructured grids, there has been a recent resurgence of interest in algebraic
multigrid (AMG). AMG is attractive in that it holds out the possibility of multigrid-
like performance on unstructured grids. The sheer size of many modern physics and
simulation problems has led to the development of massively parallel computers, and
has sparked much research into developing algorithms for them. Parallelizing AMG
is a difficult task, however. While much of the AMG method parallelizes readily, the
process of coarse-grid selection, in particular, is fundamentally sequential in nature.

We have previously introduced a parallel algorithm [7] for the selection of coarse-
grid points, based on modifications of certain parallel independent set algorithms
and the application of heuristics designed to insure the quality of the coarse grids,
and shown results from a prototype serial version of the algorithm.

In this paper we describe an implementation of a parallel AMG code, using the
algorithm of [7] as well as other approaches to parallelizing the coarse-grid selection.
We consider three basic coarsening schemes and certain modifications to the basic
schemes, designed to address specific performance issues. We present numerical
results for a broad range of problem sizes and descriptions, and draw conclusions
regarding the efficacy of the method. Finally, we indicate the current directions of
the research.

Key words: algebraic multigrid; parallel computing

1 This work was performed under the auspices of the U.S. Department of Energy by
University of California Lawrence Livermore National Laboratory under contract
No. W-7405-Eng-48.

Preprint submitted to Elsevier Preprint 22 March 2001

1 Introduction

Algebraic multigrid (AMG) was introduced in the 1980’s [3,1,2,4,18,14,16,15]
and immediately attracted the attention of scientists needing to solve large
problems posed on unstructured grids. In the past several years there has
been a major surge of interest in AMG. Much of the current research focuses
either on improving the standard AMG algorithm [9,8] or on dramatic new
algebraic approaches [19,5].

Currently, there is great interest in finding effective ways of applying AMG
to extremely large problems, involving millions or even billions of unknowns.
Necessarily, this implies finding ways of implementing AMG on massively par-
allel computers with distributed memory hierarchies. Of particular concern is
the scalability of the method. Roughly speaking, a method is scalable if the
time required to produce the solution remains essentially constant as both
the problem size and the computing resources increase. Iterative methods are
generally scalable per iteration step, but for most iterative methods we ob-
serve that the number of iterations required to solve a system is dependent
on the size of the system. Many geometric multigrid methods are known to
be scalable, both in the per-iteration sense and in the number of iterations
required to solve the system. Much of the interest in AMG comes from the
hope that the scalability of geometric multigrid methods can be obtained for
large unstructured grid problems if an effective parallel AMG can be devised.

To date, however, relatively little research has been done on parallelizing
AMG [12]. Techniques for parallelizing geometric multigrid methods have been
known for some time [10]. Fortuitously, most of the AMG algorithm can be
parallelized using this existing technology. But the heart of the AMG setup
phase includes the coarse-grid selection process. In the classic AMG develop-
ment [15] this process is inherently sequential in nature.

In this paper we describe the parallel AMG code BoomerAMG. This code
has been implemented on several massively parallel machines and has been
tested on problems involving tens of millions of unknowns and over a thou-
sand processors. As noted above, most of the code can be constructed using
a straightforward modification of existing parallel technology. We describe in
detail various parallel algorithms for selecting the coarse-grid points. One such
algorithm is based on modifications of certain parallel independent set algo-
rithms. Also, we employ heuristics designed to insure the quality of the coarse
grids.

In Section 2, we outline the basic principles of AMG. We describe the classical
(sequential) coarsening algorithm in Section 3, and give two basic approaches
to the parallel coarse-grid selection in Section 4, along with some important

modifications to these methods. In Section 5 we describe the interpolation we
use. Results of numerical experiments are presented and discussed in Section
6. In Section 7, we make concluding remarks and indicate directions for future
research.

2 Algebraic Multigrid

We begin by outlining the basic principles and techniques that comprise AMG.
Detailed explanations may be found in [15]. Consider a problem of the form

Au=f, (1)

where A is an n x n matrix with entries a;;. For convenience, the indices are
identified with grid points, so that u; denotes the value of u at point ¢, and the
grid is denoted by Q = {1,2,...,n}. In any multigrid method, the central idea
is that “smooth error,” e, that is not eliminated by relaxation must be removed
by coarse-grid correction. This is done by solving the residual equation Ae = r
on a coarser grid, then interpolating the error back to the fine grid and using
it to correct the fine-grid approximation by u <— u + e.

Using superscripts to indicate level number, where 1 denotes the finest level
so that A' = A and Q' = Q, the components that AMG needs are as follows:

(1) “Grids” Q' D> Q* > ... D> QM.
(2) Grid operators A, A%, ..., AM,
(3) Grid transfer operators:
Interpolation I}, k=1,2,...M — 1,
Restriction I}t k=1,2,... M — 1.
(4) Relaxation scheme for each level.

Once these components are defined, the recursively defined cycle is as follows:

Algorithm: MV*(u* £¥). The (uy, p2) V-cycle.
If k = M, set u™ = (AM)~'fM,
Otherwise:
Relax j; times on AFu* = f* .
Perform coarse grid correction:
Set uf*! = 0, A1 = [FH (FF — AFuk).
“Solve” on level k + 1 with MVk+H(uk+! fht1),
Correct the solution by u* < u* + I} ub.
Relax v times on A*u* = f*.

The choice of components in AMG is done in a separate preprocessing step,
known as the setup phase.

AMG Setup Phase:

(1) Set k =1.

(2) Partition QF into disjoint sets C* and F*.
(a) Set QF+l =(CF .
(b) Define interpolation I} ;.

(3) Set IF+' = (If,,)" and AF+L = [FFIARTE, .

(4) If Q%! is small enough, set M = k + 1 and stop. Otherwise, set
k =k + 1 and go to step 2.

3 Coarse-Grid Selection

Coarse-grid selection in the classical algorithm comprises two stages. In the
first, we make an initial partitioning of the grid points into C- and F-points,
based on an indicator of a point’s suitability to be a C-point. Then, as the in-
terpolation operator is constructed, we make adjustments to this partitioning,
changing points initially chosen as F-points to be C-points in order to insure
that the partitioning conforms to certain heuristic rules.

Since the focus here is on coarsening a particular level, k, such superscripts are
omitted here. The goal of the setup phase is to choose the set C' of coarse-grid
points and, for each fine-grid point ¢ € F' = 2 — C, a small set C; C C of
interpolating points.

To select the coarse-grid points, we seek those unknowns wu; which can be used
to represent the values of nearby unknowns ;. This gives rise to the concepts
of dependence and influence. We say that the point ¢+ depends on the point
J if the value of the unknown wu; is important in determining the value of u;
from the ¢th equation. In that case we also say that j influences i. We denote
by S; the set of of points on which a point ¢ depends. The definition used in
classical AMG is

S; = {j £i—a; > aril%x(—aik)}, (2)

with « typically set to be 0.25. We also define the set S} = {j : ¢ € S;}, that
is, the set of points j that are influenced by .

