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Abstract. Algebraic multigrid (AMG) is currently undergoing a resurgence in popularity, due in
part to the dramatic increase in the need to solve physical problems posed on very large, unstructured
grids. While AMG has proved its usefulness on various problem types, it is not commonly understood
how wide a range of applicability the method has. In this study, we demonstrate that range of
applicability, while describing some of the recent advances in AMG technology. Moreover, in light of
the imperatives of modern computer environments, we also examine AMG in terms of algorithmic
scalability. Finally, we show some of the situations in which standard AMG does not work well, and
indicate the current directions taken by AMG researchers to alleviate these difficulties.
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1. Introduction. Algebraic multigrid (AMG) was first introduced in the early
1980’s [11, 8, 10, 12], and immediately attracted substantial interest [32, 28, 30, 29].
Research continued at a modest pace into the late 1980’s and early 1990’s [18, 14, 21,
25, 20, 26, 22]. Recently, however, there has been a major resurgence of interest in the
field, for “classical” AMG as defined in [29], as well as for a host of other algebraic-
type multilevel methods [3, 16, 34, 6, 2, 4, 5, 15, 33, 17, 35, 36, 37]. Largely, this
resurgence in AMG research is due to the need to solve increasingly larger systems,
with hundreds of millions or billions of unknowns, on unstructured grids. The size
of these problems dictates the use of large-scale parallel processing, which in turn
demands algorithms that scale well as problem size increases. Two different types of
scalability are important. Implementation scalability requires that a single iteration
be scalable on a parallel computer. Less commonly discussed is algorithmic scalability,
which requires that the computational work per iteration be a linear function of the
problem size and that the convergence factor per iteration be bounded below 1 with
bound independent of problem size. This type of scalability is a property of the
algorithm, independent of parallelism, but is a necessary condition before a scalable
implementation can be attained.

Multigrid methods are well known to be scalable (both types) for elliptic prob-
lems on regular grids. However, many modern problems involve extremely complex
geometries, making structured geometric grids extremely difficult, if not impossible,
to use. Application code designers are turning in increasing numbers to very large
unstructured grids, and AMG is seen by many as one of the most promising methods
for solving the large-scale problems that arise in this context.

This study has four components. First, we examine the performance of “classical”
AMG on a variety of problems having regular structure, with the intent of determining
its robustness. Second, we examine the performance of AMG on the same suite of
problems, but now with unstructured grids and/or irregular domains. Third, we
study the algorithmic scalability of AMG by examining its performance on several of
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the problems using grids of increasing sizes. Finally, we introduce a new method for
computing interpolation weights, and we show that in certain troublesome cases it
can significantly improve AMG performance.

Our study differs from previous reports on the performance of AMG (e.g., [29, 30])
primarily by our examination of algorithmic scalability, our emphasis on unstructured
grids, and the introduction of a new algorithm for computing interpolation weights.
In Section 2, a description of some details of the AMG algorithm is given to provide
an understanding of the results and later discussion. In Section 3, we present results
of AMG applied to a range of symmetric scalar problems, using finite element dis-
cretizations on structured and unstructured 2D and 3D meshes. AMG is also tested
on nonsymmetric problems, on both structured and unstructured meshes, and the re-
sults are presented in Section 4. A version of AMG designed for systems of equations
is tested, with the focus on problems in elasticity. Results are discussed in Section
5. In Section 6, we introduce and report on tests of a new method for computing
interpolation weights. We concluding with some remarks in Section 7.

2. The Scalar AMG Algorithm. We begin by outlining the basic principles
and techniques that comprise AMG. Detailed explanations may be found in [29].
Consider a problem of the form

(1) Au=f,

where A is an n x n matrix with entries a;;. For convenience, the indices are iden-
tified with grid points, so that u; denotes the value of u at point i, and the grid is
denoted by Q@ ={1,2,...,n}. In any multigrid method, the central idea is that error
e not eliminated by relaxation must be removed by coarse-grid correction. Applied to
elliptic problems, for example, simple relaxations (Jacobi, Gauss-Seidel) reduce high
frequency error components efficiently, but are very slow at removing smooth compo-
nents. However, the smooth error that remains after relaxation can be approximated
accurately on a coarser grid. This is done by solving the residual equation Ae = r
on a coarser grid, then interpolating the error back to the fine grid and using it to
correct the fine-grid approximation. The coarse-grid problem itself is solved by a re-
cursive application of this method. One iteration of this process, proceeding through
all levels, is known as a multigrid cycle. In geometric multigrid, standard uniform
coarsening and linear interpolation are often used, so the main design task is to choose
a relaxation scheme that reduces errors the coarsening process cannot approximate.
One purpose of AMG is to free the solver from dependence on geometry, so AMG
instead fixes relaxation (normally Gauss-Seidel), and its main task is to determine a
coarsening process that approximates error that this relaxation cannot reduce.

An underlying assumption in AMG is that smooth error is characterized by small
residuals, that is, Ae ~ 0, which is the basis for choosing coarse grids and defining
interpolation weights. For simplicity of discussion here, we assume that A is a sym-
metric positive-definite M-matrix, with a; > 0,a;; < 0 for j # ¢, and ) a;; > 0.
This assumption is made for convenience; AMG will frequently work well on matrices
that are not M-matrices. To define any multigrid method, several components are
required. Using superscripts to indicate level number, where 1 denotes the finest level
so that A! = A and Q' = Q, the components that AMG needs are as follows:

1. “Grids” Q' D Q2> ... D> QM.
2. Grid operators A", A%, ... AM,
3. Grid transfer operators:
Interpolation I,’jﬂ,k =1,2,...M —1,
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Restriction I} "1 k=1,2,...M — 1.
4. Relaxation scheme for each level.
Once these components are defined, the recursively defined cycle is as follows:
Algorithm: MV*(u*, £*). The (uy, u2) V-cycle.
If k = M, set uM = (AM)~1fM
Otherwise:
Relax p; times on AFuf = fF
Perform coarse grid correction:
Set uf 1 =0, fF+1 = [P (£F — AkuF).
“Solve” on level k+1 with MV (uk+l f+l),
Correct the solution by u¥ < u*+If,  uk+!.
Relax v times on A*¥uf = £¥.

For this cycle to work efficiently, relaxation and coarse-grid correction must work
together to effectively reduce all error components. This gives two principles that
guide the choice of the components:

P1: Error components not efficiently reduced by relaxation must be
well approzimated by the range of interpolation.

P2: The coarse-grid problem must provide a good approximation to
fine-grid error in the range of interpolation.

Each of these affects a different set of components: given a relaxation scheme,
P1 determines the coarse grids and interpolation, while P2 affects restriction and
the coarse grid operators. In order to satisfy P1, AMG takes an algebraic approach:
relaxation is fixed, and the coarse grid and interpolation are automatically chosen so
that the range of the interpolation operator accurately approximates slowly dimin-
ishing error components (which may not always appear to be “smooth” in the usual
sense). P2 is satisfied by defining restriction and the coarse-grid operator by the
Galerkin formulation:

3 T 3
(2) It = (1f,,) and  AMTU = [t ARLE

When A is symmetric positive definite, this ensures that the correction from the
exact solution of the coarse-grid problem is the best approximation in the range of
interpolation [23], where “best” is meant in the A-norm: by ||v||a = (4Av,v)!/2.
The choice of components in AMG is done in a separate preprocessing step:
AMG Setup Phase:
1. Set £ =1.
2. Partition Q¥ into disjoint sets C* and F*.
(a) Set QF+ =Ck .
(b) Define interpolation I}f ;.

