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DISTANCE-TWO INTERPOLATION FOR PARALLEL ALGEBRAIC

MULTIGRID

HANS DE STERCK∗§ , ROBERT D. FALGOUT†¶, JOSHUA W. NOLTING‡‖, AND

ULRIKE MEIER YANG†∗∗

Abstract. Algebraic multigrid (AMG) is one of the most efficient and scalable parallel algo-
rithms for solving sparse linear systems on unstructured grids. However, for large three-dimensional
problems, the coarse grids that are normally used in AMG often lead to growing complexity in terms
of memory use and execution time per AMG V-cycle. Sparser coarse grids, such as those obtained
by the Parallel Modified Independent Set coarsening algorithm (PMIS) [7], remedy this complexity
growth, but lead to non-scalable AMG convergence factors when traditional distance-one interpo-
lation methods are used. In this paper we study the scalability of AMG methods that combine
PMIS coarse grids with long distance interpolation methods. AMG performance and scalability is
compared for previously introduced interpolation methods as well as new variants of them for a
variety of relevant test problems on parallel computers. It is shown that the increased interpolation
accuracy largely restores the scalability of AMG convergence factors for PMIS-coarsened grids, and
in combination with complexity reducing methods, such as interpolation truncation, one obtains a
class of parallel AMG methods that enjoy excellent scalability properties on large parallel computers.

Key words. Algebraic multigrid, long range interpolation, parallel implementation, reduced
complexity, truncation

AMS subject classifications. 65F10, 65N55, 65Y05

1. Introduction. Algebraic multigrid (AMG) [2, 5] is an efficient potentially
scalable algorithm for sparse linear systems on unstructured grids. However, when
applied to large three-dimensional problems, the classical algorithm often generates
unreasonably large complexities with regard to memory use as well as computational
operations. Recently, we suggested a new parallel coarsening algorithm, called the
Parallel Modified Independent Set algorithm (PMIS) [7], which is based on a parallel
independet set algorithm suggested in [10]. The use of this coarsening algorithm in
combination with a slight modification of Ruge and Stueben’s classical interpolation
scheme [11], leads to significantly lower complexities as well as significantly lower
setup and cycle times. For various test problems, such as isotropic and grid aligned
anisotropic diffusion operators, one obtains scalable results, particularly when AMG
is used in combination with Krylov methods. However, AMG convergence factors
are severely impacted for more complicated problems, such as problems with ro-
tated anisotropies or highly discontinuous material properties. Since we realized that
classical interpolation methods, which use only distance-one neighbors for their in-
terpolatory set, were not sufficient for these coarse grids, we decided to investigate
interpolation operators which also include distance-two neighbors. In this paper we
focus on the following distance-two interpolation operators: we study three methods
proposed in [12], namely, standard interpolation, multipass interpolation, and the
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use of Jacobi interpolation to improve other interpolation operators, and we investi-
gate two extensions of classical interpolation, which we denote with ‘extended’ and
‘extended+i’ interpolation.

Our investigation shows that all of the long-distance interpolation strategies,
except for multipass interpolation, significantly improve AMG convergence factors
compared to classical interpolation. Multipass interpolation shows poor numerical
scalability, which, however, can be improved with a Krylov accelerator, but it has
very small computational complexity. All other long-distance interpolation operators
showed increased complexities. While the increase is not very significant for two-
dimensional problems, it is of concern in the three-dimensional case. Therefore we
also investigated complexity reducing strategies, such as the use of smaller sets of
interpolation points and interpolation truncation. The use of these strategies led to
AMG methods with significantly improved overall scalability.

The paper is organized as follows. In Section 2 we briefly describe AMG. In Sec-
tion 3 distance-one interpolation operators are presented, and Section 4 describes long
range interpolation operators. In Section 5 the computational cost of the interpola-
tion strategies is investigated, and in Section 6 some sequential numerical results are
given, which motivate the following sections. Section 7 presents various complexity
reducing strategies. Section 8 investigates the parallel implementation of the methods.
Section 9 presents parallel scaling results for a variety of test problems, and Section
10 contains the conclusions.

2. Algebraic Multigrid. In this section we give an outline of the basic prin-
ciples and techniques that comprise AMG, and we define terminology and notation.
Detailed explanations may be found in [4, 11, 12]. Consider a problem of the form

Au = f, (2.1)

where A is an n×n matrix with entries aij . For convenience, the indices are identified
with grid points, so that ui denotes the value of u at point i, and the grid is denoted by
Ω = {1, 2, . . . , n}. In any multigrid method, the central idea is that “smooth error,” e,
that is not eliminated by relaxation must be removed by coarse-grid correction. This
is done by solving the residual equation Ae = r on a coarser grid, then interpolating
the error back to the fine grid and using it to correct the fine-grid approximation.

Using superscripts to indicate level number, where 1 denotes the finest level so
that A1 = A and Ω1 = Ω, AMG needs the following components: “grids” Ω1 ⊃ Ω2 ⊃
. . . ⊃ ΩM , grid operators A1, A2, . . . , AM , interpolation operators P k, restriction
operators Rk (often Rk = (P k)T ), and smoothers Sk, where k = 1, 2, . . .M − 1.

Most of these components of AMG are determined in a first step, known as the
setup phase. During the setup phase, on each level k, k = 1, . . .M − 1, Ωk+1 is
determined using a coarsening algorithm, P k and Rk are defined and the Ak+1 is
determined using the Galerkin condition Ak+1 = RkAkP k. Once the setup phase is
completed, the solve phase, a recursively defined cycle, can be performed as follows:
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Algorithm: MGV (Ak, Rk, P k, Sk, uk, fk).
If k = M , solve AMuM = fM with a direct solver.
Otherwise:

Apply smoother Sk µ1 times to Akuk = fk.
Perform coarse grid correction:

Set rk = fk −Akuk.
Set rk+1 = Rkrk .
Apply MGV (Ak+1, Rk+1, P k+1, Sk+1, ek+1, rk+1).
Interpolate ek = P kek+1.
Correct the solution by uk ← uk + ek.

Apply smoother Sk µ2 times to Akuk = fk.

In the remainder of the paper, index k will be dropped for simplicity. The algorithm
above describes a V(µ1, µ2)-cycle; other more complex cycles such as W-cycles are
described in [4]. In every V-cycle, the error is reduced by a certain factor, which is
called the convergence factor. A sequence of V-cycles is executed until the error is
reduced below a specified tolerance. For a scalable AMG method, the convergence
factor is bounded away from one as a function of the problem size n, and the computa-
tional work in both the setup and solve phases is linearly proportional to the problem
size n. While AMG was originally developed in the context of symmetric M-matrix
problems, AMG has been applied successfully to a much wider class of problems. We
assume in this paper that A has positive diagonal elements.

3. Distance-One Interpolation Strategies. In this section, we first give some
definitions as well as some general remarks, and then recall the possibly simplest
interpolation strategy, the so-called direct interpolation strategy [12]. This is followed
by a description of the classical distance-one AMG interpolation method that was
introduced by Ruge and Stüben [11].

3.1. Definitions and Remarks. One of the concepts used in the following
sections is strength of connection. A point j strongly influences a point i or i strongly
depends on j if

−ai,j > α max
k 6=i

(−ai,k), (3.1)

where 0 < α < 1. We set α = 0.25 in the remainder of the paper.
We define the measure of a point i as the number of points which strongly depend

on i. When PMIS coarsening is used, a positive random number that is smaller than
1 is added to the measure to distinguish between neighboring points that strongly
influence the same number of points. In the PMIS coarsening algorithm, points that
do not strongly influence any other points are initialized as F -points.

