
Systematic Reduction of Data Movement in
Algebraic Multigrid Solvers

Hormozd Gahvari∗, William Gropp∗, Kirk E. Jordan†, Martin Schulz‡
and Ulrike Meier Yang‡

∗Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801
†Computational Science Center, IBM TJ Watson Research Center, Cambridge, MA 02142

‡Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 94551

{gahvari,wgropp}@illinois.edu, kjordan@us.ibm.com, {schulzm,umyang}@llnl.gov

Abstract—Algebraic Multigrid (AMG) solvers find wide use in
scientific simulation codes. Their ideal computational complexity
makes them especially attractive for solving large problems
on parallel machines. However, they also involve a substantial
amount of data movement, posing challenges to performance and
scalability. In this paper, we present an algorithm that provides
a systematic means of reducing data movement in AMG. The
algorithm operates by gathering and redistributing the problem
data to reduce the need to move it on the communication-
intensive coarse grid portion of AMG. The data is gathered
in a way that ensures data locality by keeping data movement
confined to specific regions of the machine. Any decision to gather
data is made systematically through the means of a performance
model. This approach results in substantial speedups on a
multicore cluster when using AMG to solve a variety of test
problems.

I. INTRODUCTION

The rising scale of HPC systems not only requires applica-
tions to match the increased level of concurrency available in
the system, but also imposes new constraints and limitations,
in particular in terms of resilience and power consumption.
The latter is directly tied to data movements, which are
responsible for a majority of the power consumed in a system.
To address these challenges and to successfully exploit future
architectures, we therefore need new algorithmic approaches
that specifically target the reduction of data movements and at
the same time offer new avenues for resiliency.

In our work we approach this topic from the algorithmic
side focusing on Algebraic Multigrid (AMG) methods, a class
of solvers for large, sparse linear systems of equations that
finds use in a wide range of scientific applications. AMG has
the ideal property of having a computational complexity that
is linear in the number of unknowns, when it works well,
and has shown excellent weak scaling to the size of current
high-end systems, such as IBM Blue Gene/L [1] and Blue
Gene/P [2]. However, for architectures with wide multicore
nodes, AMG is starting to run into scaling bottlenecks, which
are directly connected to its algorithmic approach. AMG
obtains its optimal computation complexity by using smaller
“coarse grid” problems to accelerate the solution of the origi-
nal “fine grid” problem. Since the number of nonzeros per row
for the matrices on the coarser levels grows, communication

complexity also increases significantly, leading to a large
number of messages. Making things worse, the number of
nodes involved in the communication only decreases slowly, in
particular on systems with wide multicore nodes, since often at
least one core per node still participates at coarser grid levels.
However, the large number of processes at coarser grid levels
can be aggregated and the resulting set of tasks can be either
executed on a subset of nodes (agglomeration approach) or
several copies of this set of tasks redundantly across various
subsets of nodes (redundant approach). If these strategies are
applied at the correct level, the communication requirements
at coarser levels are significantly reduced, and in the extreme
case even eliminated by aggregating the remaining coarser
computation onto single, potentially replicated, processes.

In this paper we focus on the use of redundancy, since it
not only reduces communication requirements, but also offers
potentials for implicit resiliency due to the redundant nature of
the computation at coarser levels. Our algorithm partitions the
problem domain into chunks and distributes these chunks to
subsets of the involved processes. By carefully selecting which
processes get which chunks, communication can be made to
occur only in localized fashion.

One of the critical aspects of this approach is the decision
about the right level to switch to redundant cycling. In
our approach we guide this decision at runtime based on a
performance model of AMG, which we extended to include
redundant cycling. This enables us to automatically tune our
approach to the input set without loss of generality.

In particular, this paper makes the following contributions:

• We explore a new algorithmic approach for AMG that
reduces overall communication using redundant data dis-
tributions,

• We extend an existing performance model to cover re-
dundant data distribution schemes, and

• We use this model to dynamically determine the appro-
priate level for switching to the redundant scheme.

Overall, our algorithm combined with our novel model guided
dynamic level adaptation is up to 3x faster when using AMG
to solve a variety of realistic problem cases.
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Fig. 1. A multigrid V-cycle, with the fundamental operations at a given
level highlighted. A smoother application is followed by the formation of
the residual, which is restricted to the next coarsest grid. Upon receiving the
coarse grid correction, there is then another round of smoothing followed
by interpolation of the result to the next finest grid. c©2012 IEEE. Reprinted,
with permission, from “Performance Modeling of Algebraic Multigrid on Blue
Gene/Q: Lessons Learned” by Gahvari, et. al., in 2012 SC Companion, 2012.

