

LAWRENCE

N AT I O N A L

LABORATORY

LIVERMORE

Impacts of Operating Systems on the
Scalability of Parallel Applications

T.R. Jones
L.B. Brenner
J.M. Fier

March 5, 2003

UCRL-MI-202629

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of
their employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of California.
The views and opinions of authors expressed herein do not necessarily state or reflect those of
the United States Government or the University of California, and shall not be used for
advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by University of
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

1

Impacts of Operating Systems on the Scalability
of Parallel Applications

Terry R. Jones
Lawrence Livermore National Laboratory

Larry B. Brenner, Jeffrey M. Fier
IBM

Abstract

We investigated the potential for operating systems to negatively impact scalability and
performance of parallel applications on large cluster machines with fast interconnects.
We identified two types of interference from the operating system. Interference due to
daemon activity can yield larger inefficiencies. The magnitude of the effect of the
interference is determined by the degree of overlap during a parallel run and is
statistical in nature. Our findings suggest that daemon interference can be mitigated by
running applications such that nodes are not fully populated.

1 Introduction
Supercomputing at the beginning of the twenty-first century depends on large parallel
machines having hundreds or even thousands of compute nodes [1]. As computer
architecture trends have dictated that the most powerful machines are massively
parallel, finding the reasons why parallel programs do not scale has become a primary
activity for computer scientists at supercomputer centers.

Many large parallel machines are used for scientific applications that simulate physical
phenomena through parallel algorithms intended to scale up to thousands of processors.
The message-passing paradigm has become the most prevalent way to program these
machines, which have distributed memory spread over hundreds of nodes. The most
popular message-passing interface is MPI [2]. A parallel application that uses MPI
consists of many self-autonomous processes participating as a community to complete a
single complex job. MPI communication and synchronization between remote processes
on different nodes are carried out via a run-time system that hides the details of the
drivers and protocols required to perform communication and synchronization.
Communication is conceptually similar to post-office correspondence (a process sends a
message to a remote process, and the remote process receives the message);
synchronization is conceptually similar to traffic lights (a group of processes enter a
barrier that prevents the processes from entering the next phase until all processes have
completed the current phase of computation).

Applications vary widely in their ratios of computation to communication. Some
applications require very little communication or coordination, relying instead on
simple rules for problem decomposition. In many cases, the rules may be determined
before run time. These “embarrassingly parallel” applications benefit from having less
overhead associated with communication and synchronization, and they typically scale
to the extent that the problem may be subdivided.

2

The execution period between communication or synchronization events for
embarrassingly parallel applications can be quite long; this granularity of work is called
coarse-grain parallelism. When the execution period is relatively short, however, the
application is described as having fine-grain parallelism. Fine-grain parallelism often
makes workload balance easier among the hundreds (or thousands) of participating
CPUs. A balanced workload avoids idling some CPUs while others perform larger
tasks.

The IBM SP machines at Lawrence Livermore National Laboratory (LLNL) are typical
of today’s supercomputers. SP machines at LLNL range up to 8192 CPUs (see Table 1).
IBM SPs are collections of high-performance symmetric multiprocessor (SMP) nodes
with as many as 16 CPUs per node. The machine runs IBM’s AIX operating system,
which, contrary to microkernel approaches such as PUMA [3], is a full-featured
operating system. Every node can communicate via a proprietary high-bandwidth, low-
latency interconnect. [4, 5]

Table 1. Configuration data of several SP machines at LLNL.