Using this concept of strength of connection we define the following sets:

Ni = {j|aij 6= 0},

Si = {j ∈ Ni|j strongly influences i},

F s
i = F ∩ Si,

Cs
i = C ∩ Si,

Nw
i = Ni \ (F s

i ∩ Cs
i ).

In classical AMG [11], the interpolation of the error at the F -point i takes the



4 De Sterck, Falgout, Nolting, and Yang

form

ei =
∑

j∈Ci

wijej , (3.2)

where wij is an interpolation weight determining the contribution of the value ej to ei,
and Ci ⊂ C is the coarse interpolatory set of F -point i. In most classical approaches
to AMG interpolation, Ci is a subset of the nearest neighbors of grid point i, i.e.
Ci ⊂ Ni, and longer-range interpolation is not considered.

The points to which i is connected, comprise three sets: Cs
i , F s

i and Nw
i . Based

on assumptions on small residuals for smooth error [2, 4, 11, 12], an interpolation
formula can be derived as follows. The assumption that algebraically smooth error
has small residuals after relaxation

A e ≈ 0,

can be rewritten as

aiiei ≈ −
∑

j∈Ni

aijej , (3.3)

or

aiiei ≈ −
∑

j∈Cs
i

aijej −
∑

j∈F s
i

aijej −
∑

j∈Nw
i

aijej . (3.4)

From this expression, various interpolation formulae can be derived. We use the
terminology of [12] for the various interpolation strategies.

3.2. Direct Interpolation. The so-called ‘direct interpolation’ strategy [12]
has one of the most simple interpolation formulae. The coarse interpolatory set is
chosen as Ci = Cs

i , and

wij = −
aij

aii

∑

k∈Ni
aik

∑

k∈Cs
i
aik

, j ∈ Cs
i . (3.5)

This leads to an interpolation, which is often not accurate enough. Nevertheless,
we mention this approach here, since various other interpolation operators which we
consider are based on it. This method is denoted by ‘direct’ in the tables presented
below. In [12] it is also suggested to separate positive and negative coefficients when
determining the weights, a strategy which can help when one encounters large positive
off-diagonal matrix coefficients. We do not consider this approach here, since the
strategy did not lead to an improvement for the problems we consider here.

3.3. Classical Interpolation. A generally more accurate distance-one interpo-
lation formula is the interpolation suggested by Ruge and Stüben in [11], which we call
‘classical interpolation’ (‘clas’). Again, Ci = Cs

i , but the contribution from strongly
influencing F -points (the points in F s

i ) in (3.3) is taken into account more carefully.
An appropriate approximation for the errors ej of those strongly influencing F -points
may be defined as

ej ≈

∑

k∈Ci
ajkek

∑

k∈Ci
ajk

. (3.6)
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This approximation can be justified by the observation that smooth error varies slowly
in the direction of strong connection. The denominator simply ensures that constants
are interpolated exactly. Replacing the ej with a sum over the elements k of the coarse
interpolatory set Ci corresponds to taking into account strong F−F connections using
C-points that are common between the F-points. Note that, when the two F -points i
and j do not have a common C-point in Cs

i and Cs
j , the denominator in (3.6) is small

or vanishing. Weak connections (from the points in Nw
i ) are generally not important

and errors ej , j ∈ Nw
i are replaced by ei. This leads to the following formula for the

interpolation weights:

wij = −
1

aii +
∑

k∈Nw
i

aik











aij +
∑

k∈F s
i

aikakj
∑

m∈Cs
i

akm











, j ∈ Cs
i . (3.7)

In our experiments this interpolation is further modified as proposed in [9] to
avoid extremely large interpolation weights that can lead to divergence.

Now the interpolation above was suggested based on a coarsening algorithm that
ensured that two strongly connected F -points always have a common coarse neighbor.
Since this condition is no longer guaranteed when using PMIS coarsening [7], it may
happen that the term

∑

m∈Cs
i
ak,m in Eq. (3.7) vanishes. In our previous paper on

the PMIS coarsening method [7], we modified interpolation formula (3.7) such that
if this case occurs, aik is added to the diagonal term (the term aii +

∑

k∈Nw
i

aik in

Eq. (3.7)), i.e., the strongly influencing neighbor point k of i is treated like a weak
connection of i. In what follows, we denote the set of strongly connected neighbors
k of i that are F -points but do not have a common C-point, i.e. Cs

i ∩ Cs
k = ∅, by

F s∗
i . Combining this with the modification suggested in [9] we obtain the following

interpolation formula:

wij = −
1

aii +
∑

k∈Nw
i
∪F s∗

i

aik











aij +
∑

k∈F s
i
\F s∗

i

aikākj
∑

m∈Cs
i

ākm











, j ∈ Cs
i (3.8)

where

āij =

{

0 if sign(aij) = sign(aii)
aij otherwise.

In this paper we refer to formula (3.8) as ‘classical interpolation’. The numerical
results that were presented in [7] showed that this interpolation formula, which is
based on Ruge and Stüben’s original distance-one interpolation formula [11], resulted
in AMG methods with acceptable performance when used with PMIS-coarsened grids
for various problems, but only when the AMG cycle is accelerated by a Krylov sub-
space method. Without such acceleration, interpolation formula (3.8) is not accurate
enough on PMIS-coarsened grids: AMG convergence factors deteriorate quickly as a
function of problem size, and scalability is lost. For various problems, such as prob-
lems with rotated anisotropies or problems with large discontinuities, adding Krylov
acceleration did not remedy the scalability problems.

One of the issues is that distance-one interpolation schemes do not treat situations
like the one illustrated in Figure 3.1 correctly. Here we have an F -point with measure
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smaller than 1 that has no coarse neighbors. This situation can occur for example if
we have a fairly large strength threshold. Both for classical and direct interpolation,
the interpolated error in this point will vanish, and coarse grid correction will not be
able to reduce the error in this point.

 
 k i l 

Fig. 3.1. Example illustrating a situation occurring with PMIS coarsening, which will not
correctly be treated by direct or classical interpolation. Black points denote C-points, white points
denote F -points, and the arrow from i to l denotes that i strongly depends on l.

A major topic of this paper is to investigate whether distance-two interpolation
methods are able to restore grid-independent convergence to AMG cycles that use
PMIS-coarsened grids, without compromising scalability in terms of memory use and
execution time per AMG V-cycle.

4. Long-Range Interpolation Strategies. In this section, various long-distance
interpolation methods are described. Parallel implementation of some of these interpo-
lation methods and parallel scalability results on PMIS-coarsened grids are discussed
later in this paper.

4.1. Multipass Interpolation. Multipass interpolation (‘mp’) is suggested in
[12], and is useful for low complexity coarsening algorithms, particularly so-called
aggressive coarsening [12]. We suggested it in [7] as a possible interpolation scheme
to fix some of the problems that we saw when using our classical interpolation scheme
(3.8). Multipass interpolation proceeds as follows:

1. Use direct interpolation for all F -points i, for which Cs
i 6= ∅. Place these

points in set F ∗.
2. For all i ∈ F \ F ∗ with F ∗ ∩ F s

i 6= 0, replace, in Equation (3.3), for all
j ∈ F s

i ∩ F ∗, ej by
∑

k∈Cj
wjkek, where Cj is the interpolatory set for ej .

Apply direct interpolation to the new equation. Add i to F ∗. Repeat step 2
until F ∗ = F .