We try to adhere to two criteria while choosing C' and F"

C1: For each i € F, each j € S; is either in C' or S; N C; # 0.

C2: C should be a maximal subset with the property that no point in C
depends on another point in C'.

C1 is designed to insure that the value of u; is represented in the interpolation
formula for u; if 7 strongly depends on 7, even when j is not a C-point. C2
is designed to strike a balance on the size of the coarse grid. If the coarse
grid is a large fraction of the total points, then the interpolation of smooth
errors is likely to be very accurate, which, in turn, generally produces better
convergence factors. However, relatively large coarse grids generally mean a
prohibitively large amount of work in doing V-cycles.

It is not always possible to enforce both C1 and C2. Because the classical
definition of interpolation depends on C1 being satisfied, we choose to enforce
C1 rigorously, while using C2 as a guide. While this choice may lead to
larger coarse grids than necessary, experience shows that this trade-off between
accuracy and expense is generally worthwhile.

The first pass begins by assigning to each point ¢ the number,);, of other
points strongly influenced by i. We then select a point with maximal X as the
first point in C'. The points that depend strongly on 7 then become F-points.
Since all other points that strongly influence these new F'-points are potential
C-points, for each new F-point j in SI', we increment \; of each unassigned
member k € S;. The process is then repeated until all points are assigned to C'
or F. Fig. 1 shows the coarse grid selection for the 9-point Laplacian operator
with Dirichlet boundary conditions on a uniform grid.

While coarse-grid selection is complete after the first pass in this example, it is
not difficult to concoct an example that does not work so well. Fig. 2 shows the
result of the first pass of the coarse-grid selection for the nine-point Laplacian
stencil on a uniform grid with periodic boundary conditions. The final coloring
(left in figure) violates C1, with a large number of F-F dependencies between
points not sharing a C-point.

To alleviate this a second pass for the coarsening algorithm is done, in which
each of the F-points is examined in turn; if there are F-F' dependencies with
points not depending on a common C-point, one of the two F-points is ten-
tatively changed into a C'-point.

The diagram on the right of Figure 2 displays the coarsening produced for the
periodic nine-point Laplacian after the second pass of the coloring algorithm.
The extra C-points are shaded black with a rim of gray.

Two important measures are used in judging the quality of a coarsening algo-
rithm. One obvious measure is the asymptotic convergence factor (per V-cycle)
that results. The second measure is operator complexity, defined as the ratio
of the total number of nonzero entries in the operator matrices A*, for all

X IRITXIRIX]

Y
TRIRIRIK LRI IXIX)
ST RIRIRIRT NIRRT
stededghghgay 0O O O XYL

% 0% 0% % s % SETNCT
ISR DS

NETNCTNC
SR

OOOOO%
COeOeo0

Oo0o0000O0 (O ONONONONONC)
ceoceOCeo0 Ol NON NON NC)
OO0OO0OO0OO0O0OO0 (O ONONONONONC)
Ce®e@O0OeO eo O NON NON N6
OO0OO0OO0OO0O0OO0 (O ONONONONONC)

O00000O0 OO0OO0OO0OO0O0OO0
ceceOeo0 (ON NON NON N
O0O0O0OO0O0O0 OO0OO0OO0OO0O0OO0
Ol NON NON N6 (O NON NON Mo
O0O0O0OO0O0O0 OO0OO0OO0OO0O0OO0
O NON NON N6 Ce®e@O0OeO eo
O0O0O0OO0O0O0 OO0OO0OO0OO0O0OO0

Fig. 1. Sequence of coloring steps for the nine-point Laplacian on a uniform grid.
The upper left diagram is the original grid, the lower right the final coloring.

LR el ReNe LR BeR NeReR |

OC®O0O®000

OO0OO0OO0O0O®O0
eCceOe L LN el oo} |
00000 o OC0O000O0 @
L O NON]] L O NON NONCI J
00000 o OC0O00O0O0C @
L O NON] L] L O NON NONCI J

Fig. 2. Left: Result of first coloring pass for the nine-point Laplacian problem with
periodic boundary conditions. Right: Additional points added in second coloring pass.
The added C-points are shown in the final coloring as black dots with thick gray
outlines.

levels k, to the number of nonzeros in the fine-grid operator A = A°. Opera-
tor complexity gives a measure of the storage cost, and in addition measures
the cost of the V-cycle in terms of operation count, as the most expensive
work, relaxation, is proportional to the number of nonzero entries in the op-
erator matrices. These measures are also influenced heavily by other parts
of the AMG algorithm; the effectiveness of relaxation and the quality of the

interpolation heavily influence the convergence factor, while the choice of in-
terpolation operator affects operator complexity.

The classical coarsening algorithm tends to produce very good coarsening
when applied to standard geometric problems [15,8]. In particular, it has the
property that it tends to coarsen in the direction of dependence even in cases of
anisotropic operators and discontinuous coefficients [6]. In the standard model
problems it produces the same coarse grids, operator and grid complexities,
and convergence factors that are typically seen in geometric methods [6], see
for example Figure 4a., which shows the coarsening for a 5-point Laplacian
problem on a regular grid, where C-points are gray and F-points are black.

4 Parallel Selection of Coarse Grids

Several strategies can be employed to parallelize coarse-grid selection for alge-
braic multigrid; the choice of parallelization strategy depends largely on the
specific goals of the user. For example, it may be desired to select a coarsening
that leads to maximal cycling efficiency as measured by convergence factor.
This may lead to choices that make the coarse-grid selection expensive both in
terms of time and operator complexity. Another choice might be to minimize
grid and operator complexity because of storage constraints. This may lead
to algorithms that are less efficient in terms of convergence factor (and hence,
time to convergence). Some users require that the same sequence of coarse
grids (and convergence results) be produced independent of the number of
processors employed.

We have devised and implemented several different parallel coarsening schemes
to meet some of the goals described above. In the next several subsections we
describe the coarsening schemes, and main modifications to them.

4.1 The CLJP Algorithm

We describe first the Cleary-Luby-Jones-Plassman (CLJP) parallel coarsening
algorithm. This coarsening was proposed by Cleary [7], and is based on parallel
graph partitioning algorithms introduced by Luby [13] and developed by Jones
and Plassman [11].

We begin by defining S, the auxiliary influence matriz:

1 if j €85,
Sij = / (3)

0 otherwise.

That is, S;; = 1 only if ¢ depends on j. The ith row of S gives S;, the set of
dependencies of 7, while the ith column of S gives ST, the influences of i. We
can then form the directed graph of S, and observe that a directed edge from
vertex 7 to vertex j exists only if Sj; # 0.

To each point i we define a measure w(i) = |SI| + (i), the number of points
influenced by the point ¢ plus a random number in (0, 1). The random number
is used as a mechanism for breaking ties between points with the same number
of influences. We then select a set D of points where the point 7 is placed in
the set D if w(i) > w(k) for all £ € S; N ST (all points that either influence or
depend on 7). By construction, this set will be independent.