II. ALGEBRAIC MULTIGRID

Multigrid methods are widely used when solving large
equation systems on parallel machines, since they are optimal,
i.e., they can solve a linear system with N unknowns with
O(N) computational work. They achieve this by performing
part of the work that other solvers would perform on the
original “fine grid” problem on smaller “coarse grid” problems
instead. This process is known as coarse grid correction.
After the application of an inexpensive smoother, such as a
Jacobi or Gauss-Seidel iteration on the fine grid, which results
in an approximate solution, that approximation is corrected
on the next coarsest grid. The correction can be obtained
either through direct solution or another round of smoothing
followed by a further recursive coarse grid correction. The
use of multiple grids gives the process the term multigrid; we
consider here its simplest form, the V-cycle, in which the work
proceeds from the finest grid to the coarsest grid and then back
to the finest grid (see Figure 1). We number the grids from
finest to coarsest; if there are L grids, the finest grid is level
0, and the coarsest grid is level L− 1.

The first multigrid methods were geometric in nature, and
were used to solve problems on structured grids. AMG extends
multigrid to cover problems on unstructured grids such as
finite element meshes. All that is required is a linear system
Ax = b. The grid information is inferred from the graph of
A. This requires AMG to operate in two phases. The first is a
setup phase, in which the hierarchy of grids including various
operators is determined. At each level, the grid points that
will remain on the next coarsest grid are selected, followed
by the formation of an operator which restricts the residual on
that level to the next coarsest grid and a prolongation operator,
which interpolates the correction back up from that grid. Here,
as is often the case in practice, the restriction interpolation is
chosen to be the transpose of the interpolation operator. The
solve operator for the next grid is then formed by multiplying
the restriction, the solve and the interpolation operator of
the current level. Once the hierarchy of grids has been set
up, AMG switches to the solve phase. In the solve phase, a

series of multigrid cycles, such as V-cycles, are applied to
the hierarchy of grids generated in the setup phase until the
residual error is below a given threshold. More information
about AMG can be found in [3]; a good overview of multigrid
methods in general is available in [4].

There are a number of implementations of AMG, which
offer access to a wide variety of coarsening and interpolation
schemes for generating the hierarchy of grids and a number
of smoothers for use with the solve phase. In our experiments,
we use the BoomerAMG solver [5] in the hypre software
library [6]. We use HMIS coarsening [7] with extended+i
interpolation [8] truncated to at most 4 elements per row.
For 3D problems, we also use aggressive coarsening with
multipass interpolation [9] on the first level. These schemes
were developed over a number of years to keep the hierarchy
of operators from being overly complex while also maintaining
good numerical convergence. Overly complex operators most
often result in severely degraded parallel performance [7]. For
the smoother, we use hybrid Gauss-Seidel, which is comprised
of Gauss-Seidel iteration between process boundaries and
Jacobi iteration across process boundaries. More information
about parallel smoothers for AMG can be found in [10].

Sparse matrices in BoomerAMG are stored in the ParCSR
matrix data structure. In this data structure, if there are p MPI
processes, the matrix A is partitioned by rows into matrices
Ak, K = 0, . . . , p− 1. Ak is stored locally as two sequential
CSR (compressed sparse row) sparse matrices, Dk and Ok.
Dk contains all entries in Ak whose column indices point to
rows stored on process k. Ok contains the remaining entries,
which have column indices that point to rows stored on other
processes. Computing a matrix-vector product (MatVec) Ax
involves computing Akx = DkxD + OkxO on each process,
where xD is the portion of x stored locally and xO is the
portion of x that needs to be sent by other processes. More
detail is available in [11].

The efficient implementation of multigrid methods on paral-
lel machines has been an area of research for quite some time,
leading to the development of several variants with reduced
data movement. Much of this work is centered around the
basic idea of accumulating and redistributing the problem data
onto a subset of the processes at a particular level of the
multigrid cycle and performing the rest of the cycle on those
processes only. One option to implement such a scheme is to
redundantly distribute the data onto those processors. Then
each one has the same data, meaning that they no longer
have to communicate with each other during the redundantly
treated levels. Gropp [12] found this approach to be beneficial
for geometric multigrid in some cases. A later study of this
approach for AMG [13], which was added to the hypre library
starting with version 2.8.0b [14], found that it could yield
substantial speedups, but also noted that the benefits dimin-
ished at scale. Womble and Young [15] used a more gradual,
bottom-up approach to redundancy in geometric multigrid,
where pairs of communicating processors with few enough
remaining unknowns replicated their data, but did not consider
data locality.