Multipass interpolation is fairly cheap. However, it is not very powerful, since
it is based on direct interpolation. If applied to PMIS, it still ends up being direct
interpolation for most F -points. However, it fixes the situation illustrated in Figure
3.1. If we apply multipass interpolation, the point i will be interpolated by the coarse
neighbors (black points) of F -points k and l.

4.2. Jacobi Interpolation. Another approach that remedies convergence is-
sues caused by distance-one interpolation formulae is Jacobi interpolation [12]. This
approach uses an existing interpolation formula and applies one or more Jacobi it-
eration steps to the F -point portion of the interpolation operator leading to a more
accurate interpolation operator.

Assuming that A and the interpolation operator P (n) are reordered according to
the C/F -splitting and can be written in the following way:

A =

(

AFF AFC

ACF ACC

)

, P (n) =

(

P
(n)
FC

ICC

)

, (4.1)

then Jacobi iteration on AFF eF +AFCeC = 0, with initial guess e
(0)
F = P

(0)
FCeC , leads
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to

P
(n)
FC = (IFF −D−1

FF AFF )P
(n−1)
FC −D−1

FF AFC , (4.2)

where DFF is the diagonal matrix containing the diagonal of AFF , and IFF and ICC

are identity matrices.

If we apply this approach to a distance-one interpolation operator like classi-
cal interpolation, we obtain an improved long distance interpolation operator. This
approach is also recommended to be used to improve multipass interpolation. We
include results where classical interpolation is used followed by one step of Jacobi
interpolation in our numerical experiments and denote them by ‘clas+j’.

4.3. Standard Interpolation. Standard interpolation (‘std’) extends the in-
terpolatory set that is used for direct interpolation [12]. This is done by extend-
ing the stencil obtained through (3.3) via substitution of every ej with j ∈ F s

i by
1/ajj

∑

k∈Nj
ajkek. This leads to the following formula

âiiei +
∑

j∈N̂i

âijej ≈ 0 (4.3)

with the new neighborhood N̂i = Ni ∪
⋃

j∈F s
i

Nj and the new coarse point set Ĉi =

Ci ∪
⋃

j∈F s
i

Cj . This can greatly increase the size of the interpolatory set.

See the left example in Figure 4.1. Consider point i. Using direct or classical
interpolation, i would only be interpolated by the two distance-one coarse points.
However, when we include the coarse points of its strong fine neighbors m and n,
two additional interpolatory points k and l are added, leading to a potentially more
accurate interpolation formula. Standard interpolation is now defined by applying
direct interpolation to the new stencil, leading to

wij = −
âij

âii

∑

k∈N̂i
âik

∑

k∈Ĉi
âik

. (4.4)

4.4. Extended Interpolation. It is possible to extend the classical interpo-
lation formula so that the interpolatory set includes C-points that are distance two
away from the F -point to be interpolated, i.e. applying the classical interpolation
formula, but using the same interpolatory set that is used in standard interpolation,

see Figure 4.1: Ĉi = Ci ∪
⋃

j∈F s
i

Cj .

Using the same reasoning that leads to the classical interpolation formula (3.7),
the following approximate statement can be made regarding the error at an F-point
i:



aii +
∑

j∈Nw
i

aij



 ei ≈ −
∑

j∈Ĉi

aijej −
∑

j∈F s
i

aij

∑

k∈Ĉi
ajkek

∑

k∈Ĉi
ajk

. (4.5)

It then follows immediately that the interpolation weights using the extended
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Fig. 4.1. Example of the interpolatory points for a 5-point stencil (left) and a 9-point stencil
(right). The gray point is the point to be interpolated, black points are C-points and white points
are F -points.

 
0 2 1 3 
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2 2 

Fig. 4.2. Finite difference 1D Laplace example.

coarse interpolatory set Ĉi can be defined as

wij = −
1

aii +
∑

k∈Nw
i

aik











aij +
∑

k∈F s
i

aikākj
∑

m∈Ĉi

ākm











, j ∈ Ĉi. (4.6)

This new interpolation formula deals efficiently with strong F − F connections
that do not share a common C-point. We call this interpolation strategy ‘extended
interpolation’ (‘ext’).

4.5. Extended+i Interpolation. While extended interpolation remedies many
problems that occur with classical interpolation, it does not always lead to the desired
weights. Consider the case given in Figure 4.2. Here we have a 1-dimensional Laplace-
problem generated by finite differences. Points 1 and 2 are strongly connected F -
points, and points 0 and 3 are coarse points. Clearly 0, 3 is the interpolatory set
for point 1 for the case of extended interpolation. If we apply formula (4.6) to this
example to calculate w1,0 and w1,3, we obtain

w1,0 = 0.5, w1,3 = 0.5.

This is a better result than we would obtain for direct interpolation (3.5) and classical
interpolation (3.8):

w1,0 = 1, w1,3 = 0,
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but worse than standard interpolation (4.4), for which we get the intuitively best
interpolation weights:

w1,0 = 2/3, w1,3 = 1/3. (4.7)

This can be remedied if we include not only connections ajk from strong fine
neighbors j of i to points k of the interpolatory set but also connections aji from j
to point i itself. An alternative to expression (3.6) for the error in strongly connected
F -points, is then given by

ej ≈

∑

k∈Ci∪{i} ajkek
∑

k∈Ci∪{i} ajk

. (4.8)

This can be rewritten as

ej ≈

∑

k∈Ci
ajkek

∑

k∈Ci∪{i} ajk

+
aji ei

∑

k∈Ci∪{i} ajk

, (4.9)

which then, in a similar way as before, leads to interpolation weights

wij =
1

ãii



aij +
∑

k∈F s
i

aik

ākj
∑

l∈Ĉi∪{i} ākl



 , j ∈ Ĉi, (4.10)

with now

ãii = aii +
∑

n∈Dw
i

ain +
∑

k∈F s
i

aik

āki
∑

l∈Ĉi∪{i} ākl

. (4.11)

We call this modified extended interpolation ‘extended+i’, and refer to it by
‘ext+i’ (or sometimes ‘e+i’ to save space) in the tables below. If we apply it to the
example illustrated in Figure 4.2 we obtain weights (4.7).

5. Computational Cost of Interpolation Strategies. In this section we con-
sider the cost of some of the interpolation operators described in the previous sections.
We use the following notations:

Nc total number of coarse points
Nf total number of fine points
nk average number of distance-k neighbor points
ck average number of distance-k interpolatory points
fk average number of strong fine distance-k neighbors
wk average number of weak distance-k neighbors
sk average number of common distance-k interpolatory points
fw average number of strong neighbors treated weakly

Here fw indicates the number of strong F -neighbors that are treated weakly, which
occur only for classical interpolation (3.7). Also, sk denotes the average number of
C-points which are distance-one neighbors of j ∈ F s

i and also distance-k interpolatory
points for i, the point to be interpolated. Note that sk is usually smaller than ck and
at most equal to ck. Note also that nk = fk + ck + wk.
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In our considerations we assume a compressed sparse row data format, i.e. three
arrays are used to store the matrix: a real array that contains the coefficients of the
matrix, an integer array that contains the column indices for each coefficient and an
integer array that contains pointers to the beginning of each row for the other two
arrays. We also assume an additional integer array which indicates whether a point
is an F - or a C-point.

