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Abstract 

We investigated the potential for operating systems to negatively impact scalability and 
performance of parallel applications on large cluster machines with fast interconnects. 
We identified two types of interference from the operating system. Interference due to 
daemon activity can yield larger inefficiencies. The magnitude of the effect of the 
interference is determined by the degree of overlap during a parallel run and is 
statistical in nature. Our findings suggest that daemon interference can be mitigated by 
running applications such that nodes are not fully populated. 

1 Introduction 
Supercomputing at the beginning of the twenty-first century depends on large parallel 
machines having hundreds or even thousands of compute nodes [1]. As computer 
architecture trends have dictated that the most powerful machines are massively 
parallel, finding the reasons why parallel programs do not scale has become a primary 
activity for computer scientists at supercomputer centers. 

Many large parallel machines are used for scientific applications that simulate physical 
phenomena through parallel algorithms intended to scale up to thousands of processors. 
The message-passing paradigm has become the most prevalent way to program these 
machines, which have distributed memory spread over hundreds of nodes. The most 
popular message-passing interface is MPI [2]. A parallel application that uses MPI 
consists of many self-autonomous processes participating as a community to complete a 
single complex job. MPI communication and synchronization between remote processes 
on different nodes are carried out via a run-time system that hides the details of the 
drivers and protocols required to perform communication and synchronization. 
Communication is conceptually similar to post-office correspondence (a process sends a 
message to a remote process, and the remote process receives the message); 
synchronization is conceptually similar to traffic lights (a group of processes enter a 
barrier that prevents the processes from entering the next phase until all processes have 
completed the current phase of computation). 

Applications vary widely in their ratios of computation to communication. Some 
applications require very little communication or coordination, relying instead on 
simple rules for problem decomposition. In many cases, the rules may be determined 
before run time. These “embarrassingly parallel” applications benefit from having less 
overhead associated with communication and synchronization, and they typically scale 
to the extent that the problem may be subdivided. 
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The execution period between communication or synchronization events for 
embarrassingly parallel applications can be quite long; this granularity of work is called 
coarse-grain parallelism. When the execution period is relatively short, however, the 
application is described as having fine-grain parallelism. Fine-grain parallelism often 
makes workload balance easier among the hundreds (or thousands) of participating 
CPUs. A balanced workload avoids idling some CPUs while others perform larger 
tasks. 

The IBM SP machines at Lawrence Livermore National Laboratory (LLNL) are typical 
of today’s supercomputers. SP machines at LLNL range up to 8192 CPUs (see Table 1). 
IBM SPs are collections of high-performance symmetric multiprocessor (SMP) nodes 
with as many as 16 CPUs per node. The machine runs IBM’s AIX operating system, 
which, contrary to microkernel approaches such as PUMA [3], is a full-featured 
operating system. Every node can communicate via a proprietary high-bandwidth, low-
latency interconnect. [4, 5]  

Table 1. Configuration data of several SP machines at LLNL. 

Machine Name System Attribute Blue Frost White 
Nodes × CPUs per node 280 × 4 68 × 16 512 × 16 
CPUs 1120 1088 8192 
CPU type PowerPC 604e Power3 Power3 
CPU speed (MHz) 332 375 375 
Theoretical peak for each CPU (Mflop/s) 664 1500 1500 
Memory per node (GB) 1.5 16.0 16.0 
Total memory (TB) 0.5 1.1 8.0 
Total shared disk space (TB) 16 20 147 
Total non-shared (local) disk space (TB) 3 5 — 
Interconnect SP Switch SP Switch2 SP Switch2 
Peak bidirectional switch bandwidth (per node) 300 MB/s 1 GB/s 1 GB/s 
Max 2-CPU bandwidth, US protocol (MB/s) 84 390 390 
Max 2-nodes bandwidth, US protocol (MB/s) 84 

(1 proc/node) 
1070 
(10 procs/node) 

1070 
(10 procs/node) 

Measured one-way latency, US protocol (µs) 28 20 20 
Measured roundtrip latency, US protocol (µs) — 26 26 
Operating system AIX 5.1 AIX 5.1 AIX 5.1 

In this paper we describe our investigation of operating system impact on the scalability 
of parallel applications. We establish a systematic method for measuring this impact, 
conduct a series of measurements using the methodology on very large machines at 
several supercomputer centers, and report our findings. Our findings suggest that 
operating systems can have a strong influence on the scalability on typical 
supercomputers for a broad class of applications. In Section 2, we describe the early 
indicators of a scaling problem. In Section 3, we describe our strategy for finding the 
root cause of the scaling problem. In Section 4, we present our results. Section 5 
presents conclusions and outlines possibilities for future work. 
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2 Early Indications of a Problem 
This investigation began as a result of our desire to understand performance variability 
encountered on jobs for which little variability was expected [6, 7]. We anticipated little 
variability because we run our jobs on dedicated nodes (they are not shared with other 
user tasks), the algorithm is deterministic, and the workload is balanced among the 
available CPUs. 