Machine Name System Attribute Blue Frost White
Nodes × CPUs per node 280 × 4 68 × 16 512 × 16
CPUs 1120 1088 8192
CPU type PowerPC 604e Power3 Power3
CPU speed (MHz) 332 375 375
Theoretical peak for each CPU (Mflop/s) 664 1500 1500
Memory per node (GB) 1.5 16.0 16.0
Total memory (TB) 0.5 1.1 8.0
Total shared disk space (TB) 16 20 147
Total non-shared (local) disk space (TB) 3 5 —
Interconnect SP Switch SP Switch2 SP Switch2
Peak bidirectional switch bandwidth (per node) 300 MB/s 1 GB/s 1 GB/s
Max 2-CPU bandwidth, US protocol (MB/s) 84 390 390
Max 2-nodes bandwidth, US protocol (MB/s) 84

(1 proc/node)
1070
(10 procs/node)

1070
(10 procs/node)

Measured one-way latency, US protocol (µs) 28 20 20
Measured roundtrip latency, US protocol (µs) — 26 26
Operating system AIX 5.1 AIX 5.1 AIX 5.1

In this paper we describe our investigation of operating system impact on the scalability
of parallel applications. We establish a systematic method for measuring this impact,
conduct a series of measurements using the methodology on very large machines at
several supercomputer centers, and report our findings. Our findings suggest that
operating systems can have a strong influence on the scalability on typical
supercomputers for a broad class of applications. In Section 2, we describe the early
indicators of a scaling problem. In Section 3, we describe our strategy for finding the
root cause of the scaling problem. In Section 4, we present our results. Section 5
presents conclusions and outlines possibilities for future work.

3

2 Early Indications of a Problem
This investigation began as a result of our desire to understand performance variability
encountered on jobs for which little variability was expected [6, 7]. We anticipated little
variability because we run our jobs on dedicated nodes (they are not shared with other
user tasks), the algorithm is deterministic, and the workload is balanced among the
available CPUs.

Figures 1 and 2 show the variability we observed. In Figure 1, where only three of the
four available CPUs per node were used by the application, performance variation in
wall-clock time is small, indicated by the close groupings of time-to-completion versus
CPU count curves.

Figure 1. IBM SP run results showing little variability with three processes per node on a
four-CPU-per-node system.

As shown in Figure 2, however, when four MPI processes are active on a four-CPU
node, the variability in wall-clock time increases by over an order of magnitude. Several
factors are at play. The three-process-per-node jobs would probably benefit from having
a reserved CPU for operating system and daemon activity, and they would probably be
hampered by having more off-node communication (which is presumably slower).

se
cs

4

Figure 2. IBM SP run results showing large variability with four processes per node on a
four-CPU-per-node node system.

As shown in Table 2, the runs with fully populated nodes (four tasks on a Silver node,
or 16 tasks on a NightHawk-2 node) consistently showed very high variability. Of
particular note is the variability observed on our four-way Silver SMP nodes when
running four tasks per node.

Table 2. Sendrecv time (in microseconds) to perform a 2-D halo exchange for
N × N domain with N = Z, …, 1024. Note the large variability with four processes
per node on a four-CPU-per-node system.

Node Type/
Processes per Node

Minimum

Average

Maximum

Standard
Deviation

Silver/3 341 656 1890 24.5
Silver/4 419 1773 67,470 2155.0
NH-2/14 221 394 972 40.2
NH-2/16 245 582 14,657 188.0

Initially, our investigations centered on the MPI implementation as the possible source
for the factor-of-10 penalty observed under certain configurations. Many MPI
implementations, including the IBM implementation, optimize their algorithm on the
basis of the topology and geometry of the parallel job and underlying machine. For
example, communications to processes residing on the same node may use a different
mechanism for transferring data than those communications to processes on remote
nodes. We wondered if this logic (or other related topology-aware software) was
introducing the variability. We needed a simple test case that could be used to provide
the answer.

se
cs

5

3 Finding the Root Cause of the Variability and Scaling Problem
To understand the performance of the MPI implementation, we conducted experiments
designed to expose flaws in communication. To do this, we needed to simplify the
application under observation as much as possible. Even well-understood applications
such as the Halo application [8] used to detect variability can introduce many subtle
performance issues.

We selected as our test case an MPI_Allreduce of an 8-byte datum in a loop performed
4096 times. MPI_Allreduce was chosen because it requires participation from all tasks
(or a specifically identified subset) and because it is a key element to many of our
scientific applications. The MPI_Allreduce reduction was performed on one
MPI_DOUBLE. MPI_Allreduce is a synchronizing function, i.e., the function is not
complete in a task until all tasks in the collective operation have participated.