3. Set IF! = (IF,,)" and AR+ = [FH ARTE
4. If QF+1 is small enough, set M = k+1 and stop. Otherwise,
set k =k + 1 and go to step 2.

Step 2 is the core of the AMG setup process. Since the focus is on coarsening a
particular level k, such superscripts are omitted here and ¢ and f are substituted for
k 4+ 1 and k where necessary to avoid confusion. The goal of the setup phase is to
choose the set C' of coarse-grid points and, for each fine-grid point i € F = Q — C,

small set C; C C of interpolating points. Interpolation is then of the form:
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uf if ieC,
(3) (Icfuc)l = Z wijuj if 1€ F.
JjeC;

2.1. Defining Interpolation Weights. To define the interpolation weights
wy;, recall that slow convergence is equivalent to small residuals, Ae = 0. Thus,
we focus on errors satisfying

(4) Aii€; X — Z Aij€;.

J#i

Now, for any a;; that is relatively small, we could substitute e; for e; in (4) and
this approximate relation would still hold. This motivates the definition of the set
of dependencies of a point i, denoted by S;, which consists of the set of points j for
which a;; is large in some sense. Hence, ¢ depends on such j because, to satisfy the ith
equation, the value of u; is affected more by the value of u; than by other variables.
The definition used in AMG is

(5) Si = {j Fi—a; > ar{}igi(_aik)} :

with « typically set to be 0.25. We also define the set SI = {j :i € S;}, that is, the
set of points 7 that depend on point i, and we say that SiT is the set of influences of
point . NOTE: our terminology here differs from the classical use in [29], which refers
to ¢ as being strongly connected to or strongly dependent on j if 7 € S; and which uses
no specific terminology for j € ST.

A basic premise of AMG is that relaxation smoothes the error in the direction of
influence. Hence, we may select C; = S; N C as the set of interpolation points for 7,
and adhere to the following criterion while choosing C' and F":

P3: For each i € F, each j € S; is either in C or S; N C; # 0.
That is, if ¢ is a fine point, then the points influencing ¢ must either be coarse points
or must themselves depend on the coarse points used to interpolate u;. This allows
approximations necessary to define interpolation. For i € F', (4) can be rewritten as:

(6) Aii€; X — Z QikCr — Z Aij€;.

keC; J¢C;

AMG interpolation is defined by making the following approximation in (6):

€; if RS S;
7 Vi ¢Ci, e m{ D ke
k€Ci  Gtherwise.
> ajk
keC;

Substituting this into (6) and solving for e; gives the desired interpolation weights for
point ¢ € F'.
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2.2. Selecting the Coarse Grid. The coarse grid is chosen to satisfy the cri-
terion above, while attempting to control its size. We employ the two-stage process
described in [29], modified slightly to reflect our modified terminology. The grid is
first “colored”, providing a tentative C'/F choice. Essentially, a point with the largest
number of influences (“influence count”) is colored as a C point. The points depend-
ing on this C' point are colored as F' points. Other points influencing these F' points
are more likely to be useful as C points, so their influence count is increased. The
process is repeated until all points are either C' or F' points.

Details of the initial C'/F choice are as follows:

Repeat until U = 0:
Set C =0,F =0,U = QF. Set \; = |ST| (the number of
points depending on the point 7).
Pick an ¢ € U with maximal A;. Set C = C(N{i} and
U=U - {i}.
For all j € S¥' (points depending on {i}) do:
Set F=FU{j} and U =U - {j}.
For all k € S; U set Ay = A + 1 (Increment the
A for points that influence the new F-points).
Forall j € S;iU set A\j = \; —1

Next, a second pass is made, in which some F' points may be recolored as C' points
to ensure that P3 is satisfied. In this pass, each F-point i is examined. The coarse
interpolatory set C; = S;|JC is defined. Then, if ¢ depends on another F-point, j,
the points influencing j are scanned, to see if any of them are in C;. If this is not the
case then j is tentatively converted into a C-point and added to C;. The dependencies
of i are then examined anew. If all F-points depending on i now depend on a point
in C; then j is permanently made a C-point and the algorithm proceeds to the next
F-point and repeats. If, however, the algorithm finds another F-point dependent on
¢ that is not dependent on a point in C; then i itself is made into a C-point and j
returned to the pool of F-points. This procedure is followed to minimize the number
of F-points that are converted into C-points.

We make a brief comment about the computational and storage costs of the
setup phase. Unlike geometric multigrid, these costs cannot be predicted precisely.
Instead, computational cost must be estimated based on the average “stencil size”
over all grids, the average number of interpolation points per F-point, the ratio of the
total number of gridpoints on all grids to the number of points on the fine grid (grid
complexity), and the ratio of the number of nonzero entries in all matrices to that of
the fine-grid matrix (operator complexity). While a detailed analysis is beyond the
scope of this work [29], a good rule of thumb is that the computational effort for the
setup phase is typically equivalent to between four and ten V-cycles.

3. Results for Symmetric Problems. In this section, results for AMG applied
to symmetric scalar problems are presented. Initially, constant-coefficient diffusion
problems in 2D are tested as a baseline for comparison as we begin to introduce
complications, including unstructured meshes, irregular domains, and anisotropic and
discontinuous coefficients. Results for 3D problems follow. All problems are run using
the same AMG solver with fixed parameters. On many problems, it is possible to
improve our results by tuning some of the input parameters (there are many), but
the purpose here is to show AMG’s basic behavior and robustness over a range of
problems.

The primary indicator of the speed of the algorithm is the asymptotic convergence
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factor per cycle. This is determined by applying 20 cycles to the homogeneous prob-
lem, starting with a random initial guess, then measuring the reduction in the norm
of the residual from one cycle to the next (we use the homogeneous problem to avoid
contamination by machine representation). Generally, this ratio starts out very small
for the first few cycles, then increases to some asymptotic value after 5-10 cycles,
when the most slowly converging components become dominant. This asymptotic
value is also a good indicator of the actual error reduction from one cycle to the next.
We use the 2-norm of the residual, although it is easy to show that the asymptotic
convergence factor is just the spectral radius of the AMG V-cycle iteration operator,
and hence is independent of the choice of norm.