Once the independent set D is chosen, we modify the graph according to the
following pair of heuristics, which are designed (like C1 and C2) to ensure
the quality of the coarse-grid while controlling its size.

H1: Values at C-points are not interpolated; hence, neighbors that influ-
ence a C-point are less valuable as potential C-points themselves.

H2: If £ and 5 both depend on 4, a given C-point, and j influences k, then
j is less valuable as a potential C-point, since k£ can be interpolated from
I

We implement these heuristics as follows:

for each i € D,
for each j that influences 7,
decrement w(j)
set S;; <= 0 (remove edge ij from the graph)

for each 7 that depends on i,
set Sj; <= 0 (remove edge ji from the graph)
for each k that depends on j,
if £ depends on i,
decrement w(j)
set Si;j < 0 (remove edge kj from the graph)

The heuristics have the effect of lowering the measure w for a set of neighbors
of each point in D. As these measures are lowered, edges of the graph of §
are removed to indicate that certain influences have already been taken into
account. Whenever the decrementing of w(j) results in w(j) < 1, point j is
flagged as an F'-point.

Once the heuristics have been applied for all the points in D, the points in
D are designated as C-points and a global communication step is required, so

that each processor has updated w values for all their “ghost” neighbors. The
entire process is then repeated, by picking a new set D from the vertices of
the modified graph of S and performing the heuristics on the new set D. The
process repeats until all points have either been selected as C- or F-points.
An example of the application of the CLJP coarsening, applied to the 9-point
Laplacian operator on a regular grid, is displayed in Figure 3.

® OOO0 (ONONON NONONGC)
%O0.0 ON NONORON N

® OO0 OO0OO0O®@0OO0O0
(ON ® O (ON NON NON N
(ON©) (ON©) (ONONONONONONG)
ON NON NON NO ON NON NON NO
OO0OO0O0O00O0 OO0OO0O0O00O0

Fig. 3. Sequence of coloring steps using the CLJP algorithm for the nine-point Lapla-
cian on a uniform grid. Top Left: the original dependence graph; Top Right: the
first independent set and the graph remaining after the application of the heuris-
tics. Lower Left: the graph after the second independent has been chosen and the
heuristics performed; Lower Right: the final coloring.

The main advantage of the CLJP coarsening is that it is entirely parallel, and
results in the same selection of coarse-grid points (given the same global set
of random numbers) regardless of the number of processors involved. It also
behaves well as the grids become increasingly coarse; processors can “shut
down” when no points remain to be coarsened in their domain without ne-
cessitating extra communication or special treatment. Our experience, which
will be detailed in Section 6, is that the CLJP coarsening tends to pick coarse
grids with more points than are necessary, resulting in large complexities.
This is illustrated in Figure 4b. where CLJP is applied to a 5-point Laplacian
on a 10x10 grid and generates 58 C-points compared to 50 C-points for the
standard coarsening which is shown in part a. of Figure 4.

4.2 Parallel Ruge-Stiben Coarsening

A relatively natural approach to take is to use the standard Ruge-Stiiben (RS)
approach described in the previous section. In this case each processor employs
the RS method on all of the points it holds. Choices must be made regarding

c. Paralld RS d. RS3

e

e. Falgout

%
£58
qis R
i

Fig. 4. Various coarsenings demonstrated for the five-point Laplacian on a uniform
10 x 10 grid using 4 processors for coarsenings c.-f.

how to treat the coarsening at the processor boundaries. There are several
variations that can be employed. One feature common to all variations is that
the resulting coarsening will depend on the number of processors; hence, it is
not possible for the same coarsening to be achieved with differing numbers of
Processors.

The simplest such method is to have each processor perform both the first
and second pass of the RS algorithm on their local data without any special
treatment at all on the processor boundaries. It is highly probable that this
method will result in F-F dependencies across processor boundaries where
the points in question do not share a common C-point, violating C1 (for an
example see Figure 4c. where this approach is applied to a 5-point Laplacian

10

on a 10 x 10 grid using 4 processors).

When employing the RS algorithm the measure w(7), for points i that are
adjacent to the processor boundary, can be computed either locally or glob-
ally. Local measures comprise only those connections to points residing on the
processor holding 2, while global measures also account for off-processor con-
nections. The “local measures only” method we denote as “RS” while, if global
measures are used, we denote the method “RSgm.” For our small example,
the 5-point Laplacian on a 10 x 10 grid using 4 processors RSgm generates
the same coarsening as the classical RS algorithm on one processor, thus pre-
serving C1, however it is not hard to see that choosing a different grid size
(e.g. 12 x 12) will reverse this picture, and now parallel RS would lead to the
same coarsening as the classical RS algorithm, while RSgm would lead to a
coarsening similar to the one shown in Figure 4c., which violates C1.

A natural modification to RS coarsening is to perform some kind of bound-
ary “fix-up” to correct for the problems entailed by having F-F' dependencies
across processor boundaries where the points involved do not depend on a
mutual C-point. Again, several methods can be used to correct the initial
coarsening. Our experience favors an approach we denote as RS3, standing
for Ruge-Stiiben third pass coarsening. Essentially, after each processor inde-
pendently performs a first and second pass of RS coarsening, each processor
performs a third pass on its boundary points and the associated ghost points.
The so-called third pass is actually a second application of the “second pass”
heuristic, but only the boundary and ghost points are involved. After the extra
pass we still may have conflicting coarsenings proposed by the processors on
either side of the boundary. Some strategy must be employed to resolve the
conflict. For example, one might choose to make a C-point out of any point
proposed as a C-point by any of the processors involved. This leads to densely
packed C-points along processor boundaries. At the other extreme is to select
as a C-point only those points nominated by all processors having them as
points or ghost points. This choice tends to underselect, leaving F'-F' depen-
dencies without common C-points, violating C1. A third choice could be to
use the C-point selection of the highest numbered processor involved. This
however would still leave untreated F-F' dependencies. In our codes, a com-
bination of the first and the third choice was used, i.e. each processor accepts
the C-point choice made by processors with higher numbers while keeping its
own C-points. This process leads to a smaller number of C-points than the
first choice while not violating C1. One potential problem of this choice is
that this can lead to load imbalance, since it will generate a denser C-point
packing on the boundaries of processors with a lower number. Nevertheless, it
appeared to be the best choice in our experiments.

Figure 4d. displays the effect of the RS3 process. The gray points are C-points
generated in the first two passes, while the white points are C-points that are

11

added during the third pass. The effect of the RS3 coarsening is to produce
more C-points along processor boundaries. This increases the complexity, and,
as the grids become coarser, tends to increase the “surface-to-volume ratio” of
boundary points to total points on each processor. However, for many problems
RS3 also leads to noticeably better convergence factors (see Section 6).

A drawback to both the RS and RS3 coarsenings is that coarsening each
processor independently cannot proceed once each processor has attained a
“coarsest” possible grid, i.e., a single gridpoint. However, if the problem is run
using thousands or tens of thousands of processors this implies that the global
coarse grid will contain thousands or tens of thousands of points. In such cases
a direct solution of the coarse-grid problem can require an exhorbitant amount
of time, memory, communication, and computation.