Another variant of the data gathering approach uses plain
agglomeration, i.e., it involves simply concentrating the data
replicated by the redundant approach onto a subset of the
involved processes without replication, performing the rest
of the cycle there, and then redistributing the result to the
originally involved processes. Such an approach has been used
by Nakajima [16] for the coarse grid solve, in Sandia’s ML
smoothed aggregation AMG solver [17] and by Sampath and
Biros [18] for an octree-based geometric multigrid solver to
deal with convergence degradation and/or load imbalance.

Our focus here is on the overall reduction of data move-
ment. While future plans include the investigation of both the
agglomeration and redundant approaches, we focus first on
the redundant variant, due to its potential for data recovery
and improved fault tolerance in AMG. In the next section, we
present our algorithm for reducing data movement in AMG,
which relies on a performance model to decide the amount
and level of data gathering to be performed. This model can
provide the necessary information to find the best tradeoff
between reduced data movement and excess computation.
Additionally, our algorithm is designed to gather data within
specific portions of the machine to improve data locality,
further reducing the amount of data movement.

III. ALGORITHM

Our algorithm takes the basic redundant approach of [12]
and [13], but significantly enhances scalability by distributing
smaller portions of the problem data to each process. Since,
as a consequence, this will not be the entire problem data, the
redundant phase still requires communication, but there will be
far fewer messages to send. To further reduce communication,
the algorithm also allows for the data to be gathered in specific
regions of the machine to improve data locality.

We call our algorithm the chunks algorithm because the
data is gathered into a set of chunks that are distributed to
the involved processes in such a way that communication
only occurs between processes that own different chunks, with
no communication occurring between processes that own the
same chunk, as illustrated in Figure 2 for 4 chunks with
3 processes each. All processes that own the same chunk
have the exact same portion of the problem data. For the
agglomeration approach, each chunk would only consist of
one process. As one of the key contributions, we tie our
algorithm to a performance model that allows the algorithm
to dynamically decide when to switch to redundancy to best
improve performance. The model can also be applied to the
agglomeration approach.

A. Algorithm Details

We implemented the chunks algorithm as an addition to
hypre, to take advantage of the infrastructure already in place
for the basic redundant algorithm. Any decision to switch to
the chunks algorithm is made during the AMG setup phase just
after a coarse grid is formed, before beginning the coarsening
process that forms the next coarsest grid. If a decision is
made to switch, we form two sets of MPI communicators:

Fig. 2. Illustration of chunk data distribution with 4 chunks (blue blocks)
and 12 processes (red, orange, and green shapes). Each chunk is owned by
3 processes depicted as having the same shape. The communication pattern
can be regularized as shown by the arrows, with processes in a color group
communicating only with each other.

collective communicators, which gather data to form chunks,
and point-to-point communicators, to handle communication
between chunks. We create one collective communicator for
each chunk, and one point-to-point communicator for each
cluster, which we define to be a group of processes in different
chunks that will need to exchange data during the solve phase.
Clusters are depicted as groups of processes of the same color
in Figure 2. After the communicators are formed, all processes
within a chunk perform MPI_Allgatherv operations to
acquire the matrix data for their chunk. Then, new parallel
matrices are formed over processes in each cluster. Once this
is complete, each matrix is treated as the finest level operator
for a new coarse solver object, and the parallel AMG setup
routine is called for each of the new matrices. If there is
just one chunk, then it is the basic redundant case. In this
case, the collective communicator is MPI_COMM_WORLD (or
a smaller communicator consisting of just the active processes
if some have dropped out), and there is no point-to-point
communication.

In the solve phase, we perform additional
MPI_Allgatherv operations in the cycle during the
switchover to the redundant phase to split and reorganize
the right hand side and the solution vector into chunks. The
solve cycle is then called on the coarse solver object and
the reorganized right hand side and solution vector. Once
that portion of the cycle is complete, the appropriate pieces
of the result are copied from the chunks solution vector
to the non-chunks solution vector. This step requires no
communication, as the processes in each chunk will already
have all data needed stored locally.