Figures 1 and 2 show the variability we observed. In Figure 1, where only three of the 
four available CPUs per node were used by the application, performance variation in 
wall-clock time is small, indicated by the close groupings of time-to-completion versus 
CPU count curves. 

 
Figure 1. IBM SP run results showing little variability with three processes per node on a  
four-CPU-per-node system. 

As shown in Figure 2, however, when four MPI processes are active on a four-CPU 
node, the variability in wall-clock time increases by over an order of magnitude. Several 
factors are at play. The three-process-per-node jobs would probably benefit from having 
a reserved CPU for operating system and daemon activity, and they would probably be 
hampered by having more off-node communication (which is presumably slower). 

se
cs
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Figure 2. IBM SP run results showing large variability with four processes per node on a  
four-CPU-per-node node system. 

As shown in Table 2, the runs with fully populated nodes (four tasks on a Silver node, 
or 16 tasks on a NightHawk-2 node) consistently showed very high variability. Of 
particular note is the variability observed on our four-way Silver SMP nodes when 
running four tasks per node. 

Table 2. Sendrecv time (in microseconds) to perform a 2-D halo exchange for  
N × N domain with N = Z, …, 1024. Note the large variability with four processes  
per node on a four-CPU-per-node system. 

Node Type/ 
Processes per Node 

 
Minimum 

 
Average 

 
Maximum 

Standard 
Deviation 

Silver/3 341 656 1890 24.5 
Silver/4 419 1773 67,470 2155.0 
NH-2/14 221 394 972 40.2 
NH-2/16 245 582 14,657 188.0 

Initially, our investigations centered on the MPI implementation as the possible source 
for the factor-of-10 penalty observed under certain configurations. Many MPI 
implementations, including the IBM implementation, optimize their algorithm on the 
basis of the topology and geometry of the parallel job and underlying machine. For 
example, communications to processes residing on the same node may use a different 
mechanism for transferring data than those communications to processes on remote 
nodes. We wondered if this logic (or other related topology-aware software) was 
introducing the variability. We needed a simple test case that could be used to provide 
the answer. 

se
cs
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3 Finding the Root Cause of the Variability and Scaling Problem 
To understand the performance of the MPI implementation, we conducted experiments 
designed to expose flaws in communication. To do this, we needed to simplify the 
application under observation as much as possible. Even well-understood applications 
such as the Halo application [8] used to detect variability can introduce many subtle 
performance issues. 

We selected as our test case an MPI_Allreduce of an 8-byte datum in a loop performed 
4096 times. MPI_Allreduce was chosen because it requires participation from all tasks 
(or a specifically identified subset) and because it is a key element to many of our 
scientific applications. The MPI_Allreduce reduction was performed on one 
MPI_DOUBLE. MPI_Allreduce is a synchronizing function, i.e., the function is not 
complete in a task until all tasks in the collective operation have participated. 

To profile the test case, we used the AIX trace facility, which records time-stamped 
user-specified events into a pinned memory buffer that can be written to a trace log file. 
Events that can be monitored include entry and exit to selected subroutines, kernel 
routines, kernel extension routines, and interrupt handlers. 

We required that the results be repeatable. This implied that we vary only the factor to 
be evaluated—all other factors that we could control were held fixed. The entire 
machine was run in dedicated mode (even if we were collecting results for four CPUs 
on an 8192-CPU machine). All cron job and monitoring activity was eliminated unless 
it was the factor under observation. To the greatest extent possible, the machine 
interconnect contained only traffic that was part of our tests. 

4 Results 
Two observations allowed us to eliminate the MPI implementation as the source of the 
variability. First, we developed a simple test case with balanced workload properties 
and profiled it to analyze the nature of the variability. These results revealed that 
serializations were being introduced during fine-grain activities. Second, we 
investigated the results of communications implemented on other libraries to see if they 
performed differently than the IBM implementation. Worley [9] has demonstrated that 
when MPI_Allreduce is implemented in several well-understood algorithms, each 
algorithm also demonstrates the variability. 