One solution to this problem is to collect the coarsest-grid points onto a subset
of the processors (or a single processor), continue coarsening on those proces-
sors, solve the coarse-grid problem, and propagate the solution back out to
all the remaining processors. A related approach is to copy the coarsest-grid
points onto all processors, continue coarsening until a sufficiently small coars-
est grid is reached, solve this coarse-grid problem, and propagate the solution
to all processors. While this latter approach still requires a global communi-
cation step when the coarse-grid information is assembled on the processors,
it eliminates a global communication required when the coarse-grid solution
is propagated to finer grid levels.

Our approach to alleviating this difficulty is to switch from the RS (or RS3)
coarsening scheme to the CLJP coarsening, when coarsening slows down. Ef-
fectively, this implies that the first several coarse grids are selected using an
RS approach, but that the last few levels are selected using CLJP. Since the
CLJP method can coarsen all the way to a single coarse-grid point, we are
free to decide at what grid size to stop coarsening.

4.3 Falgout Coarsening

We propose another coarsening scheme, which is a hybrid RS/CLJP scheme,
the so-called Falgout coarsening. The RS or RS3 scheme described in the
previous paragraph allows coarsening to proceed to a very coarse grid, but still
faces the processor-boundary difficulties of C'-point packing and, in the case of
RS, of untreated F-F' dependencies. Both of these phenomena are avoided in
CLJP coarsening; however, CLJP tends to give somewhat poorer coarsenings
(in general) on the interiors of the processor domains. The concept behind
Falgout coarsening is relatively simple — use RS coarsening on the interior
of the processor domains while using CLJP coarsening near the processor

12

boundaries.

The method proceeds as follows. Each processor performs RS coarsening on
the points it holds. The C-points selected in this process, for all points ezcept
those adjacent to a processor boundary, are used as the first independent set
(D) in the CLJP algorithm. The remainder of the coarsening is done simply by
continuing the CLJP algorithm. Hence, the method differs from CLJP coars-
ening only in the manner in which the first independent set D, on each grid
level, is selected. Since the bulk of the C-point selection occurs in the processor
domain interiors, it stands to reason that the resulting coarsening will be more
like the RS coarsening than the CLJP scheme. However, because the boundary
points are not selected in the initial set D, treatment of processor-boundary
points is done entirely using the CLJP scheme, which avoids untreated F-F
dependencies and diminishes the boundary-packing problems.

Figure 4e. shows how the Falgout coarsening treats the 5-point Laplacian
on a 10 x 10 grid using 4 processors. The gray points denote C-points that
were generated during the RS phase of the algorithm, while the white C-
points were added during the CLJP phase. Note that here, different than in
the RS3 coarsening, addition of C-points is not restricted to the processor
boundaries, since CLJP is applied to the whole grid. Consequently, a more
even distribution of C-points is possible. The Falgout coarsening generates
here 58 C-points, clearly more than the classical algorithm, but significantly
less than the 64 C-points generated by the RS3 coarsening.

4.4 BC-RS Coarsening

Another potential coarsening scheme that combines RS and CLJP coarsenings
is to first treat the processor boundaries using the CLJP coarsening and then
filling out the interior of the domains using the RS coarsening. We call this
strategy the BC-RS coarsening.

Figure 4f. shows the gray C-points on the boundaries that were generated
first using the CLJP coarsening scheme. Note the irregular coarsening on the
boundaries. Even though for this particular example the total number of C-
points achieved is only 52, the irregularities on the boundaries can lead to
irregular coarsenings with groups of densely packed C'-points in the interior of
the processor domains. This effect is to some degree already apparent when
investigating the upper right corner of Figure 4f., but becomes much worse
for larger test problems. Experiments with this scheme show (see also Section
6) that this approach leads to worse convergence and complexities than the
Falgout or the RS3 coarsenings.

13

5 AMG Interpolation

In this section, we consider the construction of the interpolation operator. The
interpolation of the error at the F-point ¢ takes the form

e = Y we (4)

JEC;

where w; ; is an interpolation weight determining the contribution of the value
e; in the final value e;, and Cj is the subset of C-points whose values will be
used to interpolate a value at i.

In classical AMG the underlying assumption is that (algebraically) smooth
error corresponds to having very small residuals; that is, the error is smooth
when the residual r = f — Au = 0. Since the error, e, and the residual are
related by Ae = r, smooth error has the property Ae ~ 0. Let ¢ be an F-point,
to which we wish to interpolate. From this the ith equation becomes

N
Z ai’jej = 0 (5)
7j=1

The points, to which ¢ is connected, comprise three sets: the set C}, the set D}
of points that influence ¢ but are not coarse interpolatory points, and the set
DY of points connected to, but not influencing, 7. Hence, (5) can be written
as

Yo aigej+ Y aijei+ Y aije;. (6)

JEC; jeDs jeDy

The points k € D}’ are weakly connected to 7, and the substitution e, ~ e;
is made. The values e for the points in D;” are “distributed” to points in C}
that are connected to e, (hence the C1 requirement). This yields the formula
for the interpolation weights,

1 a; LAk j
wi; = — a','-l- St YA I (7)
s aij+ 3 aiw |7 /%; > km
keDP meC;

AMG theory was developed originally [3,15] under the assumption that the
operator matrix A is an M-matrix, and that the non-zero off-diagonal entries
are all of the opposite sign as the diagonal entries (which all have the same
sign). While this assumption is necessary for convergence proof, AMG works

14

quite well on matrices that do not stray too far from this ideal. Our experi-
ence, however, indicates that in situations where there are off-diagonal entries
of the “wrong” sign (i.e., the same sign as the diagonal) the presence of these
coefficients in the denominator in (7) can lead to extremely large interpolation
weights and can result in non-convergence or even divergence. Interestingly,
while this phenomenon does occur occasionally on sequential problems, we see
it much more frequently on large parallel runs. Two reasons account for this.
First, the extremely large size of the problems in the parallel run makes it
more likely that the catastrophic cancellation will occur (many more weights
are calculated). Second, we have observed that Gauss-Seidel relaxation tends
to reduce the effect of the large interpolation weights. However, Gauss-Seidel
cannot be employed in parallel because communication would be required
with every update involving a ghost point. Instead, we employ a hybrid relax-
ation, Gauss-Seidel on the interior points of the processor domain, followed
by a Jacobi sweep along the processor boundaries. If the bad interpolation
weights occur at processor boundaries the mitigating effect of Gauss-Seidel is
not present, and we see non-convergence or divergence.

We have devised a simple modification to the classical interpolation formula
that eliminates this problem. Essentially, we use the coefficient value in the
denominator only if it is the “correct” sign; otherwise the coefficient is ignored:

1 a; kdk i
wi; = — ai; + Z |, (8)
ij + Z Qi k keDs Z Ok,m
keDV mec;

where

X 0 if sign(a; ;) = sign(a;;)
ai,j =
a;; otherwise.