B. Data Placement Strategy

Though the chunks algorithm can be run with any set of
collective and point-to-point communicators that allows for
each process in a chunk to be part of its own cluster of
communicating processes, to maximize the benefits of the
chunks algorithm, we must place data in a way that keeps
communication within well-defined units of the machine, as
this preserves locality. Such considerations are going to be
even more important on future machines, with data movement
becoming more and more expensive relative to computation
in terms of both performance and power. How to best do
this depends on the mapping of processes to nodes in the
machine. Here, we present strategies for how to do this for
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Fig. 3. Assignment of processes to collective and point-to-point communi-
cators for chunks algorithm for the case of 12 processes and 4 chunks with
a block mapping of processes to nodes. Processes with the same color are in
the same collective communicator; processes in the same box are in the same
point-to-point communicator.
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Fig. 4. Assignment of processes to collective and point-to-point communi-
cators for chunks algorithm for the case of 12 processes and 4 chunks with a
cyclic mapping of processes to nodes. Processes with the same color are in
the same collective communicator; processes in the same box are in the same
point-to-point communicator.

the typical default mappings, block and cyclic, of processes
to nodes in a way that ensures that all communication during
the chunks stage takes places within nodes. Assume there are
C chunks that divide the number of processes evenly, and
N = P

C clusters. In each placement strategy, C is taken to be
the number of processes per node. The key is then to have
every chunk represented among the processes that are on the
same node.

1) Block Mapping: If there is a block mapping of tasks to
nodes, we make the process with rank r belong to chunk r
mod C. The processes that will need to combine data are the
sets {r|r mod C = i} for i = 0, . . . , N − 1, which form the
collective communicators. The point-to-point communicators
will then be the groups of processes numbered {0, 1, . . . , C−
1}, {C,C + 1, . . . , 2C − 1}, . . . , {(N − 1)C, (N − 1)C +
1, . . . , NC− 1}. Figure 3 illustrates this for 12 processes and
4 chunks.

2) Cyclic Mapping: If there is a cyclic mapping of tasks
to nodes, the communicators for the block mappings will
be transposed. The collective communicators are numbered
{0, 1, . . . , N − 1}, {N,N + 1, . . . , 2N − 1}, . . . , {(C −
1)N, (C−1)N +1, . . . , CN−1}, and the point-to-point com-
municators are the sets of process ranks {r|r mod N = i}
for i = 0, . . . , C − 1. Figure 4 illustrates this for 12 processes
and 4 chunks.

C. Data Gathering Automation with the Performance Model

We use a performance model of the AMG solve cycle
to automate the decision to switch to the chunks algorithm.
Our model is based on a simple latency-bandwidth model for
communication and then adds a communication distance term
and penalties to take into account multicore issues and limited
bandwidth. It is able to capture the performance of AMG
on a number of different machines and under MPI-only and
hybrid MPI/OpenMP programming models while making use
of machine parameters that can be determined from simple
measurements and/or the topology of the interconnect, with
cycle time prediction accuracies of over 90% in many cases;
the details of how are in our past work on this subject [19]–
[21]. Before describing how we use the model to automate
the decision to switch to the chunks algorithm, we give an

overview of the model when running entirely MPI tasks, one
per core, on the machine, since this is what we ran in our
experiments.

1) Model Overview: Our model of the AMG cycle works
by breaking it down into its fundamental operations. Let T i

solve

be the time spent at level i in the cycle. The breakdown is

T i
solve = T i

smooth + T i
restrict + T i

interp,

where T i
smooth is the time spent smoothing on level i, T i

restrict

is the time spent restricting from level i to level i − 1, and
T i

interp is the time spent interpolating from level i to level i+1.
In a cycle with L levels, the total time spent is

TAMG
solve =

L−1∑
i=0

T i
solve.

We treat the individual steps in terms of the linear alge-
bra operations involved. At each level, the smoothing time
involves one MatVec to form the residual, and two applications
of the smoother. A smoother application is a similar operation
to a MatVec, so we treat it in the same fashion. The restriction
time involves one MatVec with the restriction operator (the
transpose of the interpolation operator in our experiments),
and the interpolation time involves one MatVec with the
interpolation operator. To enable us to derive equations for
these operations, we define the following parameters. For our
baseline communication model, we model the time to send
an n-element message as Tsend = α + nβ, where α is the
communication start-up cost and β is the per-element send
cost. α covers both software overhead and latency involved
in message passing, and β is tied to the available bandwidth.
We then define P to be the number of processes, and ti to be
the time per floating-point operation at level i. The remaining
parameters, which cover the operators, are:

• Ci – number of unknowns on level i
• si, ŝi – average number of nonzero entries per row in the

level i solve and interpolation operators, respectively
• pi, p̂i – maximum number of sends over all processes in

the level i solve and interpolation operators, respectively
• ni, n̂i – maximum number of elements sent over all

processes in the level i solve and interpolation operators,
respectively

We now express the time spent in each step as a function
of α and β to give us our baseline model. The time spent
smoothing at level i is

Tsmooth(α, β) = 6
Ci

P
siti + 3(piα + niβ).