To profile the test case, we used the AIX trace facility, which records time-stamped
user-specified events into a pinned memory buffer that can be written to a trace log file.
Events that can be monitored include entry and exit to selected subroutines, kernel
routines, kernel extension routines, and interrupt handlers.

We required that the results be repeatable. This implied that we vary only the factor to
be evaluated—all other factors that we could control were held fixed. The entire
machine was run in dedicated mode (even if we were collecting results for four CPUs
on an 8192-CPU machine). All cron job and monitoring activity was eliminated unless
it was the factor under observation. To the greatest extent possible, the machine
interconnect contained only traffic that was part of our tests.

4 Results
Two observations allowed us to eliminate the MPI implementation as the source of the
variability. First, we developed a simple test case with balanced workload properties
and profiled it to analyze the nature of the variability. These results revealed that
serializations were being introduced during fine-grain activities. Second, we
investigated the results of communications implemented on other libraries to see if they
performed differently than the IBM implementation. Worley [9] has demonstrated that
when MPI_Allreduce is implemented in several well-understood algorithms, each
algorithm also demonstrates the variability.

Reduction algorithms such as MPI_Allreduce should scale as the logarithm of the
number of processors. Our measurements (Figure 3) indicated that performance
followed a log2 curve at low process (task) counts, but eventually became non-
logarithmic as the number of processes (tasks) increased.

6

Figure 3. Allreduce performance should be O(log) with respect to the number of tasks.

If the timings for thousands of allreduces are binned into a histogram (Figure 4), most
allreduces perform in a reasonable amount of time for any given processor count.
However, the average is driven up by the presence of a few very long-lived outliers,
which are more prevalent in higher processor counts. Unfortunately, even a few such
outliers can dramatically affect the mean performance.

Expected Allreduce Performance
(based on empirical data 16 TPN default priority)

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750

0 500 1000 1500 2000 2500 3000 3500 4000 4500

#tasks

16 tpn, 1024 & fewer tasks

15tpn, Prior=30

Log. (16 tpn, 1024 & fewer tasks)

Actual Allreduce Performance
(dedicated machine)

0
250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

#tasks

16 tpn, 1024 & fewer tasks
15tpn, Prior=30
16tpn, Prior=default
15tpn White Production
Log. (16 tpn, 1024 & fewer tasks)

7

Figure 4. Binned Allreduce samples show a bell curve at the expected value, but with a
few long-lived outliers.

4.1 Examining an Anomalous Sample
Using the AIX trace facility, we analyzed dozens of these long-lived reduction
operations to see if they had something in common. It was immediately apparent that
during reduction operations that take substantially longer than expected, completion of
one or more of the participating tasks was delayed by interference from the operating
system. This interference occurs when an application thread is interrupted by a daemon
or other system activity.

We identified two types of interference.

4.2 Type 1 Interference: Timer Decrement Interrupts
The first type of interference is the short-lived timer decrement interrupt. This operating
system activity happens at 100 Hz in AIX. To prevent contention for certain operating
system locks, AIX staggers the timer interrupt across every CPU of an SMP. Timer
interrupts typically range between 15 µs and 30 µs and average about 20 µs.

4.3 Type 2 Interference: Daemons, Cron Jobs, and Other Overhead
Processes
The second type of interference is much longer lived: system daemon schedulings.
Examples commonly observed in our traces among the AIX operating system were
syncd (the daemon that flushes cached file system I/O to rotating media) and hatsd (the
daemon that performs membership services on the SP). Depending on the system
daemon, this kind of work can be a runnable process for as long as a wall-clock second
or more.

8

4.4 It All Boils Down to How Overlapped Is the Interference?
The impact of these two types of interference is magnified by the nature of our
workload. For environments with workloads consisting of transaction processing, web
servers, or other workloads characterized by large numbers of independent, short-lived
jobs, an occasional interruption on a single CPU has little consequence. However, for
parallel applications consisting of large-CPU-count, fine-grain parallelism, if one CPU
is interrupted, the effects of the interruption cascade to all other CPUs utilized by the
application.