The modified interpolation formula effectively eliminates the situations leading
to non-convergence. By itself, however, it leads to a significant increase in the
setup time, particularly for 3-dimensional problems. We find that this latter
complication can be controlled by judicious selection of the strength threshold
a. a = 0.5 is often a good choice for 3-dimensional problems.

6 Numerical Experiments

We now present numerical results from a series of experiments designed to test
the various coarsening and interpolation schemes described above. The exper-

15

iments are performed using the Blue Pacific parallel processor at Lawrence
Livermore National Laboratory. Varying numbers of processors, as well as a
variety of test problems, are presented. The AMG V-cycle uses a pointwise
Gauss-Seidel hybrid smoother, in which one relaxation sweep is performed
over the C-points, followed by one sweep over the F-points. On points interior
to each processor the relaxation is pointwise Gauss-Seidel, using new values as
they become available. Updates of points on the processor boundaries are per-
formed after each interior sweep over the C- or F-points, and are Jacobi-like,
in that “old” values at the neighboring points are used throughout the sweep
over the boundary points. Unless stated differently, a random right hand side
is used. In the tables, p denotes the number of processors and N the size of
the linear system.

6.1 Laplace Operator

We first apply BoomerAMG to the Laplace equation

—Au = f, (9)

with homogeneous Dirichlet boundary conditions, posed on a regular Carte-
sian grid on the unit square (or unit cube). The matrix is generated using a
finite difference discretization. For the 2-dimensional problem a 9-point sten-
cil is used, while a 7-point stencil is used for the 3-dimensional problem. The
purpose of this experiment is to investigate the scalability of the code, as well
as its behavior on very large linear systems using many processors.

Tables 1 - 3 display the asymptotic convergence factors, setup times, and
solution times for the 2-dimensional problem. A strength threshold o = 0.25
is used. Scalability is tested by holding the number of points per processor
constant at 122,500 (350 x 350) while allowing the number of processors to
grow. Operator complexities are very uniform for the various coarsenings. The
CLJP-coarsening has the highest complexities, with an operator complexity of
2.0. The BC-RS coarsening exhibits an operator complexity of 1.5. All other
coarsenings result in an operator complexity of 1.3.

Table 2 reveals that the best scalability of the setup phase is obtained using the
RS coarsening with local measures. Since this is the only coarsening requiring
no communication between the processors, this result is to be expected. How-
ever, RS coarsening also results in the poorest convergence factors (Table 1),
indicating that some communication between processors during the coarsening
process is essential for algorithmic efficiency. The most effective coarsenings,
in terms of convergence factors, are the RS3 and the Falgout methods. Of the
two, RS3 shows significantly better setup times. Both the RS3 and Falgout

16

Table 1
Asymptotic convergence factors for the 9pt 2d Laplacian operator on a Cartesian
grid

p N CLJP RS RSgm RS3 Falg. BC-RS
1] 122500 | 031 012 012 0.12 012 0.12
16 | 1,960,000 | 0.39 092 061 015 017 0.28
64 | 7,840,000 | 042 095 062 015 0.17 0.30
144 | 17,640,000 | 0.43 094 063 0.5 018 0.29
256 | 31,360,000 | 041 093 063 015 0.8 0.30
400 | 49,000,000 | 043 094 0.63 0.15 018 0.31
576 | 70,560,000 | 045 0.94 0.63 017 019 0.32
784 | 96,040,000 | 042 094 063 015 0.8 0.31

Table 2
Setup times (in seconds) for the 9pt 2d Laplacian on a Cartesian grid

p | CLJP RS RSgm RS3 Falg. BC-RS

1 5.5 3.7 3.7 3.7 4.3 3.8
16 7.6 4.6 5.6 4.8 0.8 5.9
64 89 4.9 6.0 54 6.9 7.2

144 11.4 5.8 70 6.8 9.1 9.8

256 15.0 6.7 80 7.7 11.7 12.6
400 194 7.9 10.1 9.5 16.2 16.8
576 23.8 9.7 13.8 114 199 22.7
784 32.2 108 1568 144 252 28.3

methods show excellent scalability in the solution phase (in fact, all methods
except the RS and RSgm show good solution-time scalability).

Relative to the 2-dimensional problem, scalability degrades when solving the
3-dimensional Laplace equation (using a 7-point discretization on a Cartesian
grid in the unit cube). This is not surprising, since the processor boundaries
now involve planes of data, and significantly more information must be ex-
changed. The results are displayed in Tables 4 — 7. It can be determined
empirically that for this problem, a strength threshold of a@ = 0.5 leads to
the best timings, while the choice of a smaller a leads to better convergence
rates but significantly higher setup times. The problem size is determined us-
ing 64,000 (40 x 40 x 40) points per processor, and letting the number of
processors grow.

17

Table 3
Solution times in seconds (number of iterations) for the 9pt 2-d Laplacian on a
Cartesian grid

p | CLIP RS RSgm RS3 Falg. BC-RS
1] 9.509) 50(6) 5.0(6) 5.0(6) 50(6) 5.0(6)
16 | 15.0(11) 74.3(69) 20.9(19) 6.5(6) 6.5(6) 9.3(8)
64 | 15.5(11) 136.2(119) 23.6(21) 7.1(6) 6.7(6) 10.0(8)
144 | 16.6(11) 110.7(93) 27.0(22) 7.7(6) 6.9(6) 10.6(8)
256 | 18.0(11) 113.5(80) 29.0(22) 7.5(6) 8.0(6) 11.4(8)
400 | 18.1(11) 122.2(95) 29.4(22) 8.2(6) 8.5(6) 11.6(8)
576 | 18.6(11) 133.6(102) 30.4(22) 8.2(6) 8.1(6) 12.0(8)
784 | 18.8(11) 141.8(95) 33.1(22) 9.2(6) 9.0(6) 13.7(8)

Table 4
Asymptotic convergence factors for the Tpt 3d Laplacian operator on a Cartesian
grid

D N CLJP RS RSgm RS3 Falg.
1 64,000 0.32 0.10 0.10 0.10 0.10

8 512,000 0.39 0.11 0.31 0.10 0.15
27 | 1,728,000 0.45 0.20 0.34 0.13 0.21
64 | 4,096,000 0.45 0.58 0.40 0.17 0.21
125 | 8,000,000 0.47 0.74 041 0.18 0.25
216 | 13,824,000 0.44 0.70 0.44 0.21 0.25
343 | 21,952,000 0.49 0.87 044 0.19 0.28
512 | 32,768,000 0.47 0.90 045 0.21 0.21
729 | 46,656,000 0.47 0.85 046 0.14 0.26
1000 | 64,000,000 0.45 0.90 0.48 0.27 0.28

As observed for the 2-dimensional experiments, the RS3 and Falgout coars-
enings exhibit the best convergence factors. Interestingly, despite a somewhat
larger operator complexity, the Falgout coarsening yields smaller setup times
than RS3 coarsening. It can be seen that CLJP is not a suitable coarsening for
this problem; it generates far too many coarse points, resulting in extremely
high operator complexities.