The time spent restricting from level i to level i+1 is given
by

T i
restrict(α, β) =

{
2Ci+1

P ŝiti + p̂iα + n̂iβ if i < L− 1
0 if i = L− 1.

The time spent interpolating from level i to level i − 1 is
given by

T i
interp(α, β) =

{
0 if i = 0
2Ci−1

P ŝi−1ti + p̂i−1α + n̂i−1β if i > 0.



We augment this baseline model with additional terms and
penalties to reflect issues observed on real machines. The
penalties can be “on” or “off” depending on the architecture,
and the best fit to a particular machine will have some
penalties in effect and others not in effect. We first add a
γ term that represents the delay per hop to take into account
messages traveling long distances. This change is reflected in
the baseline model by replacing α with

α(h) = α(hm) + (h− hm)γ,

where h is the number of hops a message travels, and hm is
the smallest possible number of hops a message can travel in
the network. h is assumed to be the diameter of the network
within the job’s partition to account for routing delays. hm is
1 in a torus or mesh network, and 2 in fat-tree networks where
a message has to travel through 1 switch, which involves using
two links.

Another issue is limited bandwidth. Message passing appli-
cations have difficulty achieving the full bandwidth provided
by the hardware in ideal conditions, and this bandwidth is
in turn rarely achieved under non-ideal conditions. Another
source of limited bandwidth is contention from messages
sharing links. We take both of these into account with a penalty
to β. Let Bmax be the peak aggregate per-node bandwidth, and
B be the measured bandwidth corresponding to β, which is
B = 8

β with β the time to send one double-precision floating-
point value. The penalty for being unable to achieve the full
hardware bandwidth is the fraction Bmax

B . To account for link
contention, let m be the number of messages in the network,
and l be the number of links available to the job. The penalty
for this is m

l . The overall penalty is obtained by multiplying
β by the sum of both of these terms: β ←

(
Bmax

B + m
l

)
β.

Multicore nodes introduce two more issues: the possibility
of increased contention between cores when accessing the
interconnect, and increased contention in switches caused by
the extra message load these cores inject into the network. We
model this by multiplying the α(hm) and γ terms by

⌈
cPi

P

⌉
.

Here, c is the number of cores per node, and Pi is the number
of active processes on level i (active processes are processes
that have not dropped out of the computation). The resulting
penalized terms are α←

⌈
cPi

P

⌉
α(hm) and γ ←

⌈
cPi

P

⌉
γ.

2) Making the Decision to Switch to Chunks: When de-
ciding whether or not to switch to chunks at a given level l,
we use the model to predict Tnoswitch, the time spent at this
level if we do not switch, and Tswitch, the time spent if we
switch. If the latter is less, then we switch. We try different
numbers of chunks, testing from the smallest power of two
less than pl down to a minimum number, which is 1 in the
general case and the number of MPI tasks per node if we are
using one of the data placement strategies designed to keep
communication on-node, selecting for Tswitch the number of
chunks that results in the smallest time.

Assuming we get correct values for Tswitch and Tnoswitch,
it is in fact best to switch at the first level at which Tswitch <
Tnoswitch. If we switch at a finer level l̂ < l, then we will
have made a suboptimal decision due to a slowdown at levels

l̂ through l−1 combined with the same improvements on levels
l through L−1 that we would have obtained from the original
switch. If we switch at a coarser level l̃ > l, the decision will
again be suboptimal because switching at level l would give
the same improvements as switching at level l̃ combined with
improvements at levels l through l̃− 1 that switching at level
l̃ would not have obtained.

To determine Tnoswitch, we use the model to predict the
time of five matrix-vector multiplications using the existing
level l solve operator. Three of them represent the opera-
tions normally done with the solve operator, smoothing and
residual formation. The other two represent restriction and
interpolation. We have to approximate these with the solve
operator, as at the stage in the setup where we have to make
the decision, the restriction and interpolation operators have
yet to be formed. The expression for Tnoswitch in terms of the
baseline model is

Tnoswitch(α, β) = 10
Cl

P
sltl + 5(plα + nlβ).