Amdahl observed that if F is the fraction of a calculation that is sequential, and 1 − F is
the fraction that can be parallelized, then the maximum speedup that can be achieved by
using P CPUs is 1/[F + (1 − F)/P]. When the performance on an application is divided
into n sections, each having a fraction fn of the problem and a speedup sn, Amdahl’s law
can be written as

s =
1

(fa

sa

+ fb

sb

+ ... fn

sn

)∑
.

Expressed in a simplified format, if j is the fraction of a sequential program that is
inherently serial, then maximum possible speedup is s = 1/j. For example, if j = 0.2,
then s = 1/0.2 = 5. Amdahl’s law is typically applied using the parallel and sequential
components of an application, ignoring operating system influences. But given the
observed interferences, we now use it to show how the serializing contributions of the
operating system can affect application performance.

Our results show that serializations from Type-1 interference (short-lived interference
due to timer decrement interrupts) and Type-2 interference (long-lived interference due
to daemons) are the primary root cause for the variability and poor scaling of fine-grain
parallel operations.

Table 3 shows the percentage of time spent running application tasks that we measured
during runs of the MPI_Allreduce test case. Because we run our nodes in dedicated
mode, the remainder of the time, 0.22% to 1.12%, is the time consumed by the
operating system.

Table 3. Typical operating system and daemon activity consumes
0.22% to 1.12% of the CPU.

Percent Dispatches in aggregate_trace

CPUs Initial OS Settings Revised OS Settings Final OS settings

16 99.6849 99.7145 99.7719
32 99.6407 99.7085 99.7730
64 — 99.7057 99.6640

128 99.4181 99.5776 99.5120
256 99.4779 99.5489 99.5408
512 99.3134 99.3918 99.3867
1024 98.8800 99.1119 99.1778

9

If we assume that this operating system time does not overlap from node to node, it
becomes a sequential component of the application performance and limits the
maximum possible speedup. For example, if the sequential component due to the
operating system is 0.5%, then s = 1/0.005 = 200 (not good for an 8192-CPU machine
such as ASCI White). Of course, there will usually be some degree of overlap. That is,
if one CPU is experiencing a timer interrupt or a daemon activity, chances are that one
of the other 8191 CPUs is, too. Because AIX has no cross-node coordination, it is
impossible to predict what the overlap will be. (We can, however, determine what the
range of overlap was for a given operation by using AIX traces.)
4.4.1 Demonstrating the Impact of Type-1 Interference

AIX “staggers” the timer interrupts on SMP nodes evenly across all CPUs. For a 16-
CPU node such as the NightHawk-2 node found on LLNL’s White machine, the stagger
of 16 interrupts per node over 10 ms means that each node will experience a tick every
0.625 ms. Depending on when the first tick happens with respect to the beginning of a
measurement interval, a 2600-µs measurement interval will have four or five ticks per
node. Therefore, 256 nodes could have between 4 and 1280 interrupts: 4 if all 256
nodes have perfect cross-node overlap and 4 interrupts, and 1280 if all 256 nodes have 5
interrupts and no cross-node overlap.

Expected Allreduce average = 710 µs.

Observed Allreduce average for 4096 samples = 2600 µs.

Note that the unexpectedly large average value of a 2600-µs Allreduce could be
explained by a normal allreduce (710 µs), plus an average of 95 non-overlapping timer
interrupts:

Average Allreduce = 2600 = 710 µs + (95 × 20 µs).
4.4.2 Demonstrating the Impact of Type-2 Interference

The impact of system daemons is even more striking—a typical daemon is runnable for
up to a second or longer. To understand how a daemon could provide an average
Allreduce of 2600 µs for 4096 samples, consider the case where 3996 samples averaged
the normal 710 µs, but 100 samples averaged 78.125 ms because of temporary daemon
interference.