18

Table 5
Operator complexities for the 7pt 3d Laplacian operator on a Cartesian grid

D CLJP RS RSgm RS3 Falg.

1| 14.35 3.62 3.62 3.62 3.62

81| 16.06 3.73 541 397 4.45

27| 16.70 3.73 0.62 433 4.84
64 | 16.95 3.72 5.54 4.53 5.07
125 | 17.14 3.71 5.95 4.63 5.20
216 | 17.27 3.71 5.70 4.73 5.32
343 | 17.36 3.70 5.52 480 5.38
512 | 1743 3.70 5.37 4.87 5.43
729 | 1748 3.70 9.25 4.92 548
1000 | 17.53 3.70 5.14 4.85 5.52

Table 6
Setup times in seconds for the 7pt 3d Laplacian operator on a Cartesian grid

D CLJP RS RSgm RS3 Falg.

1 9.9 4.5 4.5 4.5 4.9

8 228 8.3 87 9.7 11.7

27 35.7 119 16.6 21.5 21.6
64 39.1 12.7 24.1 282 26.9
125 474 135 36.9 373 31.0
216 61.8 15.8 447 450 374
343 64.8 18.0 49.1 56.9 44.7
012 76.3 20.5 58.9 729 53.2
729 90.8 23.2 68.4 86.9 624
1000 | 105.8 28.4 79.9 975 782

6.2 Anisotropic Problems

We consider next the anisotropic problem

—ClUgg — Uyy — Uzy = f

with ¢ = 0.001. Numerical results are presented in Table 8.

19

Table 7
Solution times in seconds (number of iterations) for the Tpt 3d Laplacian operator
on a Cartesian grid

p | CLJP RS RSgm RS3 Falg.
1| 15.6(8)) 2.8(4) (4)
8| 25.3(9)) 9.6(8) (4)
27 | 29.9(9)) 12.4(8) (4)
64 | 35.4(10)) 17.3(10) (5)
125 | 35.7(10)) 18.3(9) (4)
216 | 37.9(10) 14.7(12) 23.2(10) 9.2(5) 11.4(6
))) (4)
))) (5)
))) (4)
))) (5)

343 | 36.8(9
512 | 48.9(11
729 | 38.0(9
1000 | 49.8(11

22.6(9
30.6(10
26.3(9
31.3(11

Table 8
Test results for the 3d anisotropic problem.

Op. compl. | Conv. factors | Setup times Solve times

p | Falg. RS3 | Falg. RS3 | Falg. RS3 | Falg. RS3
1| 3.55 3.55| 0.04 0.04 3.5 3.3 25(4) (4)
8| 3.75 3.94 | 0.09 0.09 6.9 6.8 4.6(5) (5)

27| 3.82 4.16 | 0.10 0.10 | 10.3 11.3 | 5.1(5) (5)

64 | 3.86 4.32 | 0.13 0.13 | 12.2 15.1 | 5.4(5) (5)

125 | 3.88 4.45 | 0.12 0.12 | 14.7 21.1 | 5.7(5) 7.0(5)

(6) (6)
(5) (5)
(6) (7)

216 | 3.90 4.52 | 0.18 0.19 | 183 26.7 | 7.3(6
343 | 391 4.56 | 0.11 0.12] 25.0 350 | 7.1(5
012 | 3.93 4.56 | 0.21 0.23 | 31.3 446 | 8.5(6

Only the results for the Falgout and the RS3 coarsenings are displayed; all
other coarsenings exhibited poorer performance. The strength threshold a =
0.25 is used, and the problem size is 64,000 (40 x 40 x 40 Cartesian grid) points

per processor.

As the number of processors increases (and hence, overall problem size) we
observe increasing convergence factors and slightly increasing operator com-
plexities. Consequently, we cannot expect scalable timings. The best overall
results are obtained with the Falgout coarsening.

20

Table 9
Total times in seconds (no. of iterations) for anisotropic problem, with y = 45.

P N Falgout RS3 Falg.-CG RS3-CG
1 65,536 9(7) 57(7) 6.1 (5) 6.0 (5)

4 262,144 | 10.0 (9) 10.6 (10) 8 (6) 10.6 (7)
16 | 1,048,576 | 13.2 (11) 16.6 (15) 13.2 (7) 13.1 (8)
64 | 4,194,304 | 17.6 (13) 39.8 (36) 15.8 (8) 19.9 (12)
144 | 9,437,184 | 22.8 (15) 44.0 (35) 20.5 (9) 22.7 (11)
256 | 16,265,216 | 27.0 (16) 45.1 (34) 23.1 (9) 26.9 (12)
400 | 26,214,400 | 33.4 (17) 51.7 (33) 28.2 (9) 29.8 (12)

We also consider the specialized 2-dimensional anisotropic problem

—(+ €8° Yty + 2(1 — €)sCUyy — (5° + ec®)uy, = 1 (11)

with s = sin+y, ¢ = cosy, and € = 0.001. This problem is strongly anisotropic,
with the direction of dependence given by the angle . Hence, in contrast
to the previous example, the anisotropy is not grid aligned. Sequential AMG
produces poor convergence rates for v = 30 or v = 60, while rather good
convergence is obtained for v = 45 [15]. Geometric multigrid fails for this
problem [17]. We use a problem size of 65,536 (256 x 256) points per processor.

For v = 45 we obtain a slight increase in operator complexities (from 2.2 to
2.4) for Falgout coarsening, and a complexity of 2.5 for the RS3 coarsening,
as the number of processors grows. Falgout coarsening produces convergence
factors that increase gradually from 0.1 to 0.37 as the number of processors
grows to 512. For RS3 coarsening, we observe a fast increase from 0.1 to 0.65 as
the number of processors grows to 64, while further increases in the processor
count up to 512 result in a convergence factor that is almost constant at 0.65.
Using BoomerAMG as a preconditioner for a conjugate gradient solver lead to
substantially improved convergence factors: 0.03 for one processor, increasing
steadily to 0.1 for 400 processors (with Falgout coarsening giving somewhat
better factors than RS3).

For the case 7 = 60, we obtain constant (as processor count grows) values of
3.3 (operator complexities) and 0.7 (convergence factors) for both coarsenings.

The total times (including both the setup and solution phases) are given in
Tables 9 and 10.

21

Table 10
Total times in seconds (no. of iterations) for anisotropic problem with v = 60.

P Falgout RS3 Falg.-CG RS3-CG
1]18.4(24) 182 (24) 14.2 (13) 14.0 (13)
41279 (29) 31.2(29) 19.3 (14) 19.0 (14)

16 | 32.7 (32) 32.9 (33) 21.7 (15) 21.3 (15)

64 | 38.5 (36) 38.0 (36) 25.1 (16) 24.6 (16)

144 | 44.8 (38) 44.4 (37) 30.0 (17) 29.8 (17)

256 | 48.4 (38) 51.8 (39) 34.9 (17) 31.7 (17)

400 | 57.5 (39) 60.3 (40) 38.6 (17) 36.1 (17)

6.3 Nonsymmetric Problems

Having previously considered only symmetric problems, we turn now to non-
symmetric problems, and demonstrate the use of the BoomerAMG algorithm
on these problems. We examine the following nonsymmetric problem

—Au+ c(ug +uy +u,) = f, (12)

posed on a regular Cartesian grid in three dimensions.