We assume the network parameters required by the model
for making a runtime decision are supplied from machine
measurements. We cannot assume this for the computation
rate, however, as it can vary greatly depending on the size
of the solve operator and the pattern and number of nonzero
entries in it [22]; this is why it was allowed to vary in the
original model. We instead measure it as follows. We perform
10 sequential MatVecs with the Dk matrix from the ParCSR
data structure on each process, and divide the observed time
by the number of flops performed, i.e., 20 times the number
of nonzero entries in Dk. We exclude processes that have no
data and report a time per flop of zero. We take the maximum
reported value over all processes to be tl. However, if the
measured value for tl is greater than that of the one for tl−1,
we set tl = tl−1 and set tk = tl−1 for all levels k > l. This
happens because processes close to running out of data will
exhibit measurements with an abnormally high time per flop
due to measuring primarily overhead instead of flops, while
in reality it decreases with decreasing matrix dimension and
increasing density [22], trends that both hold when progressing
from fine to coarse in AMG.

To determine Tswitch, we use the model to predict the
time of five matrix-vector multiplications with a redistributed
solve operator and two all-gather operations, one to gather the
problem data and one to gather the right-hand side. Let C be
the number of chunks. The all-gather operations are over sets
of P

C processes; we assume they gather the problem data over
a binary tree and then broadcast that data along the same tree.
Counting from the root, each stage of gathering data on the tree
involves sends that are approximately of size Cl

2C , Cl

4C , Cl

8C , . . . .
In accordance with our communication model, we charge the
amount of data sent as Cl

C

(
1

1− 1
2
− 1

)
= Cl

C . The broadcast

step involves sending approximately Cl

C

⌈
log2

P
C

⌉
units of data.

Using the baseline α-β model, the expression for the all-gather



time is

Tallgather(α, β) = 2
⌈
log2

P

C

⌉
α + 2

Cl

C

(
1 +

⌈
log2

P

C

⌉)
β.

For the redistributed operator, every element in the model
for a MatVec is subject to change except for the network
parameters. We divide the number of unknowns and nonzero
entries in the original operator equally among the chunks,
and the amount of data sent per message equally among the
number of communication partners in the nonredistributed
operator. The number of communication partners each process
has in the redistributed operator cannot be known a priori
except in the fully redundant case. We assume this is C − 1,
as this is the maximum number of communication partners a
process could have, unless there are fewer chunks than com-
munication partners. Then, we assume the number of partners
is unchanged from the original operator. To reflect this in the
model, we introduce the modified value p∗l = min{pl, C − 1}
for the maximum number of sends in the redistributed level l
solve operator. The computation rate tl that was measured for
the original operator is not going to be the same either; we let
t∗l be the value for the redistributed operator. Then, in terms
of the baseline model,

Tswitch(α, β) =10
Cl

C
slt

∗
l + 5p∗l

(
α +

nl

pl

)
+ 2Tallgather(α, β).

However, obtaining an actual value for t∗l is impractical,
since we cannot measure the changed rate for the redistributed
operator without first performing the redistribution. We instead
handle it as follows. We first classify the local pre-chunks
MatVec operation as one of the following three categories, a
system explained in more detail in [22]:

• Small: the matrix and the source vector fit in cache
• Medium: the source vector fits in cache, but the matrix

does not
• Large: the source vector does not fit in cache

The time per flop undergoes significant jumps when moving
from a smaller category to a larger one [22]. If this is
caused by data gathering, it will have a dramatic effect on
the resulting performance of the chunks algorithm. Therefore,
when determining the number of chunks, we exclude all values
that cause the local problem classification to increase in size.
For all other values, we assume t∗l = tl for the purposes of
determining Tswitch.

We must reiterate here the importance of having a perfor-
mance model that takes features on modern parallel machines
that make data movement more costly into account. Not ad-
equately penalizing interprocessor communication will result
in too conservative of a decision to switch to chunks due to
on-processor computation being more expensive relative to
communication in the model than it actually is. Not taking
the cache into account will result in too eager of a decision
to switch to chunks because on-processor computation then
becomes too inexpensive relative to interprocessor communi-
cation.

IV. RESULTS

We tested our algorithm on Hera, a multicore Linux cluster
at Lawrence Livermore National Laboratory. Hera consists
of 800 compute nodes, with four quad-core 2.3 GHz AMD
Opteron processors per node and a L2 cache size of 512
KB per core as well as 2MB shared L3 cache per processor.
The nodes are connected by a DDR Infiniband interconnect
organized as a two-level fat-tree. The network parameters
needed for the performance model were measured by mi-
crobenchmarking and/or calculated from the network topology.
All of the penalties added to the baseline model are in effect.
More detail is available in [20].