Reduction algorithms such as MPI_Allreduce should scale as the logarithm of the 
number of processors. Our measurements (Figure 3) indicated that performance 
followed a log2 curve at low process (task) counts, but eventually became non-
logarithmic as the number of processes (tasks) increased. 
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Figure 3. Allreduce performance should be O(log) with respect to the number of tasks. 

If the timings for thousands of allreduces are binned into a histogram (Figure 4), most 
allreduces perform in a reasonable amount of time for any given processor count. 
However, the average is driven up by the presence of a few very long-lived outliers, 
which are more prevalent in higher processor counts. Unfortunately, even a few such 
outliers can dramatically affect the mean performance. 
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Figure 4. Binned Allreduce samples show a bell curve at the expected value, but with a 
few long-lived outliers. 

4.1 Examining an Anomalous Sample 
Using the AIX trace facility, we analyzed dozens of these long-lived reduction 
operations to see if they had something in common. It was immediately apparent that 
during reduction operations that take substantially longer than expected, completion of 
one or more of the participating tasks was delayed by interference from the operating 
system. This interference occurs when an application thread is interrupted by a daemon 
or other system activity. 

We identified two types of interference. 

4.2 Type 1 Interference: Timer Decrement Interrupts 
The first type of interference is the short-lived timer decrement interrupt. This operating 
system activity happens at 100 Hz in AIX. To prevent contention for certain operating 
system locks, AIX staggers the timer interrupt across every CPU of an SMP. Timer 
interrupts typically range between 15 µs and 30 µs and average about 20 µs. 

4.3 Type 2 Interference: Daemons, Cron Jobs, and Other Overhead 
Processes 
The second type of interference is much longer lived: system daemon schedulings. 
Examples commonly observed in our traces among the AIX operating system were 
syncd (the daemon that flushes cached file system I/O to rotating media) and hatsd (the 
daemon that performs membership services on the SP). Depending on the system 
daemon, this kind of work can be a runnable process for as long as a wall-clock second 
or more. 
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4.4 It All Boils Down to How Overlapped Is the Interference? 
The impact of these two types of interference is magnified by the nature of our 
workload. For environments with workloads consisting of transaction processing, web 
servers, or other workloads characterized by large numbers of independent, short-lived 
jobs, an occasional interruption on a single CPU has little consequence. However, for 
parallel applications consisting of large-CPU-count, fine-grain parallelism, if one CPU 
is interrupted, the effects of the interruption cascade to all other CPUs utilized by the 
application. 

Amdahl observed that if F is the fraction of a calculation that is sequential, and 1 − F is 
the fraction that can be parallelized, then the maximum speedup that can be achieved by 
using P CPUs is 1/[F + (1 − F)/P]. When the performance on an application is divided 
into n sections, each having a fraction fn of the problem and a speedup sn, Amdahl’s law 
can be written as  

s =
1

( fa

sa

+ fb

sb

+ ... fn

sn

)∑
. 

Expressed in a simplified format, if j is the fraction of a sequential program that is 
inherently serial, then maximum possible speedup is s = 1/j. For example, if j = 0.2, 
then s = 1/0.2 = 5. Amdahl’s law is typically applied using the parallel and sequential 
components of an application, ignoring operating system influences. But given the 
observed interferences, we now use it to show how the serializing contributions of the 
operating system can affect application performance. 

Our results show that serializations from Type-1 interference (short-lived interference 
due to timer decrement interrupts) and Type-2 interference (long-lived interference due 
to daemons) are the primary root cause for the variability and poor scaling of fine-grain 
parallel operations. 

Table 3 shows the percentage of time spent running application tasks that we measured 
during runs of the MPI_Allreduce test case. Because we run our nodes in dedicated 
mode, the remainder of the time, 0.22% to 1.12%, is the time consumed by the 
operating system. 

Table 3. Typical operating system and daemon activity consumes  
0.22% to 1.12% of the CPU. 