The times given are for the setup and a single (1,1) V-cycle. Setup time is what
it takes to choose the coarser grids, define interpolation, and compute the coarse grid
matrices. Cycle time is for one cycle, not the full solution time. Three machines are
used in this study. The majority of the smaller tests are performed on a Pentium
166MHz PC, although some are performed on a Sun Sparc Ultra 1. For the larger
problems that demonstrate scalability, we use a DEC Alpha. For this reason, timings
should be compared only within individual problems. Additionally, timings for the
smallest problems can have a high relative error, so the larger tests should give a
better picture of performance. Grid complexity is defined as ) ny/ni, where ny is
the number of grid points on level k. This gives an idea of how quickly the grids
are reduced in size. For comparison, in standard multigrid, the number of points is
reduced by a factor of 4 in 2D and 8 in 3D, yielding grid complexities of 4/3 and
8/7, respectively. AMG tends to coarsen more slowly. Operator complexity, which is
a better indicator of the work per cycle, is defined as > rgng/rini, where ry is the
average number of non-zero entries per row (or “stencil size”) on level k. Thus, the
operator complexity is the ratio of the total number of nonzero matrix entries on all
levels to those on the finest level. Since relaxation work is proportional to the number
of matrix entries, this gives a good idea of the total amount of work in relaxation
relative to relaxation work on the finest grid, and also of the total storage needed
relative to that required for the fine grid matrix. In geometric multigrid, the grid and
operator complexities are equal, but in AMG, operator complexity is usually higher
since average stencil sizes tend to grow somewhat on coarser levels. Note that the
convergence factors and complexities are entirely independent of the specific machine
on which a test is performed.

In the tests reported here, the focus is on finite element discretizations of

dii(z,y) dia(w,y)

V- (DVu) = f wi doy (z,y) do2(zx,y)

Several different meshes and diffusion coefficients D are used.

3.1. Regular domains, structured and unstructured grids. The first five
problems are 2D Poisson equations, with di; = dys = 1.0 and di» = d>; = 0.0.
Different domains and meshes are used to demonstrate the behavior of AMG with
simple equations.

We begin with the simplest 2D model problem. The success of AMG on the
regular-grid Poisson problem is well-documented [30, 28, 29], so our purpose here is
more to assess its scalability.

ProBLEM 1 This is a simple 5-point Laplacian operator with homogeneous Dirichlet
boundary conditions on the unit square. The experiment is run for uniform meshes
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F1a. 1. Top Left: Convergence factors, as a function of number of mesh points, for Problem 1
the uniform-mesh 5-point Laplacian. Top Right: Log-log plots of setup times (circles) and cycle times
(triangles) for the uniform-mesh 5-point Laplacian. The dotted line, for reference, shows perfectly
linear scaling. Bottom: Operator (circles) and grid (triangle) complexities for the uniform-mesh
5-point Laplacian.

with n x n interior grid points, yielding mesh sizes n? = N = 289, 1089, 2500, 10000,
90000, 250000, and 490000.

Results for Problem 1 are displayed in Figure 1. The convergence factor (per cy-
cle) is very stable at approximately 0.04 for all problem sizes. Both the setup and cycle
time are very nearly linear in N (compare with the dotted line depicting a perfectly
linear hypothetical data set). Here, setup time averages roughly the time of 6 cycles.
As noted before, the operator complexities are higher than the corresponding grid
complexities, but both appear to be unaffected by problem size. These data indicate
that AMG (applied to the uniform-mesh Laplacian) is algorithmically scalable: the
computational work is O(NN) per cycle and the convergence factor is O(1) per cycle.
An important component of our study is to determine to what extent this algorithmic
scalability is retained as we increase problem complexity.
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PROBLEM 2 This is the same equation as Problem 1 (—Au = f), but now discretized
on an unstructured triangular mesh. These meshes are obtained from uniform trian-
gulations by randomly choosing 15-20% of the nodes and “collapsing” them to neigh-
boring nodes, then smoothing the resulting mesh. The resulting operators might be
represented by M-matrices in some cases, but this is not generally the case. We use
meshes with N = 248, 912, 3506, 13755, and 54518. A typical example is shown at
top left in Figure 2.

Results of the experiments are displayed in Figure 2. On the unstructured meshes,
convergence factors tend to show some dependence on mesh size, growing to around
0.35 on the finest grid. It should be noted, however, that these grids tend to be less
structured than many found in practice, and no care was taken to ensure a “good”
mesh; the meshes may have differing characteristics (such as aspect ratios), as there is
a large degree of randomness in their construction. Complexities are also higher with
the unstructured meshes, and the setup time increases correspondingly. The main
point here is that AMG can deal effectively with unstructured meshes without too
much degradation in convergence over the uniform case.

3.2. Irregular domains. We continue to use the Laplacian, but now with irreg-
ular domains. Since our emphasis here is the effects of this irregularity, we restrict our
tests to two representative mesh sizes that give just a snapshot of algorithm scalability.

PROBLEM 3 The computational domain is an unstructured triangular discretization
of the torus 0.05 < /22 + 2 < 0.5. Two different mesh sizes were used, resulting in
grids with NV = 14700 and 58445. Dirichlet boundary conditions around the hole are
imposed, with Neumann conditions on the outer boundary.

PROBLEM 4 The domain for this problem is shown in Figure 3. The boundary con-
ditions are Neumann except that a Dirichlet condition is imposed around the small
hole on the right. The meshes are uniform, with h = 1/128 and 1/256, resulting in
meshes with NV = 11419 and 44227, respectively. The domain does not easily admit
much coarser meshes.

PRrROBLEM 5 The domain for this problem is shown on the bottom in Figure 3. Dirich-
let conditions are imposed on the exterior boundary, and Neumann conditions are on
the interior boundaries. A triangular unstructured mesh is used.

Results for Problems 3-5 are given in Table 1. Among these problems, Problem 3
has the simplest domain, but the least structured mesh and the slowest convergence.
This indicates that domain configuration generally has little effect on AMG behavior,
while the structure (and perhaps the quality) of the mesh is more important.

Table 1. Results for Problems 3-5.
Poisson problem on unstructured meshes, irregular domains
Convergence | Setup time | Cycle time Grid Operator
Problem N factor/cycle (sec) (sec) complexity | complexity
3 14700 0.232 2.530 0.370 1.840 3.100
3 58445 0.276 10.710 1.450 1.820 3.110
4 11419 0.134 0.990 0.160 1.690 2.230
4 44227 0.162 3.840 0.660 1.680 2.230
5 7971 0.122 1.370 0.170 1.720 2.500
5 30320 0.108 4.720 0.550 1.710 2.460
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Fia. 2. Top Left: A typical unstructured grid for Problem 2, obtained by randomly deleting
15% of the nodes in a regular grid and smoothing the result. Top Right: Convergence factors, as
a function of number of mesh points, for the unstructured-mesh 5-point Laplacian. Bottom Left:
Log-log plots of setup times (circles) and cycle times (triangles) for the unstructured-grid 5-point
Laplacian. The dotted line, for reference, shows perfectly linear scaling. Bottom Right: Operator
(circles) and grid (triangle) complexities for the unstructured-grid 5-point Laplacian.
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F1G. 3. Domain (Top Left) and typical grid (Top Right) for Problem 4. Note that the mesh
size necessary to display the triangulation is too coarse to observe the Dirichlet hole. Finer meshes
are used for the calculations. Bottom: Typical grid for Problem 5.
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3.3. Isotropic diffusion. The next problem set deals with isotropic diffusion:
dy1 = day = d(z,y) and di12 = day = 0. Discontinuous d(z,y) can cause problems for
many solution methods, including standard multigrid methods, although it is possible
to get good results either by aligning the discontinuities along coarse grid lines, or
by using operator-dependent interpolation [1]. In AMG, nothing special is required,
since it is based on operator-dependent interpolation. The problems are categorized
according to the diffusion coefficient used. The unit square is discretized on four
meshes: two structured meshes with NV = 16642 and 66049, and two unstructured
meshes, with N = 13755 and 54518. The diffusion coefficients are defined in terms of
a parameter, ¢, allowed to be either 10 or 1000, as follows:

PROBLEM 6 d(z,y) = 1.0+ c|z — y|.