For all interpolation operators mentioned before, it is necessary to determine at
first the interpolatory set. At the same time the data structure for the interpolation
operator can be determined. This can be accomplished by sweeping through each row
that belongs to an F -point: coarse neighbors are identified via integer comparisons,
and the pointer array for the interpolation operator is generated. For the distance-two
interpolation schemes, it is also necessary to check neighbors of strong fine neighbors.
This requires n1 comparisons for direct and classical interpolation, and (f1 + 1)n1

comparisons for extended, extended+i and standard interpolation. The final data
structure contains Nc + Nfc1 coefficients for classical and direct interpolation, and
Nc + Nf (c1 + c2) coefficients for extended(+i) and standard interpolation.

Next, the interpolation data structure is filled.
For direct interpolation, all that is required is to sweep through a whole row

once to compute αi = −
∑

k∈Ni
aik/

(

aii

∑

k∈Cs
i
aik

)

and then multiply the relevant

matrix elements aij with αi. The sum in the denominator requires an additional n1

comparisons, and the two summations require n1 + 1 additions.
For classical, extended and extended+i interpolation one needs to first compute

for each point k ∈ F s
i \ F s∗

i , αik = aik/
(

∑

m∈Ds
i
akm

)

with the appropriate set Ds
i ,

which is different for each operator. For example, for classical interpolation, this
requires f1n1 comparisons. After this step, all these coefficients need to be processed
again in order to add αijakj to the appropriate weights. This requires an additional
f1n1 comparisons. The number of additions, multiplications and divisions can be
determined similarly.

For standard interpolation, at first the new stencil needs to be computed, leading
to f1n1 additions and multiplications. After this one proceeds just as for direct
interpolation with a much larger stencil of size n1 + n2.

The number of floating point additions, multiplications and divisions to compute
all interpolation weights for each F -point are given in Table 5.1. Note that a sum
over m elements is treated as m additions, assuming that we are adding to a variable
that was originally 0. Note also that occurrences of products of variables, such as fici

or fisi, are of order n2
i , since fi, ci, si are dependent on ni. This is also reflected in

the results given in Table 5.2 for two specific examples.

Interp. additions multiplications divisions comparisons

direct n1 + 1 c1 + 1 1 2n1

clas 2f1s1 + w1 + fw f1s1 + c1 f1 − fw + 1 (2f1 + 1)n1

std (f1 + 1)n1 + n2 f1n1 + c1 + c2 f1 + 1 (2f1 + 2)n1 − f1 + n2

ext 2f1(s1 + s2) f1(s1 + s2) f1 + 1 (3f1 + 1)n1 − f1

+w1 +c1 + c2

ext+i 2f1(s1 + s2 + 1) f1(s1 + s2 + 1) f1 + 1 (3f1 + 1)n1 − f1

+w1 +c1 + c2

Table 5.1

Computational cost for various interpolation operators.
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Let us look at some examples to get an idea about the actual cost involved. First
consider a 5-point stencil as in Figure 4.1. Here, we have the following parameters:
c1 = f1 = 2, w1 = w2 = 0, n1 = 4, fw = 2, s1 = 0, c2 = 2, f2 = 3, n2 =
5, s2 = 1.5. Table 5.2 shows the resulting interpolation cost. Next, we look at an
example with a bigger stencil, see Figure 4.1 and Table 5.2. The parameters are now
c1 = 2, f1 = 6, w1 = w2 = 0, n1 = 8, fw = 1, s1 = 1, c2 = 3, f2 = 12, n2 =
15, s2 = 1. We clearly see that a larger stencil significantly increases the ratio of
classical over direct interpolation, as well as that of distance-two over distance-one
interpolations.

Left example in Fig. 4.1 Right example in Fig. 4.1
Interpol. adds mults divs comps adds mults divs comps

direct 5 3 1 8 9 3 1 16
clas 2 2 1 20 13 8 6 104
std 17 12 3 19 71 53 7 73
ext 6 7 3 26 24 17 7 146
ext+i 10 9 3 26 36 23 7 146

Table 5.2

Cost for examples in Figure 4.1.

Table 5.3 shows the times for calculating these interpolation operators for matrices
with stencils of various sizes. Two two-dimensional examples, one with a 5-point
and one with a 9-point stencil, were examined on a 1000 × 1000 grid. The three-
dimensional examples, with a 7-point and a 27-point stencil, were examined for an
80× 80× 80 grid. We have also included actual measurements of the average number
of interpolatory points for these examples. As expected, larger stencils lead to a larger
number of operations for each interpolation operator, with a much more significant
increase for distance-two interpolation operators, particularly for the 3-dimensional
problems. These effects are significant, especially since on coarser levels the stencils
become larger and, thus, impact the total setup time.

Interpolation
Stencil c1 c2 direct clas std ext ext+i

5-pt 2.3 1.9 0.27 0.35 0.64 0.51 0.54
9-pt 1.8 2.8 0.36 1.11 2.16 2.09 2.48

7-pt 2.7 4.1 0.19 0.31 0.80 0.73 0.81
27-pt 2.3 7.2 0.40 3.72 8.00 7.43 8.32

Table 5.3

Average number of distance-one (c1) and distance-two (c2) interpolatory points and times for
various interpolation operators.

6. Sequential Numerical Results. While the previous section examined the
computational cost for the interpolation operator, we are of course mainly interested in
the performance of the complete solver, which also includes coarsening, the generation
of the coarse grid operator as well as the solve phase. We apply the new and old
interpolation operators here to a variety of test problems from [7] to compare their
efficiency. We did not include results using direct interpolation, since it performs
worse than classical and multipass interpolation for the problems considered, nor
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results using multipass interpolation followed by Jacobi interpolation, since these
results were very similar to those obtained for ‘clas+j’. All these tests were obtained
using AMG as a solver with a strength threshold of α = 0.25, and coarse-fine-Gauss-
Seidel as a smoother. The iterations were stopped when the relative residual was
smaller than 10−8.

5-point 9-point
Method Cop # its time Cop # its time
clas 1.92 244 151.60 1.24 157 100.44
clas+j 2.65 15 26.09 1.65 9 21.03
mp 1.92 244 152.34 1.24 183 115.72
ext 2.54 16 20.24 1.60 10 18.26
ext+i 2.57 11 16.93 1.60 10 18.40
std 2.56 16 20.63 1.60 17 23.06

Table 6.1

AMG for the 5-point and the 9-point 2D Laplace problem on a 1000×1000 square with random
right hand side using different interpolation operators.

45 degrees 60 degrees
Method Cop # its time Cop # its time
clas 1.90 168 38.60 1.82 >1000
clas+j 2.39 29 10.50 3.40 424 131.85
mp 1.90 163 37.16 1.82 >1000
ext 2.07 31 8.75 2.69 217 59.70
ext+i 2.07 11 4.05 2.89 97 29.78
std 2.07 13 4.53 2.89 148 43.68

Table 6.2

AMG for a problem with a by 45 degrees and by 60 degrees rotated anisotropy on a 512×512
square using different interpolation operators.

Table 6.1 shows results for the two-dimensional Poisson problem −∆u = f using
a 5-point finite difference discretization and a 9-point finite element discretization.
Table 6.2 shows results for the two-dimensional rotated anisotropic problem

−(c2 + εs2)uxx + 2(1− ε)scuxy − (s2 + εc2)uyy = 1 (6.1)

with s = sin γ, c = cos γ, and ε = 0.001 with rotation angles γ = 45o and γ = 60o.
The use of the distance-two interpolation operators combined with PMIS shows

significant improvements over classical and multipass interpolation with regard to
number of iterations as well as time. The best interpolation operator here is the ext+i
interpolation, which has the lowest number of iterations and times in general. The
difference is especially significant in the case of the problems with rotated anisotropies.
The operator complexity is larger, however, as was to be expected.