An immediate question arises: how can we appropriately scale up the prob-
lem for large numbers of processors? If we solve the equation with a constant
¢, increasing the problem size (by growing the number of processors) leads
to very different matrices for different size problems. Therefore, we choose
¢ = 10q where ¢3 is the number of processors. This leads to comparable co-
efficients in the matrices generated by increasing the number of processors
(hence, the problem size). The basic problem size is 64,000 (40 x 40 x 40) grid
points per processor, and the strength threshold o = 0.75 is used. We also
include comparisons to two of the most popular iterative solvers, GMRES and
BiCGSTAB.

The results, shown in Table 11, reveal that BoomerAMG with Falgout coars-
ening leads to the best timings with a fairly scalable iteration count. GMRES
and BiCGSTAB entail increasing numbers of iterations to achieve convergence
as the global problem size increases. Although these results are not strictly
scalable, BoomerAMG’s timings increase much more slowly than do those of
the Krylov solvers. For example, the Falgout method is about twice as fast
as BICGSTAB when using 1 processor, but five times as fast while using 512
Processors.

22

Table 11
Total times in seconds (no. of iterations) for nonsymmetric problem

p | Falgout ~ RS3 GMRES(10) BiCGSTAB

1] 86(5) 82(5) 248 (143) 17.1 (77)

81 18.8(7) 20.6(7) 60.2(273) 40.9 (144)
27 | 23.1 (7) 284 (8) 92.6 (398) 66.7 (226)
64 | 28.4 (9) 352 (10) 135.0 (534) 100.4 (323)
125 | 34.1 (8) 38.8 (10) 168.6 (642) 117.7 (367)
216 | 37.9 (9) 47.0 (12) 210.5 (793) 188.3 (493)
343 | 46.1 (8) 51.4 (11) 263.2 (842) 187.0 (500)
512 | 56.7 (9) 98.7 (14) 358.7 (1046) 317.6 (644)

6.4 Unstructured Problems

Finally, we include several results on 3-dimensional unstructured finite-element
grids on a cube.

We examine two problems: 1) the 3-dimensional Laplace equation, and 2)
equation (12) employing the constant convection factor ¢ = 10. The problems
are generated so that there are roughly 20,000 grid points per processor.

The results for the Laplace equation are given in Tables 12, 13, and 14, and the
results for the convection problem are contained in Tables 15 and 16. For most
of the experiments, we choose the strength threshold o = 0.5, since this gives
good convergence and produces fairly scalable iteration counts when Boomer-
AMG is used as preconditioner. However, the complexities are fairly high.
If memory usage is an issue, it is possible to significantly decrease operator
complexities and consequently memory usage through increasing a. Table 14
shows the times and iteration counts for the Laplace equation when o = 0.8.
The resulting operator complexities are between 2.3 and 2.4 for the CLJP
and the RS3 coarsening, and between 2.4 and 2.5 for the Falgout coarsen-
ing. Clearly, both convergence and scalability degrade. This effect is extreme
when BoomerAMG is used as a standalone solver or as a preconditioner with
the RS3 coarsening, however when used as a preconditioner with the CLJP
coarsening, times are comparable to those obtained with o = 0.5.

Examining all the results, it may be seen that the most effective algorithm
uses CLJP coarsening, followed by the Falgout and then the RS3 coarsenings.
It is interesting to observe that while CLJP coarsening does not yield an
effective solver for structured grids, it outperforms methods employing the
other coarsening schemes on unstructured grids.

23

Table 12
Convergence factors and operator complexities for the Laplace problem on an un-
structured grid, a = 0.5

Convergence factors Operator complexities

P N CLJP Falgout RS3 | CLJP Falgout RS3
1 25,044 0.31 0.29 0.30 3.53 4.06 4.02
4 76,723 0.39 0.38 0.40 3.80 4.42 4.61

12 234,336 0.45 0.45 0.45 4.05 4.75 5.10
36 706,542 0.52 0.50 0.50 4.20 490 5.45
96 | 1,827,749 0.58 0.57 0.56 4.63 5.47 6.07
288 | 5,527,417 0.62 0.61 0.63 4.69 9.56 6.25
768 | 14,487,576 0.64 0.64 0.66 4.84 5.84 6.61

Table 13
Total times for the Laplace problem on an unstructured grid, o = 0.5
D CLJP Falgout RS3 CLJP-G Falg.-G RS3-G
1| 9.0(13) 9.4(12) 9.7(13) 8.4(8) 84(7) 9.0(8)
4 | 13.3(16) 14.5(15) 15.2(16) 10.9(8) 12.1(8) 12.8(9)
12 | 20.2(19) 23.1(19) 25.0(19) 15.8(9) 18.0(9) 18.9(9)
36 | 28.7(23) 31.7(22) 34.9(22) 20.3(10) 23.1(10) 25.2(10)
96 | 40.1(28) 45.7(27) 53.0(27) 30.6(11) 34.4(11) 35.4(11)
288 | 59.8(32) 66.2(31) 84.7(33) 46.5(12) 48.7(12) 51.3(12)
768 | 96.2(35) 104.4(35) 129.0(36) 65.8(13) 75.6(13) 86.6(13)

Convergence factors and operator complexities are increasing for increasing
problem sizes (numbers of processors). Convergence factors of BoomerAMG
for unstructured problems are poorer than for structured problems (a phe-
nomenon previously noted for sequential AMG [8]); however, the convergence
factors can be improved significantly by using BoomerAMG as a precondi-
tioner for GMRES.

7 Conclusions

We have presented BoomerAMG, an AMG solver for massively parallel com-
puters. The most challenging aspect of parallelizing AMG is the selection
of coarse grids, largely because all known methods are essentially multipass
methods requiring updates around individual points at the time C-points

24

Table 14
Total times in seconds for the Laplace problem on an unstructured grid, o = 0.8

P CLJP Falgout RS3 CLJP-G Falg.-G RS3-G
4 18.2(38) 18.3(37) 22.4(48) 10.1(13) 10.4(13) 10.4(14)
12| 30.0(51) 30.6(51) 42.3(74) 13.9(15) 14.8(15) 16.3(18)
36 50.0(70) 46.8(67) 86.7(133) 19.5(19) 21.8(18) 25.1(26)
96 77.1(92) 75.3(89) 162.9(197) 28.0(22) 28.3(22) 39.2(31)
288 | 158.8(120) 197.6(158) (> 200) 50.8(26) 56.7(29) 76.7(43)

Table 15
Convergence factors and operator complezities for the conwvection problem on an
unstructured grid, a = 0.5

Convergence factors Operator complexities

P N CLJP Falgout RS3 | CLJP Falgout RS3
1 25,044 0.17 0.18 0.18 3.59 4.08 4.08
4 76,723 0.22 0.22 0.22 3.90 447 4.71