We used five different test problems to illustrate the applica-
bility of the chunks algorithm to multiple problems. Our suite
consists of three 3D problems on a cubic domain and two 2D
problems on a square domain. For the 3D problems, we used
a problem size of 30× 30× 30 points per core and ran on 64,
512, and 4096 cores. For the 2D problems, we used a problem
size of 150 × 150 points per core, and ran on 64, 256, and
1024 cores.

7pt Laplace: Our first 3D test problem is a 3-dimensional
7-point Laplace problem on a cube.

27pt Stencil: The second test problem is a 3D diffusion
problem with a 27-point stencil on a cube.

Convection-Diffusion: The final 3D problem is a nonsym-
metric problem, derived with finite differences on a regular
grid from the partial differential equation

−uxx − uyy − uzz + c(ux + uy + uz) = 1,

with c = 1.
9pt Laplace: Our first 2D test problem is a Laplace problem

on a regular grid with a 9-point stencil, derived from a finite
element discretization.

Rotated Anisotropy: Our final problem is a 2-dimensional
rotated anisotropy on a uniform square:

−(c2 + εs2)uxx + 2(1− ε)scuxy − (s2 + εc2)uyy = 1,

where c = cos γ, s = sin γ, γ = 60◦ and ε = 0.01.
For each problem, we ran a combination of one AMG setup

and 10 V-cycles ten times, averaging the reported times to
avoid impact caused by noise. We used a cyclic mapping
of MPI tasks per node, and the cyclic collective and point-
to-point communicators for the chunks algorithm, keeping
communication during the chunks stage entirely within nodes.

Table I presents the results for the original algorithm (No
Chunks), the chunks algorithm with the performance model
used to guide when to make the switch, and the speedup
achieved. In all cases, the number of chunks used was 16. We
also determined speedups for the total times from the setup
time plus the number of solve cycles needed when using the
iterative solver GMRES(5) [23] preconditioned with AMG to
solve each problem to a tolerance of 10−6, which are given
in Table II. The specific level at which the switch is made
for each problem is given in Table III. The speedups were
substantial for all 3-dimensional cases, almost always over



TABLE I
RESULTS OF CHUNKS VS. ORIGINAL ALGORITHM FOR EACH TEST PROBLEM.

Problem Setup Times Cycle Times
7pt Laplace 64 Cores 512 Cores 4096 Cores 64 Cores 512 Cores 4096 Cores
No Chunks 1.04 s 4.32 s 10.76 s 50.8 ms 138.4 ms 179.2 ms

Chunks 0.76 s 1.40 s 3.76 s 34.4 ms 67.9 ms 114.7 ms
Speedup 1.37 3.08 2.86 1.48 2.04 1.56

27pt Stencil 64 Cores 512 Cores 4096 Cores 64 Cores 512 Cores 4096 Cores
No Chunks 1.14 s 4.20 s 9.87 s 74.7 ms 149.4 ms 186.7 s

Chunks 0.68 s 1.53 s 3.58 s 48.9 ms 77.7 ms 130.3 ms
Speedup 1.68 2.74 2.76 1.53 1.92 1.43

Convection-Diffusion 64 Cores 512 Cores 4096 Cores 64 Cores 512 Cores 4096 Cores
No Chunks 0.95 s 3.94 s 10.62 s 46.5 ms 119.0 ms 167.9 ms

Chunks 0.79 s 1.69 s 3.58 s 35.8 ms 82.7 ms 96.1 ms
Speedup 1.20 2.33 2.97 1.30 1.44 1.75

9pt Laplace 64 Cores 256 Cores 1024 Cores 64 Cores 256 Cores 1024 Cores
No Chunks 0.47 s 0.98 s 1.35 s 25.9 ms 41.6 ms 46.7 ms

Chunks 0.28 s 0.65 s 0.94 s 22.7 ms 35.6 ms 35.3 ms
Speedup 1.68 1.51 1.44 1.14 1.17 1.32

Rotated Anisotropy 64 Cores 256 Cores 1024 Cores 64 Cores 256 Cores 1024 Cores
No Chunks 0.47 s 0.98 s 1.83 s 38.7 ms 58.0 ms 78.2 ms

Chunks 0.32 s 0.71 s 1.14 s 26.4 ms 40.6 ms 54.7 ms
Speedup 1.47 1.38 1.60 1.46 1.43 1.43

TABLE II
SPEEDUPS FOR TOTAL TIMES ACHIEVED BY CHUNKS COMPARED TO

ORIGINAL ALGORITHM.