This increase becomes more significant for three-dimensional problems. Here we
consider the partial differential equation

−(aux)x − (auy)y − (auz)z = f (6.2)

on a n×n×n cube. For the Laplace problem a(x, y, z) = 1, for the problem denoted by
‘Jumps’ we consider the function a(x, y, z) = 1000 for the interior cube 0.1 < x, y, z <
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7-point 27-point Jumps
Method Cop # its time Cop # its time Cop # its time
clas 2.34 45 10.21 1.09 28 10.58 2.50 >1000
clas+j 5.12 11 20.35 1.34 8 17.10 5.37 15 20.99
mp 2.35 47 10.40 1.10 30 9.39 2.50 80 17.37
ext 4.93 11 16.70 1.35 8 21.32 5.27 15 16.89
ext+i 4.27 9 14.48 1.35 8 21.55 5.10 11 15.96
std 4.20 10 12.78 1.38 10 18.58 5.21 18 17.47

Table 6.3

AMG for a 7-point 3D Laplace problem, a problem with a 27-point stencil and a 3D structured
PDE problem with jumps on a 60 × 60 × 60 cube with a random right hand side using different
interpolation operators.

0.9, a(x, y, z) = 0.01 for 0 < x, y, z < 0.1 and the other cubes of size 0.1× 0.1× 0.1
that are located at the corners of the unit cube and a(x, y, z) = 1 elsewhere. The
27-point problem is a matrix with a 27-point stencil with the value 26 in the interior
and -1 elsewhere and is being tested because we also wanted to consider a problem
with a larger stencil.

While for these problems AMG convergence factors for distance-two interpolation
improve significantly compared to classical and multipass interpolation, as can be
seen in Table 6.3, overall times are worse for the 7pt 3D Laplace problem as well as
the 27-point problem on a 60 × 60 × 60 grid. The only problem on the 60 × 60 ×
60 grid that benefits from distance-two interpolation operators also with regard to
time is the problem with jumps, which requires long-distance interpolation to even
converge. Using distance-two interpolation operators leads to complexities about
twice as large as those obtained when using classical or multi-pass interpolation,
which work relatively well for the 7- and 27-point problem on the 60× 60× 60 grid.
However, when we scale up the problem sizes, they show very good scalability in
terms of AMG convergence factors, as can be seen in Figure 6.1, which shows the
number of iterations for a 3D 7-pt Laplace problem on a n×n×n grid for increasing
n. The anticipated large differences in numbers of iterations between distance-one
and distance-two interpolations show up in the 2D results of Tables 6.1 and 6.2 on
grids with 1000 points per direction, but are not particularly significant yet in the 3D
results of Table 6.3 with only 60 points per direction. It is expected, however, that
for the large problems that we want to solve on a parallel computer, distance-two
interpolation operators will lead to overall better times than classical or multi-pass
interpolation due to scalable AMG convergence factors, if the operator complexity
can be kept under control. See Section 9 for actual test results.

7. Reducing Operator Complexity. While the methods described in the pre-
vious section largely restore grid-independent convergence to AMG cycles that use
PMIS-coarsened grids, they also lead to much larger operator complexities for the
V-cycles. Therefore, it is necessary to consider ways to reduce these complexities
while (hopefully) retaining the improved convergence. In this section we describe a
few ways of achieving this.

7.1. Choosing Smaller Interpolatory Sets. It is certainly possible to con-
sider other interpolatory sets, which are larger than Cs

i , but smaller than Ĉi. Par-
ticularly, it appears that a good interpolatory set would be one that only extends Cs

i

for strong F − F connections without a common C-point, since in the other cases
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Fig. 6.1. Number of iterations for PMIS with various interpolation operators for a 3D 7-point
Laplace problem on a n × n × n-grid.

point i is likely already surrounded by interpolatory points and an extension is not
necessary. If we look at the right example in Figure 4.1, we see that neighbor k of i is
the only fine neighbor that does not share a C-point with i. Consequently, it may be
sufficient to only include points n and l in the extended interpolatory set. Applying
this approach to the extended interpolation leads to so-called F −F interpolation [3].
The size of the interpolatory set can be further decreased if we limit the number of
C-points added when an F -point is encountered that does not have common coarse
neighbors. This has been done in the so-called F − F1 interpolation [3], where only
the first C-point is added. For the right example in Figure 4.1 this means that only
point n or point l would be added to the interpolatory set for i.

Choosing a smaller interpolatory set decreases c2 and with it s2, leading to fewer
multiplications and additions for the extended interpolation methods. On the other
hand, additional operations are needed to determine which coarse neighbors of strong
F -points are common C-points. This means that the actual determination of the
interpolation operator might not be faster than creating the extended interpolation
operators. The real benefit, however, is achieved by the fact that the use of smaller
interpolatory sets leads to smaller stencils for the coarse grid operator and hence to
smaller overall operator complexities.

Applying these methods to some of our previous test problems, we get the results
shown in Tables 7.1 and 7.2. Here, ‘x-cc’ denotes that interpolation ‘x’ is used, but
the interpolatory set is only extended when there are no common C-points. Similarly,
‘x-ccs’ is just like ‘x-cc’, except that for every strong F -point without a common
C-point only a single C-point is added.

The results show that 2-dimensional problems do not benefit from this strategy,
since operator complexities are only slightly decreased, while the number of iterations
increases. Therefore total times increase. However, 3-dimensional problems can be
solved much faster due to significantly decreased setup times leading to only half
the total times when the ‘ccs’-strategy is employed. Again, these beneficial effects
are expected to be stronger on larger grids. Indeed, additional numerical tests (not
presented here, see [3]) also show that the ‘x-cc’ and ‘x-ccs’ distance-two interpolations
result in algorithms that are highly scalable as a function of problem size: Cop tends
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9-point 45 degrees 60 degrees
Method Cop # its time Cop # its time Cop # its time
ext 1.60 10 18.26 2.07 31 8.67 2.69 217 59.70
ext-cc 1.45 14 17.35 2.06 34 9.33 2.62 247 66.22
ext-ccs 1.43 15 17.46 2.05 34 9.13 2.42 270 67.96
ext+i 1.60 10 18.40 2.07 11 4.05 2.89 97 29.78
ext+i-cc 1.45 14 17.91 2.05 14 4.72 2.80 117 34.63
ext+i-ccs 1.42 15 17.98 2.04 14 4.73 2.51 143 38.87

Table 7.1

AMG for the 9-point 2D Laplace problem on a 1000×1000 square with random right hand side
using different interpolation operators and rotated anisotropies of 0.001 on a 512 × 512 grid.

7-point 27-point Jumps
Method Cop # its time Cop # its time Cop # its time
ext 4.93 11 16.70 1.35 8 21.32 5.27 15 16.89
ext-cc 4.62 12 11.11 1.33 7 11.82 4.86 16 11.59
ext-ccs 4.00 12 8.46 1.31 7 10.34 4.23 17 9.61
ext+i 4.27 9 14.48 1.35 8 21.55 5.10 11 15.96
ext+i-cc 4.12 9 9.16 1.33 7 12.48 4.66 13 10.35
ext+i-ccs 3.64 9 7.23 1.31 7 10.95 4.00 14 8.37

Table 7.2

AMG for a 7-point and a 27-point 3D Laplace problem and a 3D structured PDE problem with
jumps on a 60× 60× 60 cube with a random right hand side using different interpolation operators.

to a constant that is significantly smaller than the Cop value for the ‘x’ interpolations,
and the number of iterations is nearly constant as a function of problem size, and only
slightly larger than the number of iterations for the full ‘x’ interpolation formulas [3].
This shows that using distance-two interpolation formulas with reduced complexities
restores the grid-independent convergence and scalability of AMG on PMIS-coarsened
grids, without the need for GMRES acceleration. This makes these methods suitable
algorithms for large problems on parallel computers, as is discussed below.