. <0.
PROBLEM 7 d(z,y) = { i 0 i N 82
1.0 0.125 < max (|Jz — 0.5], |y — 0.5]) < 0.25,

PROBLEM 8 d(z,y) = { ¢ otherwise.

1.0 0.125 < +/(z —0.5)2 + (y — 0.5)2 < 0.25,

PROBLEM 9 d(z,y) = { ¢ otherwise.

Results for these problems are presented in Table 2, which contains observed
convergence factors and operator complexities for the various combinations of grid
size and type, diffusion coefficient function, and discontinuity jump size. The overall
results are fairly predictable. Convergence factors are fairly uniform. On the struc-
tured meshes, they tend to grow slightly with increasing grid size. They are noticeably
larger for unstructured grids, and they appear to grow somewhat with increasing grid
size. (As noted before, comparison among unstructured grids of various sizes must
take into account that their generation involves some randomness, so they may differ
in important ways.) The convergence factor does not seem to depend significantly
on the size of the jump in the diffusion coefficient. In many cases, results were bet-
ter with ¢ = 1000 than with ¢ = 10. Indeed, AMG has been applied successfully
to problems with much larger jumps [28]; see also Problem 17. Note that there are
only minor variations in operator complexity for the different problems and different
grid sizes. The only significant effect on operator complexity appears to be whether
the grid is structured or unstructured, with the latter showing complexity increases
of about 30-40%. It should be noted, however, that even in these cases, the entire
operator hierarchy can be stored in just over three times the storage required for the
fine-grid alone.
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Table 2. Results for Problems 6-9.
Poisson problem, variable and discontinuous coefficients

Uniform mesh size Unstructured mesh size
Problem 16642 66049 13755 54518
c conv. | cmplxty | conv. | cmplxty | conv. | cmplxty | conv. | cmplxty

10 0.063 2.2 0.095 2.2 0.290 3.35 0.307 3.39
1000 | 0.097 2.21 0.180 2.2 0.264 3.32 0.369 3.36
10 0.111 2.25 0.126 2.23 0.266 3.29 0.287 3.38
1000 | 0.123 2.25 0.144 2.23 0.254 3.28 0.250 3.37
10 0.138 2.32 0.159 2.27 0.303 3.28 0.320 3.37
1000 | 0.220 2.30 0.188 2.26 0.286 3.32 0.336 3.38
10 0.165 2.33 0.179 2.28 0.280 3.32 0.311 3.38
1000 | 0.171 2.35 0.168 2.30 0.234 3.31 0.298 3.40

© © 00w~ o oFk

Problems 10-13 are designed to examine the case in which the diffusion coefficient
is discontinuous and to determine whether the “scale” of the discontinuous regions
affects performance. Accordingly, Problems 10-12 use a “checkerboard” pattern:

ce o e ) i +1 g j+1
11fz+ylsevenand3§a:<l—, l§y<J—,
n n n
d(z,y) = . o1 -
cifi+jisoddand1§a:<z—, l§y<]—,
n n 'n n

where 7,5 = 0,1,...,n. Specifically,
PROBLEM 10 n = 2.
ProOBLEM 11 n = 10.

PROBLEM 12 n = 50.

For the last problem of this group, we have

PROBLEM 13 d(z,y) = random(z,y).

Results for Problems 10-13 are displayed in Table 3. The overall trend is similar
to the results for Problems 6-9, showing convergence factors that grow slightly with
problem size and that are noticeably larger for unstructured grids.

Table 3. Results for Problems 10-13.
Poisson problem, variable and discontinuous coefficients

Uniform mesh size Unstructured mesh size
Problem 16642 66049 13755 54518
# c conv. | cmplxty | conv. | cmplxty | conv. | cmplxty | conv. | cmplxty

10 10 0.120 2.28 0.135 2.25 0.266 3.29 0.283 3.37
10 | 1000 | 0.110 2.28 0.119 2.24 0.252 3.28 0.290 3.37
11 10 0.225 2.74 0.275 2.56 0.295 3.25 0.328 3.34
11 | 1000 | 0.230 2.76 0.274 2.57 0.263 3.21 0.321 3.32
12 10 0.255 2.83 0.289 2.98 0.302 2.81 0.336 3.11
12 | 1000 | 0.238 2.67 0.283 2.98 0.263 2.66 0.403 3.01
13 10 0.199 2.86 0.290 2.94 0.272 3.23 0.324 3.31
13 | 1000 | 0.255 2.97 0.287 3.04 0.288 3.04 0.319 3.12
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The best results for the isotropic diffusion problems are obtained for Problem 6,
where the coefficient is continuous. The worst convergence factor is obtained for the
50 x 50 “checkerboard” pattern of Problem 12. Note that AMG performs well on
Problem 8, where “smooth” functions are approximately constant in the center of the
region, zero in the high-diffusion zone near the boundary, and smoothly varying in be-
tween. Good interpolation in the low-diffusion band is essential to good convergence.
Overall, AMG appears to work quite well with discontinuous diffusion coefficients,
even when they vary randomly by a large factor from point to point, as in Problem
13.

3.4. Anisotropic diffusion. The next series of problems deals with anisotropic
diffusion, which can arise in several ways. Anisotropy can be introduced by the mesh
being refined differently in each directions, perhaps to resolve a boundary layer or
some other local phenomenon. Another case is a tensor product grid used in order to
refine some area [zo, 1] X [yo,y1] , with the mesh size small for x € [z, 1] and for y €
[0, 1], but large elsewhere. This maintains a logically rectangular mesh, but causes
anisotropic discretizations in different parts of the domain. This is relatively easy to
deal with in geometric multigrid, where line relaxation and/or semi-coarsening can
be used [9]. Non-aligned anisotropy, which is more difficult to handle with standard
multigrid, arises from the operator itself, such as the case of the full potential operator
in transonic flows. The performance of AMG on grid-induced (aligned) anisotropy
has been reported previously [29], so we instead focus here on non-aligned anisotropy.
Both types of anisotropy can be written in terms of the diffusion equation using the
coefficient matrix:

1 0 cos? 6 —cosfsiné
D(m’y)—[o 1}_(1_ )[—cosﬁsirﬂ sin” @

When 6 is constant, this gives the operator e0¢¢ + 0y, where £ is in the direction §. On
a rectangular grid with mesh sizes h, and h,, the usual Poisson equation corresponds
to the diffusion equation with # =0 and € = h; /h3.

PRrROBLEM 14 This problem features a non-aligned anisotropic operator on the unit
square, with Dirichlet boundary conditions at y = 0 and y = 1 and Neumann condi-
tions on the other two sides. The cases € = 0.1 and € = 0.001 were both examined
with § = 0,7/6,7/5, and /4. Each such combination is discretized on a uniform
square mesh (with bilinear elements) and both uniform and unstructured triangular
meshes (with linear elements). The uniform meshes have N = 16642 and 66049, while
the unstructured meshes have N = 13755 and 54518.