Percent Dispatches in aggregate_trace 

CPUs Initial OS Settings Revised OS Settings Final OS settings 

16 99.6849 99.7145 99.7719 
32 99.6407 99.7085 99.7730 
64 — 99.7057 99.6640 

128 99.4181 99.5776 99.5120 
256 99.4779 99.5489 99.5408 
512 99.3134 99.3918 99.3867 
1024 98.8800 99.1119 99.1778 



9 

If we assume that this operating system time does not overlap from node to node, it 
becomes a sequential component of the application performance and limits the 
maximum possible speedup. For example, if the sequential component due to the 
operating system is 0.5%, then s = 1/0.005 = 200 (not good for an 8192-CPU machine 
such as ASCI White). Of course, there will usually be some degree of overlap. That is, 
if one CPU is experiencing a timer interrupt or a daemon activity, chances are that one 
of the other 8191 CPUs is, too. Because AIX has no cross-node coordination, it is 
impossible to predict what the overlap will be. (We can, however, determine what the 
range of overlap was for a given operation by using AIX traces.)  
4.4.1 Demonstrating the Impact of Type-1 Interference 

AIX “staggers” the timer interrupts on SMP nodes evenly across all CPUs. For a 16-
CPU node such as the NightHawk-2 node found on LLNL’s White machine, the stagger 
of 16 interrupts per node over 10 ms means that each node will experience a tick every 
0.625 ms. Depending on when the first tick happens with respect to the beginning of a 
measurement interval, a 2600-µs measurement interval will have four or five ticks per 
node. Therefore, 256 nodes could have between 4 and 1280 interrupts: 4 if all 256 
nodes have perfect cross-node overlap and 4 interrupts, and 1280 if all 256 nodes have 5 
interrupts and no cross-node overlap. 

Expected Allreduce average = 710 µs. 

Observed Allreduce average for 4096 samples = 2600 µs. 

Note that the unexpectedly large average value of a 2600-µs Allreduce could be 
explained by a normal allreduce (710 µs), plus an average of 95 non-overlapping timer 
interrupts: 

Average Allreduce = 2600 = 710 µs + (95 × 20 µs). 
4.4.2 Demonstrating the Impact of Type-2 Interference 

The impact of system daemons is even more striking—a typical daemon is runnable for 
up to a second or longer. To understand how a daemon could provide an average 
Allreduce of 2600 µs for 4096 samples, consider the case where 3996 samples averaged 
the normal 710 µs, but 100 samples averaged 78.125 ms because of temporary daemon 
interference. 

4.5 Comparing the Impacts of Type-1 and Type-2 Interference 
To determine the relative contribution of the two types of interference, we designed test 
cases that could be run across fully or partially populated nodes. Type-1 interference 
(timer decrement interrupt interference) shows little difference between these two 
settings, but Type-2 interference (daemon activity) changes substantially because one 
daemon per node may run on an available CPU without affecting the parallel 
application. We then collected AIX traces on fully populated nodes and on n − 1 
populated nodes. 

The results revealed that Type-2 interference (daemon activity) is much more 
substantial than Type-1 interference. This is in keeping with the Halo variability 
observed for fully loaded and n − 1 loaded runs, shown in Table 2. However, if the 
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parallel application is run such that every node is less than fully loaded, Type-2 
interference can be reduced. 

5 Summary and Directions of Future Work 
Initially motivated by unexpected scaling performance in a well-understood application, 
we investigated the source of variability and unexpected serialization on large cluster 
supercomputers. To do this, we developed a simple fine-grain, highly scalable 
benchmark and utilized postmortem analysis of detailed system traces to discover the 
predominant root cause of variability and unexpected serialization. 

The variations in performance can be dramatic. Our measurements indicate that present 
machines running UNIX derivatives demonstrate linear performance for reduction 
operations and not the expected logarithmic performance. Moreover, variability tests 
routinely recorded standard deviations of almost two orders of magnitude. 

There are two primary root causes for performance variation: Type-1 interference (due 
to timer decrement interrupts) and Type-2 interference (due to daemons). Type-2 
interference leads to larger inefficiencies. The magnitude of the effect is determined by 
the degree of overlap during a parallel run and is statistical in nature. It is possible to 
mitigate Type-2 interference by running the application such that nodes are not fully 
populated (e.g., run a parallel job with 15 tasks per node on a 16-way SMP). 

Current trends favor an increasing number of CPUs within the most capable machines. 
As CPU count continues to climb, the scientific community that utilizes these machines 
will become more susceptible to serializations imposed by the operating system. We are 
investigating novel ways to extend full-featured operating systems to tens of thousands 
of CPUs by adding parallel awareness to the operating system. Our work has three 
primary goals: (1) to investigate the benefits derived from a parallel-aware 
dispatcher/scheduler on modern full-featured operating systems; (2) to investigate 
techniques and requirements for incorporating these technologies into modern 
production environments; and (3) to develop quantitative metrics for the impact of 
porting a given code to differing operating system environments. 
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