4.5 Comparing the Impacts of Type-1 and Type-2 Interference
To determine the relative contribution of the two types of interference, we designed test
cases that could be run across fully or partially populated nodes. Type-1 interference
(timer decrement interrupt interference) shows little difference between these two
settings, but Type-2 interference (daemon activity) changes substantially because one
daemon per node may run on an available CPU without affecting the parallel
application. We then collected AIX traces on fully populated nodes and on n − 1
populated nodes.

The results revealed that Type-2 interference (daemon activity) is much more
substantial than Type-1 interference. This is in keeping with the Halo variability
observed for fully loaded and n − 1 loaded runs, shown in Table 2. However, if the

10

parallel application is run such that every node is less than fully loaded, Type-2
interference can be reduced.

5 Summary and Directions of Future Work
Initially motivated by unexpected scaling performance in a well-understood application,
we investigated the source of variability and unexpected serialization on large cluster
supercomputers. To do this, we developed a simple fine-grain, highly scalable
benchmark and utilized postmortem analysis of detailed system traces to discover the
predominant root cause of variability and unexpected serialization.

The variations in performance can be dramatic. Our measurements indicate that present
machines running UNIX derivatives demonstrate linear performance for reduction
operations and not the expected logarithmic performance. Moreover, variability tests
routinely recorded standard deviations of almost two orders of magnitude.

There are two primary root causes for performance variation: Type-1 interference (due
to timer decrement interrupts) and Type-2 interference (due to daemons). Type-2
interference leads to larger inefficiencies. The magnitude of the effect is determined by
the degree of overlap during a parallel run and is statistical in nature. It is possible to
mitigate Type-2 interference by running the application such that nodes are not fully
populated (e.g., run a parallel job with 15 tasks per node on a 16-way SMP).

Current trends favor an increasing number of CPUs within the most capable machines.
As CPU count continues to climb, the scientific community that utilizes these machines
will become more susceptible to serializations imposed by the operating system. We are
investigating novel ways to extend full-featured operating systems to tens of thousands
of CPUs by adding parallel awareness to the operating system. Our work has three
primary goals: (1) to investigate the benefits derived from a parallel-aware
dispatcher/scheduler on modern full-featured operating systems; (2) to investigate
techniques and requirements for incorporating these technologies into modern
production environments; and (3) to develop quantitative metrics for the impact of
porting a given code to differing operating system environments.

6 Acknowledgements
This work benefited from the helpful contributions and suggestions of Chris
Chambreau, Pythagoras Watson, and Linda Stanberry of LLNL, and Bill Tuel, Robert
Blackmore, and Mike Cavanaugh of IBM.

11

References
[1] Top 500 Supercomputer Sites, http://www.top500.org/lists/2002/11.

[2] Message Passing Interface Forum, http://www.mpi-forum.org.

[3] Greenberg, David S., Ron Brightwell, Lee Ann Fisk, Arthura Maccabe, Rolf
Riesen, “A System Software Architecture for High-End Computing,” Proceedings
of ACM/IEEE Conference on Supercomputing, Nov. 15–21, 1997, San Jose, CA.

[4] IBM Cluster solutions, http://www-1.ibm.com/servers/eserver/clusters.

[5] IBM Inc., AIX, http://www-1.ibm.com/servers/eserver/pseries/solutions/ha/.

[6] Jones, Terry, Linda Stanberry, “MPI On-node and Large Processor Count Scaling
Performance,” ScicomP 4, Oct. 2001, Knoxville, TN.

[7] Jones, Terry, “A Scaling Investigation on IBM SPs,” ScicomP 6, Aug. 2002,
Berkeley, CA.

[8] Halo code developed by Alan Wallcraft, http://www.sdsc.edu/SciComp/PAA/
Benchmarks/Portal/Halo/halo.html.

[9] Worley, Patrick, “Allreduce Performance Evaluation,”
http://www.csm.ornl.gov/evaluation/ALLREDUCE/index.html.