Convergence factors for Problem 14, as shown in Figure 4, generally degrade with
increasing 6. This is to be expected, as it indicates lessened alignment of anisotropy
with the grid directions. The strong anisotropy case yields convergence factors as
high as 0.745. As noted above, the non-aligned case is very difficult, even for stan-
dard multigrid, and is the subject of ongoing study. One encouraging result is that
the unstructured grid formulations are relatively insensitive to grid anisotropy, with
convergence factors that hover between 0.3 and 0.5 in all cases except § = 0. Overall,
these results indicate that AMG is rather robust for anisotropic problems, although
convergence factors are somewhat higher than those typically obtained with AMG on
isotropic problems.
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Fic. 4. Convergence factors, plotted as a function of anisotropy direction 0. Left: Moderate
anisotropy, € = 0.01 Right: Strong anisotropy, e = 0.001. In each plot, the solid lines are the
uniform meshes with square discretizations, the dotted lines are uniform meshes with triangular
discretizations, and the dashed lines are the unstructured triangulations. In each case, the larger
grid size is indicated by a symbol (“o”, “+7”, or “”).

PRrROBLEM 15 We use the operator of Problem 4, V - (DVu), but with

1 [ex>+y? —uxy
D(.’I},y) - T'_2 - 1.2 +€y2 )
r?2 = 22 + 9%, and € = 100. This yields a discretization such that, on any circle

centered at the origin, there are dependencies in the tangential direction, but none in
the radial direction.

This problem is very difficult to solve by conventional methods. Using the same
meshes as in Problem 14, AMG produced the convergence factors given in Table 4.

Table 4. Results for Problem 15: Circular diffusion coefficient
uniform mesh (square) | uniform mesh (triangular) unstructured mesh
N =16642 | N =66049 | N =16641 | N =66049 | N =13755 | N = 54518
0.619 0.534 0.764 0.674 0.845 0.840

The convergence factors illustrate the difficulty with this problem, which cannot be
handled easily by geometric methods, even on regular meshes. A polar-coordinate
mesh would allow block relaxation over strongly coupled points, but would suffer from
the difficulties of polar-coordinate grids (e.g., singularity at the origin) and would be
useless for more general anisotropies. While convergence of AMG here is much slower
than what we normally associate with multigrid methods, this example shows that
AMG can be useful even for extremely difficult problems.

3.5. 3D problems. Turning our attention to three dimensions, we do not expect
special difficulties here, since AMG is based on the algebraic relationships between
the variables.
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PrOBLEM 16 This is a 3D Poisson problem on the unit cube. Discretization is by
trilinear finite elements on a rectangular mesh. Dirichlet boundary conditions are
imposed at y = 0 and y = 1, and Neumann conditions are imposed at the other
boundaries. Mesh line spacing and the number of mesh intervals were both varied
to produce several grids with different spacings and extents in the three coordinate
directions. The various combinations of mesh sizes used, convergence factors, and
operator complexities are shown in Table 5.

Table 5. Results for Problem 16.
3D Poisson problem, regular rectangular mesh
Convergence Operator
N, ha Ny hy N, h. N factor/cycle | Complexity
10 | 1/10 | 10 | 1/10 | 10 1/10 1089 0.050 4.10
20 | 1/20 | 20 | 1/20 | 20 1/20 8379 0.064 5.21
25 | 1/25 | 25 | 1/25 | 25 1/25 16224 0.068 5.26
20 | 1/20 | 20 | 1/20 | 20 | 1/200 8379 0.315 1.75
20 | 1/20 | 20 | 1/200 | 20 | 1/200 8379 0.151 1.28
20 | 1/200 | 20 | 1/20 | 20 | 1/200 8379 0.171 1.31
20 | 1/200 | 20 | 1/20 | 20 | 1/2000 | 8379 0.324 1.75

PrROBLEM 17 This is a 3D unstructured mesh problem, generated by a code used at
Lawrence Livermore National Laboratory, for the diffusion problem V- (a(Z)Vu(%)) =
g(Z). The domain is a segment of a sphere, from r = 0.02 to r = 0.1, § = 0 to 7/2,
and ¢ = w/4 to w/2. The coefficient a(Z) is a large constant for r < 0.05 and a small
constant for » > 0.05, with a step discontinuity of 1.0 x 1026, The boundaries r = 0.02
and r = 0.01 are Dirichlet, while the boundaries ¢ = 7/4 and ¢ = /2 are surfaces of
symmetry. Discretization is by finite elements using hexahedral elements.

Figure 5 shows the locations of the nodes at the element corners for one of the prob-
lems. Three problem sizes are given, with N = 500, 4000, and 8000. Convergence
factors and operator complexities for these problems are given in Table 6.

Table 6. Results for Problem 17.
3D unstructured diffusion problem
Convergence Operator
N factor/cycle | complexity
500 0.070 1.99
4000 0.165 2.49
8000 0.166 2.84

AMG apparently works quite well for 3D problems, including those with discon-
tinuous coefficients. The convergence factors are good in all cases. Complexity varies
significantly, with the highest values for the uniform grids, but decreasing markedly
with increasing grid anisotropy. This may be taken as further evidence that AMG
automatically takes advantage of directions of influence.

Overall, AMG performed well on this suite of symmetric scalar test problems.
Many of these problems are designed to be very difficult, often unrealistically so,
especially those with the circular anisotropic diffusion pattern and the random diffu-
sion coefficients. Recall that the same AMG algorithm, with no parameter tuning,
was used in all cases. There are a number of tools for increasing the efficiency of
AMG, especially on symmetric problems, that have proved useful in many cases. One
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Fi1c. 5. Nodes at element corners, 3D diffusion problem. Top Left: View of all the node
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is the so-called V* cycle [30], in which the coarse-grid corrections are multiplied by
an optimal parameter, determined by minimizing the A-norm of the corrected error.
Another, which has been successful in applying AMG to Maxwell’s equations [27], is
to use an outer conjugate gradient iteration, with AMG cycling as a preconditioner.
Often, when AMG fails to perform well, the problem lies in a small number of com-
ponents that are not reduced efficiently by relaxation or coarse-grid correction, and
conjugate gradients can be very efficient in such cases. Other methods for improving
efficiency include the F'—cycle [7, 31] and the full multigrid (FMG) method, whose
applicability to AMG is the subject for future research.

4. AMG applied to Nonsymmetric Scalar Problems. Although much of
the motivation and theory for AMG is based on symmetry of the matrix, this is not
at all a requirement for good convergence behavior. Mildly nonsymmetric problems
behave essentially like their symmetric counterparts. Such cases arise when a nonsym-
metric discretization of a symmetric problem is used or when the original problem is
predominantly elliptic. An important requirement for current versions of AMG is that
point Gauss-Seidel relaxation converge, however slowly. Thus, central differencing of
first-order terms, when they dominate, cannot be used because of severe loss of diag-
onal dominance. Even in these cases, successful versions of AMG can be developed
using Kaczmarz relaxation [9]. Nevertheless, we restrict ourselves here to upstream
differencing so that we can retain our use of Gauss-Seidel relaxation.