3D Problem 64 Cores 512 Cores 4096 Cores
7pt Laplace 1.36 2.74 2.56
27pt Stencil 1.62 2.47 2.40

Convection-Diffusion 1.24 2.04 2.70
2D Problem 64 Cores 256 Cores 1024 Cores
9pt Laplace 1.43 1.28 1.40

Rotated Anisotropy 1.49 1.40 1.55

40%. The setup phase in particular showed great improvement,
with most speedups well over 2x, and much improved weak
scalability. We also saw improvements for the 2-dimensional
cases, which generally have much lower computational and
communication complexities and therefore less potential for
performance improvement.

V. CONCLUSIONS

We have successfully introduced a new algorithm that im-
proves the performance of AMG through the reduction of data
movement. The algorithm uses redundant data distribution to
reduce and regularize the communication pattern of AMG, and
enables communication to take place within well-defined and
localized units of the machine. We have coupled our algorithm
with a performance model that can decide dynamically at
runtime when switching to the new algorithm is beneficial.
In our experiments, we achieved speedups of up to 3x in the
setup phase and 2x in the solve phase.

Current trends in computer architecture forecast an increas-
ing role for our algorithm in preparing AMG for larger-scale
machines. Per-chip and per-node core counts are expected to
increase, with some researchers [24] envisioning a future with
thousands of cores per chip. The chunks algorithm enables
adaptation to this future. As the size of the problems being
solved on larger machines increases, so can the number of
chunks, to keep the problem size per core from being too large,

while still keeping interprocess communication entirely within
chips or nodes. In addition, the algorithm can be extended in
a tree-like fashion by applying the simple chunks algorithm
recursively to each chunk.

There are many avenues for future work. We are interested
in the potential redundancy brings for resiliency and further
algorithmic innovation. We expect to use the extra data to re-
cover more quickly from faults. Furthermore, we will explore
extensions to this approach that enable us to perform different
computations on the duplicated pieces of data in parallel and
then recombine them in a way that accelerates convergence.
This idea was once popular [25], but was later found not
to have enough benefit to overcome the cost of the extra
work [26]. However, with the chunks algorithm able to place
the duplicated pieces in places of the machine where work
on each piece will not interfere with work on other pieces,
we are hoping to see some form of performance gain from
such an approach. Additionally, power is a growing concern
and the reduction in data movement realized by this work is
a significant first step to reducing power requirements. We
will explore this issue further and investigate how to create
a hybrid algorithm between agglomeration and redundancy to
reduce power usage further without a loss in performance or
resilience.

Another interesting topic is the interaction of the chunks
algorithm with changes to the programming model. For sim-
plicity, we considered an MPI-only programming model in
this paper, but hybrid models that combine MPI with other
programming models are becoming increasingly popular, most
notably hybrid MPI/OpenMP for multicore clusters. The use of
such a programming model has shown significant performance
gains as well as increased scalability on several architec-
tures [27], but will not entirely address the performance
challenges it faces on coarse grids, particularly when dealing
with systems at extreme scales. The combination of the chunks
algorithm, which addresses the coarse grid difficulties, and



TABLE III
NUMBER OF LEVELS IN THE AMG HIERARCHY, ALONG WITH LEVEL AT WHICH THE SWITCH TO CHUNKS WAS MADE, FOR EACH PROBLEM AND

PROCESS COUNT. AS A REMINDER, THE LEVELS ARE NUMBERED STARTING FROM 0.

3D Problem 64 Cores 512 Cores 4096 Cores
Num. Levels Switch Level Num. Levels Switch Level Num. Levels Switch Level

7pt Laplace 7 2 8 3 9 4
27pt Stencil 7 1 8 3 8 3

Convection-Diffusion 7 2 8 3 9 4

2D Problem 64 Cores 256 Cores 1024 Cores
Num. Levels Switch Level Num. Levels Switch Level Num. Levels Switch Level

9pt Laplace 9 5 9 6 10 6
Rotated Anisotropy 11 6 11 7 12 7

a hybrid programming model, is therefore very promising.
In summary, the chunks algorithm and the future research
opportunities it opens have significant potential for ensuring
the scalability of AMG to next generation parallel machines.
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