7.2. Interpolation Truncation. Another very effective way to reduce com-
plexities is the use of interpolation truncation. There are essentially two ways we can
truncate interpolation operators: we can choose a truncation factor θ and eliminate
every weight whose absolute value is smaller than this factor, i.e. for which |wij | < θ
[12], or we can limit the number of coefficients per row, i.e. choose only the kmax

largest weights in absolute value. In both cases the new weights need to be re-scaled
so that the total sums remain unchanged.

Both approaches can lead to significant reductions in setup times and operator
complexities, particularly for 3-dimensional problems, but if too much is truncated,
the number of iterations rises significantly, as one would expect.

We only report results for one interpolation formula (ext+i) for a 3D example here,
see Table 7.3. However, similar results can be obtained using the other interpolation
operators. For 2-dimensional problems, truncation leads to an increase in total time
similarly as reported for interpolatory set restriction in the previous section.

8. Parallel Implementation. This section describes the parallel implementa-
tion and gives a rough idea of the cost involved, with particular focus on the increase
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truncation factor max.# of weights
θ Cop # its time kmax Cop # its time
0 4.27 9 14.48

0.1 4.13 9 10.72 7 3.75 9 8.63
0.2 3.88 9 8.52 6 3.42 9 7.41
0.3 3.39 10 6.82 5 3.01 10 6.42
0.4 3.02 13 6.60 4 2.73 14 6.30
0.5 2.75 20 7.67 3 2.48 24 7.41

Table 7.3

Effect of truncation on AMG with ext+i interpolation for a 7-point 3D Laplace problem on a
60× 60 × 60 cube with a random right hand side. (Note that ‘ass’ denotes the average stencil size.)

in communication required for the distance-two interpolation formulae compared to
distance-one interpolation. Since the core computation for the interpolation routines
is approximately the same as in the sequential case, we only focus on the additional
computations that are required for inter-communication between processors.

In parallel, each matrix is stored using a parallel data format, the ParCSR ma-
trix data structure, which is described and analyzed in detail in [8]. Matrices are
distributed across processors by contiguous blocks of rows, which are stored via two
compressed sparse row matrices, one storing the local entries and the other one storing
the off-processor entries. There is an additional array containing a mapping for the
off-processor neighbor points. The data structure also contains the information nec-
essary to retrieve information from distance-one off-processor neighbors. It however
does not contain information on off-processor distance-two neighbors, which com-
plicates the parallel implementation of distance-two interpolation operators. When
determining these neighbors, there are four scenarios that need to be considered, see
Figure 8.1. Consider point i, which is the point to be interpolated to, and is residing
on Processor 0. A distance-two neighbor can reside on the same processor as i, like
point j; it can be a distance-one neighbor to another point on Proc. 0, like point
l, and therefore be already contained in the off-processor mapping; it can be a new
point on a neighbor processor, like point k, or it can be located on a processor, which
is currently not a neighbor processor to Proc. 0, like point m.

 

i  

 

j 

k 

m l 

Proc. 0 Proc. 1 

Proc. 2 

Proc. 3 

Fig. 8.1. Example of off-processor distance-two neighbors of point i. Black points are C-points,
and white points are F -points.

There are basically five additional parts that are required for the parallel im-
plementation, and for which we give rough estimates of the cost involved below.
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Operations include floating point and integer operations as well as message passing
and sends and receives required to communicate data across processors. We use the
following notations: n1 denotes the average number of distance-one neighbors per
point, as defined previously, p is the total number of processors, qi is the average
number of distance-i neighbor processors per processor, N o

i is the average number of
distance-i off-processor points and equals the sum of the average number of distance-i
off-processor C-points, Co

i , and distance-i off-processor F -points, F o
i . Note that the

estimates of number of operations and number of processors involved given below are
per processor.

1. Communication of C/F splitting for all off-processor neighbor points: This is
required for all interpolation operators and takes O(N o

1 ) + O(q1) operations.

2. Obtaining the row information for off-processor distance-one F -points: This
step is necessary for classical and distance-two interpolation, but not for direct in-
terpolation, which only uses local matrix coefficients to generate the interpolation
formula. It requires O(n1F

o
1 ) + O(F o

1 ) + O(q1) operations.

3. Determining off-processor distance-two points and additional communication
information: This step is only required for distance-two interpolation operators. Find-
ing the new off-processor points, which requires checking whether they are already con-
tained in the map and describing the off-processor connections, takes O(n1F

o
1 log(No

1 ))
operations. Sorting the new information takes O(N o

2 log(No
2 )) operations. Getting the

communication information for the new points using an assumed partition algorithm
[1], requires O(No

2 ) + O(log p) + O((q1 + q2) log(q1 + q2)) operations. Getting the
additional C/F splitting information takes O(N o

2 ) + O(q1 + q2) operations.

4. Communication of fine to coarse mappings: This step requires O(N o
1 ) + O(q1)

operations for distance-one interpolation and O(N o
1 +No

2 )+O(q1 + q2) operations for
the distance-two interpolation schemes.

5: Generating the interpolation matrix communication package: This step re-
quires O(Co

1 ) + O(log p) + O(q1 log q1) operations for distance-one interpolation and
O(Co

1 + Co
2 ) + O(log p) + O((q1 + q2) log(q1 + q2)) operations for distance-two inter-

polation. Note that if truncation is used, Co
i should be replaced by C̃o

i with C̃o
i < Co

i

for i = 1, 2.

Summarizing these results, direct interpolation requires the least amount of com-
munication, followed by classical interpolation. Parallel implementation of distance-
two interpolation requires more communication steps and additional data manipula-
tion, and involves more data and neighbor processors. How significantly this overhead
impacts the total time depends on many factors, such as the problem size per proces-
sor, the stencil size, the computer architecture and more. Parallel scalability results
are presented below.

9. Parallel Numerical Results. In this section, we investigate weak scalability
of the new interpolation operators by applying the resulting AMG methods to various
problems.

The following problems were run on Thunder, an Intel Itanium2 machine with
1024 nodes of 4 processors each, located at Lawrence Livermore National Laboratory,
unless we say otherwise. In this section, p denotes the number of processors used.

9.1. Two-Dimensional Problems. We first consider two-dimensional Laplace
problems, which perform very poorly for PMIS with classical interpolation. The
results we obtained for 5-point and 9-point stencils are very similar. Therefore we list
only the results for the 9-point 2D Laplace problem here.
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Table 9.1, which contains the number of iterations and total times for this prob-
lem, show that classical interpolation performs very poorly, and multipass interpola-
tion even worse. Nevertheless, these methods lead to the lowest operator complexities:
1.24. All long-range interpolation schemes lead to good scalable convergence, with
standard-interpolation performing slightly worse than classical followed by Jacobi, ex-
tended or extended+i interpolation, which are the overall fastest methods here with
the best scalability. Operator complexities are highest for clas+j with 1.65 and about
1.6 for the other three interpolation operators. Also, when choosing the lower com-
plexity versions e+i-cc and e+i-ccs, with complexities of 1.45 and 1.43, convergence
deteriorates somewhat compared to e+i. Since for the 2-dimensional problems setup
times are fairly small and the improvement in complexities is not very significant,
this increase in number of iterations hurts the total times, and therefore there is no
advantage in using low-complexity schemes for this problem. Truncated versions lead
to even larger total times.

p clas clas+j mp std ext e+i e+i-cc e+i-ccs
1 15(88) 3(9) 18(105) 4(15) 3(10) 3(10) 3(12) 3(13)

64 48(245) 4(11) 57(278) 6(20) 4(12) 4(12) 5(16) 5(19)
256 79(400) 5(12) 85(436) 8(27) 5(13) 5(13) 5(19) 6(21)

1024 104(494) 6(13) n.c. 9(27) 6(14) 6(14) 7(21) 7(21)
Table 9.1

Times in seconds (number of iterations) for a 9-point 2D Laplace problem with 300×300 points
per processor; ‘n.c.’ denotes ‘not converging within 500 iterations’.