PRrROBLEM 18 This is a convection-diffusion problem of the form
eAu + cosfu, + sinfu, = f,

with Dirichlet boundary conditions. Triangular meshes are used, both structured
(N = 16642 and 66049) and unstructured (N = 13755 and 54518). The diffusion term
is discretized by finite elements. The convection term is discretized using upstream
differencing, that is, the integral of the convection term is computed over the triangle
and added to the equation corresponding to the node with the largest coefficient (the
node “most upstream”). Note that this can result in a matrix that has off-diagonal
entries of both signs. Two choices for € are employed: € = 0.1 and € = 0.0001. Tests
are conducted with § = k7 /8 for k =0,1,...,15.

Results are presented in Figure 6. The curves in the top left graph are for e = 0.1; the
structured grid results are displayed with solid lines, and the unstructured-grid results
are displayed with dashed lines. For each pair of curves, the curve with the marker (“0”
or “x”) indicates the mesh with larger N. The convection-dominated case € = 0.0001
is shown at the top right (structured grids) and on the bottom (unstructured grids).
In each case, the smaller N is shown with solid lines and the larger N with dashed
lines. Note that convergence is generally good and fairly uniform, particularly for the
unstructured cases. Results on the smaller uniform mesh are especially good when the
flow is aligned with the directions § = 0,7/4, or w/2. This is due to the triangulation:
to obtain the uniform mesh, the domain is partitioned into squares, and then each
square is split into two triangles, with the diagonal going from the lower left to the
upper right; the “good” directions are aligned with the edges of the triangles. This
also has an effect on the quality of the discretization, and on convergence, when the
flow is in the direction 37/4 and 77 /4. Here, the discretization used for the convection
term causes a rather severe loss of positivity in the off-diagonals. This is more the
fault of the discretization than AMG. For # = 117/8 with the smaller uniform mesh,
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Fi1a. 6. Convergence factors, plotted as a function of direction, 0, for the nonsymmetric prob-
lem. Top Left: Weaker convection case, ¢ = 0.1 The solid lines are the uniform meshes, and the
dashed lines are the unstructured triangulations. In each case the larger grid size is indicated by
the placement of a symbol (“o” or “”). Top Right: Convection-dominated case, ¢ = 0.0001, struc-
tured grid. The solid line is the smaller N, the larger N is indicated by the dashed line. Bottom:
Convection-dominated case, € = 0.0001, unstructured grid. The solid line is the smaller N, the

larger N is indicated by the dashed line.
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AMG was unable to handle the discretization produced and failed in the setup phase.
Often in multigrid applications, problems in convergence indicate problems with the
discretization, as is the case here. Note that for unstructured grids where flow cannot
align with (or against) the grid, convergence is generally more uniform. An interesting
point is that, in many cases, a smaller diffusion coefficient reduces the convergence
factor. This is particularly striking with the unstructured meshes. Finally, note that
there is generally not much difference between results for 6 and for 6 + 7, so there
is no benefit from accidental alignment of relaxation with the flow direction, and,
conversely, there is no slowing of convergence due to upstream relaxation. This is
due to the C/F ordering of relaxation. These tests show that AMG can be applied
to nonsymmetric problems. While the convergence factors in this test are generally
less than 0.2-0.25, which is certainly acceptable, some concern may be raised about
the scalability issue, since the convergence factors for the larger unstructured mesh
are noticeably greater than those for the smaller unstructured grids. It remains to be
determined if the convergence factors continue to grow with increasing problem size,
or if they reach an asymptotic limit.

5. AMG for Systems of Equations. The extension of AMG to “systems”
problems, where more than one function is being approximated, is not straightforward.
Many different approaches can be formulated. Consider a problem with two unknown
functions of the form

A B u f

® ool lv]=1e]
The scalar algorithm could work in special circumstances (for example, if B and C are
relatively small in some sense), but, generally, the scalar ideas of smoothness break
down. One approach would be to iterate in a block fashion on the two equations,
with two separate applications of AMG, one using A as the matrix (solving for u,
holding v fixed) and one using B (solving for v, holding u fixed), and repeating until
convergence. This is often very slow. An alternative is to use this block iteration as
a preconditioner in an outer conjugate gradient solution process.

Another fairly simple alternative is to couple the block iteration process on all
levels, that is, to coarsen separately for each function, obtaining two interpolation
operators I, and I, then define a full interpolation operator of the form

I, O
o [h 0]
The Galerkin approach can then be used to construct the coarse grid operator,

1T AI, ITBI,
(10) [ rcr, I'DI, ] '

Once the setup process is completed, multigrid cycles are performed as usual. We will
call this the function approach since it treats each function separately in determining
coarsening and interpolation. When u and v are defined on the same grid, it is
also possible to couple the coarse-grid choices for both, allowing for nodal relaxation,
where both unknowns are updated simultaneously at a point. Following are results
for the function approach applied to several problems in 2D and 3D elasticity.
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PrOBLEM 19 This problem is plane-stress elasticity:

1—-v 1+v
Ugy + —2 Uyy + 5 Uy = fl:
1+v 1—-v
2 Ugy + D) VUgg + Uyy = f27

where u and v are displacements in the 2 and y directions, respectively. This can
be a difficult problem for standard multigrid methods, especially when the domain is
long and thin. The problem is discretized on a rectangular grid using bilinear finite
elements, and several different problem sizes and domain configurations are used.

ProBLEM 20 This problem is 3D elasticity:

1—v 1+v
Uxx+T(Uyy+uzz)+T(Umy+wxz) = fi,
1-v 1+v
Uyy+T(me+Uzz)+ 2 (Uacy+wy2) = fa
1—v 14+v
Wy, + (wxw+wyy)+T(umz+vyz) = f37

where u, v, and w are displacements in the three coordinate directions. The problem
is discretized on a 3D rectangular grid using trilinear finite elements. Several different
problem sizes and domain configurations are used.

In all tests, we take v = 0.3. The function approach with (1,1) V-cycles is used in
all tests. Results for Problem 19 are contained in Table 7, and for Problem 20 in Table
8. Note that complexities are stable in 2D, with some dependence on problem size
in 3D. Convergence depends fairly heavily on the number of fixed boundaries in both
2D and 3D, with convergence degrading as the number of free boundaries increases.

Table 7. Results for 2D elasticity, Problem 19
# of fixed | Convergence | Operator

h n boundaries factor complexity
1/32 | 1056 1 0.398 2.00
1/32 | 1023 2 0.253 1.91
1/32 | 961 4 0.202 1.85
1/64 | 4160 1 0.657 1.95
1/64 | 4095 2 0.292 1.91
1/64 | 3969 4 0.204 1.92

Table 8. Results for 3D elasticity, Problem 20
# of fixed | Convergence | Operator

h n boundaries factor complexity
1/8 648 1 0.631 2.29
1/8 567 2 0.309 2.43
1/8 441 4 0.124 2.11
1/8 343 6 0.052 2.20
1/12 | 1859 2 0.326 2.76
1/12 | 1573 4 0.137 2.56
1/12 | 1331 6 0.084 2.94
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6. Iterative Interpolation Weights. Occasionally, we encounter situations
where convergence of AMG is poor, yet no specific reason is apparent. Our experience
leads us to believe that the fundamental problem, in many cases, stems from the
limitation of the matrix entry aj; to reflect the true ”smoothness” between e; and
er. Often the true influences between variables are not clear. One case where this
limitation is quite evident is where finite elements with extreme aspect ratios are
used, especially in cases of extreme grid anisotropy or of thin-body elasticity. As a
simple example, consider the 2D nine-point negative Laplacian based on quadrilateral
elements that are stretched in the z-direction. The stencil changes as follows:

1 -1 -1 -1 -1 -4 -1
(11) 3 -1 8 -1 = 3 2 8 2|, aa — — o0.
-1 -1 -1 -1 -4 -1

The limiting case is no longer an M-matrix. Indeed, even moderate aspect ratios
(e.g., Az = 10Ay) have off-diagonal entries of both signs. It is not immediately clear
how the neighbors to the east and west of the central point should be treated. Do
they influence the central point? Should they be in S;? Even if they are not treated
as influences, similar questions arise about how the corner points relate to the central
point. Geometric intuition indicates they are decoupled from the center, and should
not be treated as influences. Yet, for the most common choice of « in (5), AMG treats
them as influences. Another difficulty arises when two F' points ¢ and j influence each
other. Then e; must be approximated in the second sum on the right side of (6) to
determine the weights for ¢, while e; must be approximated, in (6) but with the roles
of i and j reversed, to determine the weights for j. However, since both e; and e; are
to be interpolated (being F-point values), it makes sense to use the interpolations to
obtain these approximations, that is, the approximations for e; and e; in (6) should
be

Z Wjke E Wik Ck

keC; kel
R and e; &

ej~7 N Y=,
E Wik E Wik,

keC; kECj

(12)

respectively. Note that the approximations for any points in C' are unchanged in these
equations.

This gives an implicit system for the interpolation weights, which is solved by
an iterative scheme with the initial approximation w;; = a;;. The new interpolation
weights are then calculated in a Gauss-Seidel-like manner, using the most recently
computed weights to make the approximations in (12). Two sweeps are generally
sufficient. An important addition to the process is that, after the first sweep, the
interpolation sets are modified by removing from C; any point for which a negative
interpolation weight is computed. The second sweep is then used to compute the final
interpolation weights.

We present results of two experiments illustrating the effectiveness, on certain
types of problems, of using this iterative weight definition scheme. Other examples
may be found in [24].

PrROBLEM 21 This operator is the “stretched quadrilateral” Laplacian mentioned
above, discretized on an N = n x n grid, for N = 400, 900, 1225, and 10000. The
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stretching factor € represents the ratio of the z-dimension to the y-dimension of the
quadrilateral. Values used are e = 10, 25, 50, and 100. In each case, the convergence
factor is computed for the choices @ = 0.25 and a = 0.5. In the latter case, the corner
points are not treated as influences, and AMG selects a semi-coarsened coarse grid,
which is the method geometric multigrid would take.

Table 9. Results for problem 21, Ax = Ay
Convergence Factor
standard weights iterative weights
€ N a=02 | a=056|a=025 | a=0.5

10 900 0.45 0.23 0.13 0.13
10 | 10000 0.47 0.24 0.14 0.14
25 400 0.14 0.14 0.14 0.14
50 | 1225 0.25 0.14 0.15 0.14
100 900 0.83 0.53 0.82 0.23
100 | 10000 0.93 0.55 0.93 0.28

Results are displayed in Table 9. On the smallest problem, iterative weights have
no effect. However, the convergence rate on that problem is quite good, even for
standard weights. For moderate stretching (e < 100), the effect of iterative weighting
is to correct for misidentified influence (i.e., improvement for @ = 0.25) and to improve
the results even for correctly identified influence (o = 0.5). For extreme stretching,
only the latter effect applies.

PROBLEM 22 Here we use the unstructured 3D diffusion operator from Problem 17,
whose grid is displayed in Figure 5. Problem sizes are N = 500, 4000, and 8000. The
problem includes a very large jump discontinuity, O(10%°), in the diffusion coefficients.

Table 10. Results for problem 22
Convergence Factor
standard weights iterative weights
N|a=02 | a=05|a=025 | «a=05
500 0.24 0.16 0.24 0.11
4000 0.71 0.42 0.17 0.17
8000 0.69 0.46 0.17 0.26

Results are displayed in Table 10. Again we see that, on the smallest problem, iterative
weights have no effect, but that convergence there is fairly good anyway, even for
standard weights. On the two larger problems, iterative weights produce significant
improvement for both choices of a. Apparently, iterative weighting is countering the
effects of both poor element aspect ratios near the boundaries and jump discontinuities
in identifying influences among variables.

On these problems, and similar problems characterized by coefficient discontinu-
ities and/or extreme aspect ratios in the elements, iterative weight definition proves
to be quite effective. However, iterative weighting is not always effective at improv-
ing slow AMG convergence, and in a few cases it can actually cause very minor
degradation in performance [24]. We study a new approach in [13], called element
interpolation (AMGe), which has the promise of overcoming the difficulties associated
with poor aspect ratios, misidentified influences, and thin-body elasticity, provided
the individual element stiffness matrices are available.
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7. Conclusions. The need for fast solvers for many types of problems, especially
those discretized on unstructured meshes, is a clear indication that there is a market
for software with the capabilities that AMG offers. Our study here demonstrates the
robustness of AMG as a solver over a wide range of problems. Our tests indicate
that it can be further extended, and that robust, efficient codes can be developed
for problems that are very difficult to solve by other techniques. AMG is also shown
to have good scalability on model problems. This scalability does tend to degrade
somewhat with increasing problem complexity, but the convergence factors remain
tractable even in the worst of these situations.

REFERENCES

[1] R. E. ALCOUFFE, A. BRANDT, J. E. DENDY, AND J. W. PAINTER, The multi—grid methods for
the diffusion equation with strongly discontinuous coefficients, STAM J. Sci. Stat. Comput.,
2 (1981), pp. 430-454.

[2] O. AXELSSON, Stabilization of algebraic multilevel iteration; additive methods, in AMLI'96:
Proceedings of the Conference on Algebraic Multilevel Iteration Methods with Applica-
tions, vol. 1, Nijmegan, The Netherlands, 1996, University of Nijmegan, pp. 49-62.

[3] O. AXELSSON AND M. NEYTCHEVA, The algebraic multilevel iteration methods - theory and
applications, in Proceedings of the Second International Colloquium in Numerical Analysis,
August 14-18, 1993, Plovdiv, Bulgaria, 1993, pp. 13-23.

[4] Z.-Z. BA1, A class of hybrid algebraic multilevel preconditioning methods, Appl. Numer. Math.,
19 (1996), pp. 389-399.

[5] Z.-Z. BA1 AND O. AXELSSON, A wunified framework for the construction of various algebraic
multilevel preconditioning methods, in AMLI’96: Proceedings of the Conference on Alge-
braic Multilevel Iteration Methods with Applications, vol. 1, Nijmegan, The Netherlands,
1996, University of Nijmegan, pp. 63-76.

[6] D. BrAESS, Towards algebraic multigrid for elliptic problems of second order, Computing, 55
(1995), pp. 379-393.

[7] A.BRANDT, Guide to multigrid development, in Multigrid Methods, W. Hackbusch and U. Trot-
tenberg, eds., vol. 960 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1982,
pp. 220-312.