12 234,336 0.27 0.27 0.28 4.10 4.77 5.12
36 706,542 0.33 0.34 0.34 4.24 4.92 5.52
96 | 1,827,749 0.42 0.43 0.43 4.64 5.45 6.03
288 | 5,527,417 0.48 0.49 0.48 4.70 5.54 6.22
768 | 14,487,576 0.51 0.54 0.55 4.82 5.74 6.50

Table 16
Total times for the convection problem, a = 0.5
P CLJP Falgout RS3 CLJP-G Falg.-G RS3-G
1| 7.5(10) 8.3(10) 8.3(10) 8.4(8) 9.1(8) 9.0(8)
4 | 11.4(12) 12.8(12) 12.9(12) 11.9(9) 13.1(9) 13.2(9)
12 | 16.9(14) 19.8(14) 20.1(14) 16.6(10) 18.8(10) 19.3(10)
36 | 24.2(17) 27.2(17) 29.7(17) 21.8(11) 24.6(11) 26.8(11)
96 | 33.2(20) 38.5(20) 44.3(20) 30.1(13) 34.8(13) 39.4(13)
288 | 49.7(24) 61.0(24) 65.6(24) 46.9(14) 51.1(15) 60.7(15)
768 | 83.1(26) 94.6(27) 110.4(28) 70.3(15) 86.3(16) 91.2(16)

are selected. The updates necessitate communication, which slows the algo-
rithm considerably. Attempts to eliminate the communication tend to produce
poorly selected grids, especially near processor boundaries. We have intro-
duced several parallel coarsening approaches: the RS, RSgm, and RS3 coars-

25

enings, all based on modifications to the classical Ruge-Stiiben method; the
CLJP method, based on parallel independent-set algorithms; and the Falgout
and BC-RS methods, based on hybrid combinations of the RS and CLJP ap-
proaches. The algorithms are tested on a variety of test problems. The tests
indicate that on structured grids the best coarsenings are the Falgout and the
RS3 coarsening. On those problems, the Falgout coarsening often results in
better complexities. Both the parallel RS and RSgm coarsening show poor
convergence when they violate C1. The CLJP algorithm often produces too
many C-points on structured grids. The BC-RS coarsenings is affected by
the behavior of CLJP and thus produces higher complexities than other RS-
based coarsenings. On unstructured grids, the CLJP coarsening appears to
give slightly better results than the Falgout and RS3 coarsenings.

Our numerical experiments demonstrated very good scalability for the solution
phase of the algorithm for 2-dimensional problems. Scalability is poorer, but
still fairly good for 3-dimensional problems, in some cases it could be improved
by using BoomerAMG as a preconditioner for GMRES. The setup phase does
not scale as well due to an increase in operations and necessary communication
when dealing with the boundaries, nevertheless overall times achieved were
very good compared to Krylov solvers.

Future research will focus on improving the complexities of the coarsenings as
well as finding new ways of coarsening.

References

[1] A. Brandt, Algebraic multigrid theory: The symmetric case, in Preliminary
Proceedings for the International Multigrid Conference, Copper Mountain,
Colorado, April 1983.

[2] A. Brandt, Algebraic multigrid theory: The symmetric case, Appl. Math.
Comput. 19 (1986), 23-56.

3] A. Brandt, S. F. McCormick, and J. W. Ruge, Algebraic multigrid (AMG)
for automatic multigrid solutions with application to geodetic computations.
Report, Inst. for Computational Studies, Fort Collins, Colo., October 1982.

[4] A. Brandt, S. F. McCormick, and J. W. Ruge, Algebraic multigrid (AMG)
for sparse matrix equations, in Sparsity and Its Applications, D. J. Evans, ed.,
Cambridge University Press, Cambridge, 1984.

[5] M. Brezina, A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A.
Manteuffel, S. F. McCormick, and J. W. Ruge, Algebraic multigrid based
on element interpolation (AMGe), SIAM Journal on Scientific Computing 22
(2000), 1570-1592.

26

[6] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial (STAM,
Philadelphia, PA, second ed., 2000).

[7] A. J. Cleary, R. D. Falgout, V. E. Henson, and J. E. Jones, Coarse grid
selection for parallel algebraic multigrid, in Proceedings of the fifth international
symposium on solving irreqularly structured problems in parallel (Springer-
Verlag, New York, 1998).

[8] A.J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel, S. F.
McCormick, G. N. Miranda, and J. W. Ruge, Robustness and scalability of
algebraic multigrid, STAM Journal on Scientific Computing, 21 (2000), 1886—
1908.

9] G. Golubovici and C. Popa, Interpolation and related coarsening techniques for
the algebraic multigrid method, in Multigrid Methods IV, Proceedings of the
Fourth European Multigrid Conference vol. 116 of ISNM (Birkh&user, Basel,
1994) 201-213.

[10] J. E. Jones and S. F. McCormick, Parallel multigrid methods, in: D. E. Keyes,
A. H. Sameh, and V. Venkatakrishnan, eds., Parallel Numerical Algorithms,
(Kluwer Academic Publications, Dordrecht, 1997).

[11] M. T. Jones and P. E. Plassman, A parallel graph coloring heuristic, STAM
Journal on Scientific Computing 14 (1993) 654-669.

[12] A. Krechel and K. Stiiben, Parallel algebraic multigrid based on subdomain
blocking, GMD Report 71, GMD, Sankt Augustin, Germany, submitted to
Parallel Computing.

[13] M. Luby, A simple parallel algorithm for the maximal independent set problem,
SIAM Journal on Computing 15 (1986) 1036-1053.

[14] J. W. Ruge and K. Stiiben, Efficient solution of finite difference and finite
element equations by algebraic multigrid (AMG), in: D. J. Paddon and
H. Holstein, eds., Multigrid Methods for Integral and Differential Equations,
The Institute of Mathematics and its Applications Conference Series (Clarendon
Press, Oxford, 1985) 169-212.

[15] J. W. Ruge and K. Stiiben, Algebraic multigrid (AMG), in : S. F. McCormick,
ed., Multigrid Methods, vol. 3 of Frontiers in Applied Mathematics (STAM,
Philadelphia, 1987) 73-130.

[16] K. Stiiben, Algebraic multigrid (AMG): experiences and comparisons, Appl.
Math. Comput. 13 (1983) 419-452.

[17] K. Stitben, Algebraic multigrid (AMG): an introduction with applications, in :
U. Trottenberg, C. Osterlee and A. Schiiller, eds., Multigrid (Academic Press,
2000).

[18] K. Stiiben, U. Trottenberg, and K. Witsch, Software development based on
multigrid techniques, in: B. Enquist and T. Smedsaas, eds., Proc. I[FIP-

Conference on PDE Software, Modules, Interfaces and Systems (Soderkoping,
1983).

27

[19] P. Vanék, J. Mandel, and M. Brezina, Algebraic multigrid based on smoothed
aggregation for second and fourth order problems, Computing 56 (1996) 179
196.

28