Next, we consider the 2-dimensional problem with rotated anisotropy (6.1). The
first problem here has an anisotropy of 0.001 rotated by 45 degrees, see Table 9.2.
Operator complexities for classical and multipass interpolation are here 1.9; they are
2.4 for classical interpolation followed by Jacobi, and 2.1 for all remaining interpo-
lation operators. Here, extended interpolation performs worse than standard and
extended+i interpolation, which gives the best results.

p clas clas+j mp std ext e+i e+i-cc e+i-ccs
1 24(116) 7(27) 24(119) 3(11) 7(29) 3(10) 3(12) 3(12)

64 n.c. 12(36) 96(401) 7(22) 11(39) 5(16) 7(21) 7(23)
256 n.c. 13(37) n.c. 8(25) 12(42) 6(18) 8(25) 8(27)

1024 n.c. 15(40) n.c. 10(29) 14(45) 8(21) 10(29) 11(31)
Table 9.2

Times in seconds (number of iterations) for a 2D problem with a by 45 degrees rotated
anisotropy of 0.001 with 300 × 300 points per processor; ‘n.c.’ denotes ‘not converging within 500
iterations’.

In Table 9.3 we consider the harder problem, where the anisotropy is rotated by
60 degrees. Operator complexities are now 1.8 for classical and multipass, 3.4 for
clas+j, 2.9 for e+i and std, 2.7 for ext, 2.8 for e+i-cc and 2.5 for e+i-ccs. Here fastest
convergence is obtained for the extended+i interpolation, followed by e+i-cc, e+i-ccs,
std, and ext. The other interpolations fail to converge within 500 iterations. While
long-range interpolation operators improve convergence, it is still not good enough,
so this problem should be solved using Krylov subspace acceleration.

9.2. Three-Dimensional Structured Problems. We now consider 3-dimensional
problems. Based on the sequential results in Section 6 we expect complexity reduction
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p clas clas+j mp std ext e+i e+i-cc e+i-ccs
1 n.c. 105(342) n.c. 30(107) 45(172) 22(79) 24(87) 28(112)

64 n.c. n.c. n.c. 79(256) 96(330) 47(152) 59(196) 70(254)
256 n.c. n.c. n.c. 95(305) 110(374) 56(176) 70(227) 84(299)

1024 n.c. n.c. n.c. 113(357) 123(408) 62(193) 82(263) 100(347)
Table 9.3

Times in seconds (number of iterations) for a 2D problem with a by 60 degrees rotated
anisotropy of 0.001 with 300 × 300 points per processor; ‘n.c.’ denotes ‘not converging within 500
iterations’.

schemes to make a difference here.
The first problem is a 7-point 3D Laplace problem on a structured cube with

40 × 40 × 40 unknowns per processor. Table 9.4 shows total times in seconds, and
number of iterations. While classical interpolation solves the problem, the number
of iterations increases rapidly with increasing number of processors and problem size.
Multipass interpolation performs better for larger number of processors, but still
shows unscalable convergence factors. Applying one step of Jacobi interpolation to
classical interpolation leads to perfect scalability in terms of convergence factors, but
unfortunately also to rising operator complexities (4.9-5.7), which are twice as large as
for classical and multipass interpolation (2.3-2.4). Interestingly, while both standard
and extended+i interpolation need less iterations for a small number of processors
than extended interpolation, they show worse numerical scalability leading to far less
iterations for extended interpolation for large number of processors. However extended
interpolation leads to larger complexities (4.7-5.3) compared to extended+i (4.2-4.5)
and standard interpolation (4.1-4.4). The complexity reducing strategies lead to the
following complexities: ext-cc (4.5-4.9), ext-ccs (3.9-4.2), e+i-cc (4.0-4.3), and e+i-ccs
(3.6-3.8). For the sake of saving space, we did not record the results for ext-cc or e+i-
cc, but the times and number of iterations for these methods was in between those
of ext and ext-ccs, or e+i and e+i-ccs, respectively. Interestingly, the complexity
reducing strategies e+i-cc and e+i-ccs show not only better scalability with regard to
time, but also better scalability of convergence factors than e+i interpolation in this
case.

p clas clas+j mp std ext e+i ext-ccs e+i-ccs
1 5( 33) 8(11) 6( 34) 5( 9) 7(11) 6( 8) 4(12) 3( 9)

64 17( 80) 18(12) 16( 79) 14(18) 16(12) 12(10) 9(14) 7(11)
512 33(149) 26(12) 28(126) 20(26) 20(14) 17(15) 11(14) 11(11)

1000 39(175) 41(12) 31(138) 26(31) 30(13) 31(39) 15(15) 16(14)
1728 51(229) 63(12) 37(159) 35(41) 46(13) 40(33) 22(15) 24(16)

Table 9.4

Total times in seconds (number of iterations) for a 7 point 3D Laplace problem with 40×40×40
points per processor.

For this problem, complexity reducing strategies, thus, are paying off. Table 9.5
shows results for various truncated interpolation schemes. We used the truncation
strategy which restricts the number of weights per row using either 4 or 5 for the
maximal number of elements. While we present both results for ext and e+i, we
present only the faster results for the remaining interpolation schemes for the sake of
saving space. We used a truncation factor of 0.1 for clas+j. Operator complexities
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p ext4 ext5 e+i4 e+i5 ext-cc5 e+i-cc5 std5 clas+j0.1
1 3(13) 3(11) 3(12) 3(9) 3(11) 3(9) 4(12) 3(13)

64 6(19) 7(15) 7(19) 7(13) 6(14) 6(13) 9(25) 9(23)
512 9(25) 8(18) 11(28) 10(19) 8(17) 8(17) 15(39) 13(36)

1000 10(25) 11(18) 11(30) 12(20) 10(18) 9(17) 17(39) 15(37)
1728 12(29) 12(21) 13(35) 14(24) 11(21) 11(20) 28(46) 19(45)

Table 9.5

Total times in seconds (number of iterations) for a 7 point 3D Laplace problem with 40×40×40
points per processor.

were fairly consistent here across increasing numbers of processors: we obtained 2.9
for ext4, 3.2 for ext5, 2.8 for e+i4, 3.1 for e+i5, 3.2 for ext-cc5, 3.1 for e+i-cc5, 3.2
for std5 and 3.0 for clas+j0.1. Clearly, using four compared to five weights leads to
lower complexities, but larger number of iterations. Total times are not significantly
different. Comparing the fastest method, e+i-cc5, on 1728 processors to PMIS with
classical interpolation, we see a factor of 11 in improvement with regard to number
of iterations and a factor of 5 in improvement with regard to total time with a slight
increase in complexity.