[8] A. BRANDT, Algebraic multigrid theory: The symmetric case, in Preliminary Proceedings for
the International Multigrid Conference, Copper Mountain, Colorado, April 1983.

[9] A. BRANDT, Multigrid techniques: 1984 guide with applications to fluid dynamics, GMD—
Studien Nr. 85, Gesellschaft fiir Mathematik und Datenverarbeitung, St. Augustin, 1984.

, Algebraic multigrid theory: The symmetric case, Appl. Math. Comput., 19 (1986),
pp- 23-56.

[11] A. BRANDT, S. F. McCoORMICK, AND J. W. RUGE, Algebraic multigrid (AMG) for automatic
multigrid solutions with application to geodetic computations. Report, Inst. for Computa-
tional Studies, Fort Collins, Colo., October 1982.

, Algebraic multigrid (AMG) for sparse matriz equations, in Sparsity and Its Applica-
tions, D. J. Evans, ed., Cambridge University Press, Cambridge, 1984.

[13] M. BrEzZINA, A. J. CLEARY, R. D. FALGouT, V. E. HENSON, J. E. JoNES, T. A. MANTEUFFEL,
S. F. McCorMICK, AND J. W. RUGE, Algebraic multigrid based on element interpolation
(AMGe). Submitted to the STAM Journal on Scientific Computing special issue on the
Fifth Copper Mountain Conference on Iterative Methods, 1998.

[14] W. DAHMEN AND L. ELSNER, Algebraic multigrid methods and the Schur complement, in Robust
Multi—Grid Methods, W. Hackbusch, ed., vol. 23 of Notes on Numerical Fluid Mechanics,
Braunschweig, 1989, Vieweg, pp. 58—68.

[15] J. FUHRMAN, Outlines of a modular algebraic multilevel method, in AMLI’96: Proceedings
of the Conference on Algebraic Multilevel Iteration Methods with Applications, vol. 1,
Nijmegan, The Netherlands, 1996, University of Nijmegan, pp. 141-152.

[16] G. GoLuBovicI AND C. Popa, Interpolation and related coarsening techniques for the algebraic
multigrid method, in Multigrid Methods IV, Proceedings of the Fourth European Multigrid
Conference, Amsterdam, July 6-9, 1993, vol. 116 of ISNM, Basel, 1994, Birkhduser, pp. 201—
213.

[17] T. GrauscHOPF, M. GRIEBEL, AND H. REGLER, Additive multilevel-preconditioners based on bi-




ALGEBRAIC MULTIGRID 24

linear interpolation, matriz dependent geometric coarsening and algebraic multigrid coars-
ening for second order elliptic pdes, Appl. Numer. Math., 23 (1997), pp. 63-96.

[18] R.HEMPEL AND C. P. THOMPSON, A note on the vectorization of algebraic multigrid algorithms,
Appl. Math. Comput., 26 (1988), pp. 245-256.

[19] R. A. HorN AND C. R. JOHNSON, Matriz Analysis, Cambridge University Press, Cambridge,
England, 1985.

[20] W. Z. HuaNG, Convergence of algebraic multigrid methods for symmetric positive definite
matrices with weak diagonal dominance, Appl. Math. Comput., 46 (1991), pp. 145-164.

[21] Y. A. KuzNETSOv, Algebraic multigrid domain decomposition methods, Sov. J. Numer. Anal.
Math. Modeling, 4 (1989), pp. 361-392.

, Overlapping domain decomposition methods for FE-problems with elliptic singular per-
turbed operators, in Fourth International Symposium on Domain Decomposition Meth-
ods for Partial Differential Equations, R. Glowinski, Y. A. Kuznetsov, G. A. Meurant,
J. Périaux, and O. B. Widlund, eds., Philadelphia, 1991, STAM, pp. 223-241.

[23] S. F. McCoRMICK, Multigrid methods for variational problems: general theory for the V—cycle,
SIAM J. Numer. Anal., 22 (1985), pp. 634-643.

[24] G. N. MIRANDA, Interpolation weights of algebraic multigrid, Master’s thesis, Naval Postgrad-
uate School, Monterey, CA, June 1997.

[25] C. PopA, On smoothing properties of SOR relazation for algebraic multigrid method, Studii si
Cerc. Mat. Ed. Academiei Roméane, 5 (1989), pp. 399-406.

[26] G. ROBINSON, A simple parallel algebraic multigrid, in Occam and the Transputer, IOS Press,
1991, pp. 62-75.

[27] J. W. RuGE, B. LEE, AND S. F. McCORMICK, Multigrid methods for solving the time- harmonic
Mazwell equations with variable material parameters. Final report, Dassault Aviation
project, 1995.

[28] J. W. RUGE AND K. STUBEN, Efficient solution of finite difference and finite element equa-
tions by algebraic multigrid (AMG), in Multigrid Methods for Integral and Differential
Equations, D. J. Paddon and H. Holstein, eds., The Institute of Mathematics and its
Applications Conference Series, Clarendon Press, Oxford, 1985, pp. 169-212.

, Algebraic multigrid (AMG), in Multigrid Methods, S. F. McCormick, ed., vol. 3 of
Frontiers in Applied Mathematics, STAM, Philadelphia, PA, 1987, pp. 73—-130.

[30] K. STUBEN, Algebraic multigrid (AMG): ezperiences and comparisons, Appl. Math. Comput.,
13 (1983), pp. 419-452.

[31] K. STUBEN AND U. TROTTENBERG, Multigrid methods: Fundamental algorithms, model problem
analysis and applications, in Multigrid Methods, W. Hackbusch and U. Trottenberg, eds.,
vol. 960 of Lecture Notes in Mathematics, Berlin, 1982, Springer—Verlag, pp. 1-176.

[32] K. STUBEN, U. TROTTENBERG, AND K. WITSCH, Software development based on multigrid
techniques, in Proc. IFIP—-Conference on PDE Software, Modules, Interfaces and Systems,
B. Enquist and T. Smedsaas, eds., Sweden, 1983, S6derkoping.

[33] P. VANEK, J. MANDEL, AND M. BREZINA, Algebraic multigrid based on smoothed aggregation
for second and fourth order problems, Computing, 56 (1996), pp. 179-196.

[34] P. VANEK, J. MANDEL, AND M. BREZINA, Algebraic multigrid on unstructured meshes.
UCD/CCM Report 34, Center for Computational Mathematics, University of Colorado
at Denver, December 1994. http://www-math.cudenver.edu/ccmreports/rep34.ps.gz.

(29]

[35] , Solving a two-dimensional Helmholtz problem by algebraic multigrid. UCD/CCM Re-
port 110, Center for Computational Mathematics, University of Colorado at Denver, Oc-
tober 1997. http://www-math.cudenver.edu/ccmreports/rep110.ps.gz.

[36] , Convergence of algebraic multigrid based on smoothed aggregation. UCD/CCM Report

126, Center for Computational Mathematics, University of Colorado at Denver, February
1998. http://www-math.cudenver.edu/ccmreports/repl26.ps.gz.

[37] W. L. WaN, T. F. CHAN, AND B. SMITH, An energy-minimizinginterpolation for robust multi-
grid methods. UCLA CAM Report 98-6, Department of Mathematics, UCLA, February
1998.