Table 9.6 shows results for the problem with jumps (6.2), for which PMIS with
classical interpolation was shown to completely fail. Multipass interpolation converges
here with highly degrading scalability but good complexities of 2.4. Applying Jacobi
interpolation to classical interpolation leads to very good convergence, but, due to
operator complexities between 5.1 and 5.7, it leads to a much more expensive setup
and solve cycle. Applying a truncation factor of 0.1 as in the previous example leads to
extremely bad convergence and is not helpful here. Standard interpolation converges
very well for small number of processors, but diverges if p is greater or equal to 64.
Interestingly enough std4 converges, albeit not very well.

p mp clas+j ext e+i ext-ccs e+i-ccs std4 ext-cc5
1 11( 64) 8(14) 7(14) 6(10) 5(18) 4(15) 6( 26) 5(17)

64 35(176) 20(17) 17(17) 15(14) 11(21) 9(19) 18( 71) 11(24)
512 58(280) 31(20) 24(24) 21(20) 15(24) 13(21) 27( 98) 11(30)

1000 65(306) 35(21) 27(20) 26(21) 19(24) 18(22) 33(113) 14(33)
1728 77(350) 60(21) 73(70) 43(26) 25(29) 29(23) 53(169) 17(36)

Table 9.6

Total times in seconds (number of iterations) for a structured 3D problem with jumps with
40 × 40 × 40 points per processor.

9.3. Unstructured Problems. In this section, we consider various linear sys-
tems on unstructured grids that have been generated by finite element discretizations.
All of these problems were run on an Intel Xeon Linux cluster at Lawrence Livermore
National Laboratory. The first problem is the three-dimensional diffusion problem
−a1(x, y, z)uxx − a2(x, y, z)uyy − a3(x, y, z)uzz = f with Dirichlet boundary condi-
tions on an unstructured cube. The material properties are discontinuous, and there
are approximately 90,000 degrees of freedom per processor. See Figure 9.1 for an
illustration of the grid used. There are five regions: four layers and the thin stick
in the middle of the domain. This grid is further refined when larger number of
processors are used. The functions ai(x, y, z), i = 1, 2, 3 are constant within each of
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the five regions of the domains with the following values (4,0.2,1,1,104) for a1(x, y, z),
(1,0.2,3,1,104) for a2(x, y, z), and (1,0.01,1,1,104) for a3(x, y, z). We also include some
results obtained with CLJP coarsening, which is a parallel coarsening scheme that was
designed to ensure that two fine neighbors always have a common coarse neighbor and
for which classical interpolation is therefore suitable [5, 9]. We include only results for
the extended+i interpolation here, because the extended interpolation performs very
similar. As a smoother we used hybrid Gauss-Seidel, which leads to a nonsymmetric
preconditioner. Since in practice more complicated problems are usually solved us-
ing AMG as a preconditioner for Krylov subspace methods, we use AMG here as a
preconditioner for GMRES(10). Note that both classical and multipass interpolation
do not converge within 1000 iterations for these problems if they are used without
a Krylov subspace method, whereas both extended and extended+i interpolation, as
well as classical interpolation on CLJP-coarsened grids, converge well without it, with
a somewhat larger number of iterations and slightly slower total times.

 Fig. 9.1. Grid for the elasticity problem.

The results in Table 9.7 show that the long-range interpolation operators, with the
exception of multipass interpolation, restore the good convergence that was obtained
with CLJP. CLJP has very large complexities, however. We also used a truncated
version of classical interpolation, restricting the number of weights per fine point
to at most 4 to control the complexities. While this hardly affected convergence
factors, it signifcantly improved the total times to solution, see Figure 9.2, but still
did not achieve perfect scalability. Total times for CLJP with clas4 interpolation are
comparable to PMIS with classical interpolation due to the small complexities of PMIS
in spite of its significantly worse convergence factors. The use of extended+i and e+i-
cc interpolation leads to better scalability than the methods mentioned before due
to their lower complexities if compared to CLJP, or their better convergence factors
if compared to PMIS with classical interpolation. Multipass interpolation leads to
even better timings, but the overall best time and scalability is achieved by applying
truncation to 4 weights per fine point to extended+i interpolation.

The second problem is a 3-dimensional linear elasticity problem using the same
domain as above. However, a smaller grid size is used, since this problem requires more
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CLJP PMIS
p clas clas4 clas mp e+i e+i-cc e+i4
1 9(5.6) 9(4.2) 18(1.5) 20(1.5) 9(2.7) 10(2.2) 9(1.8)

64 11(6.7) 12(4.6) 62(1.5) 34(1.5) 11(3.0) 13(2.3) 13(1.9)
256 11(7.8) 12(5.0) 72(1.5) 34(1.5) 12(2.9) 12(2.3) 13(1.8)
512 11(7.2) 13(4.6) 118(1.5) 35(1.5) 12(3.0) 13(2.4) 12(1.8)

1024 10(8.6) 12(5.2) 162(1.6) 39(1.6) 12(3.4) 12(2.6) 14(2.0)
Table 9.7

Number of iterations (operator complexities) for the unstructured 3D problem with jumps. AMG
is used here as a preconditioner for GMRES(10).

Total Times

0

50

100

150

200

0 200 400 600 800 1000

No. of procs

S
ec

o
n

d
s

cljp-c
cljp-c4
pmis-c
pmis-ei
pmis-mp
pmis-eicc
pmis-ei4

 

Fig. 9.2. Total times for diffusion problem with highly discontinuous material properties. AMG
is used here as a preconditioner for GMRES(10).

memory, leading to about 30,000 degrees of freedom per processor. The Poisson ratio
chosen for the pile driver in the middle of the domain was chosen to be 0.4, the Poisson
ratios in the surrounding regions were 0.1, 0.3, 0.3 and 0.2. Since this a is a systems
problem the unknown-based systems AMG method was used. For this problem, the
conjugate gradient method was used as an accelerator, and hybrid symmetric Gauss-
Seidel as a smoother. The results are given in Table 9.8 and Figure 9.3. Here also
extended+i interpolation leads to the lowest run times and best scalability. CLJP ran
out of memory for the 512 processor run.

10. Conclusions. We have studied the performance of AMG methods using
the PMIS coarsening algorithm in combination with various interpolation operators.
PMIS with classical, distance-one interpolation leads to an AMG method with low
complexity, but has bad scalability in terms of AMG convergence factors. The use
of distance-two interpolation operators restores this scalability. However, it leads
to an increase in operator complexity. While this increase was fairly small for two-
dimensional problems and was far outweighed by the much improved convergence,
for three-dimensional problems complexities were often twice as large, and impacted
scalability. To counter this complexity growth, we implemented various complexity
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CLJP PMIS
p clas clas4 clas mp e+i e+i-cc e+i-ccs e+i4
1 64 63 94 93 68 69 72 72
8 83 84 159 131 89 95 96 90

64 92 96 210 179 97 105 112 107
512 - 112 319 247 108 109 123 123
Cop 4.5-7.3 3.6-5.4 1.5 1.5 2.5-3.0 2.1-2.4 1.9-2.1 1.9-2.0

Table 9.8

Number of iterations for the 3D elasticity problem; range of operator complexities. AMG is
used here as a preconditioner for conjugate gradient.
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Fig. 9.3. Total times for the 3D elasticity problem. AMG is used here as a preconditioner for
conjugate gradient.

reducing strategies, such as the use of smaller interpolatory sets and interpolation
truncation. The resulting AMG methods, particularly the extended and extended+i
interpolation in combination with truncation, lead to very good scalability for a vari-
ety of difficult PDE problems on large parallel computers.
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