
IPDPS/HIPS’13 

TSHMEM: Shared-Memory 

Parallel Computing on Tilera 

Many-Core Processors 

May 20, 2013 

Bryant C. Lam (speaker) 

Alan D. George 

Herman Lam 
 

NSF Center for High-Performance Reconfigurable 
Computing (CHREC), University of Florida 



Motivation 

 Emergent many-core devices vary considerably 
in architecture and performance characteristics 
 e.g., scalable mesh networks, ring-bus topologies 

 Platforms provide separate APIs to individually 
leverage underlying hardware resources 
 Difficult to develop efficient cross-platform apps 

 

 Objective 
 Bridge the gap between many-core hardware 

utilization and developer productivity 

 Approach 
 Quantify performance of many-core devices via 

application kernels and microbenchmarks 

 Develop TSHMEM to increase device utilization of 
various many-core platforms with arch-specific insights 

2 



Outline 

 Tilera Many-Core 
 Chip Architectures 

 Microbenchmarks 
 Shared Memory Copy 

 UDN Latency 

 TMC Spin/Sync Barriers 

 TSHMEM Computing 
 Design Infrastructure 

 Performance Analysis 
 Put/Get Transfers 

 Barrier Synchronization 

 Collectives 

 Application Case Studies 

 Conclusions, Q&A 
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Tilera TILE-Gx Architecture 

 64-bit VLIW processors 

 32k L1i cache, 32k L1d cache 

 256k L2 cache per tile 

 Up to 750 BOPS 

 Up to 200 Tbps of on-chip mesh 

interconnect 

 Over 500 Gbps memory bandwidth 

 1 to 1.5 GHz operating frequency 

 Power consumption: 10 to 55W for 

typical applications 

 2-4 DDR3 memory controllers 

 mPIPE delivers wire-speed packet 

classification, processing, distribution 

 MiCA for cryptographic acceleration 

VLIW: very long instruction word 

BOPS: billion operations per second 

mPIPE: multicore Programmable Intelligent Packet Engine 

MiCA: Multicore iMesh Coprocessing Accelerator 



TILE-Gx36 vs. TILEPro64 

 TILE-Gx8036 
 64-bit VLIW processors 

 32k L1i cache, 32k L1d cache 

 256k L2 cache per tile 

 Up to 750 billion op/sec 

 Up to 60 Tbps of on-chip mesh 

interconnect 

 Over 500 Gbps memory bandwidth 

 1 to 1.5 GHz operating frequency 

 Power consumption: 10 to 55W for 

typical applications 

 Two DDR3 memory controllers 

 TILEPro64 
 32-bit VLIW processors 

 16k L1i cache, 8k L1d cache 

 64k L2 cache per tile 

 Up to 443 billion op/sec 

 Up to 37 Tbps of on-chip 

interconnect 

 Up to 50 Gbps of I/O bandwidth 

 700 MHz and 866 MHz operating 

frequency 

 Power consumption: 19 – 23W 

@700MHz under full load 

 Four DDR2 memory controllers 
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iMesh On-Chip Network Fabric 

TILEPro64: MDN (Memory), CDN (Coherence), IDN (I/O), 

TDN (Tile), UDN (User), STN (Static Network) 

TILE-Gx36: Five networks instead of six (removed static network) 

 

 MDN replaced by QDN (reQuest) and RDN (Response) dynamic network 

 Memory controller has two QDN (0/1) and RDN (0/1) network connections 

 Reduced congestion in memory accesses from TILEPro 

 SDN (Share) 

 Provides accesses and coherency for cache system 

 IDN (Internal) 

 Used primarily for communication with external I/O 

 UDN (User) 

 Allows user applications to send data directly between tiles 

 UDN and IDN can be accessed by users 
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TILE-Gx36 Benchmarking 

 Why microbenchmark? 

 Determines empirically realizable TILE-Gx performance 

 Defines realistic upper bound for TSHMEM performance 

 

 Benchmarking Overview 

 Bandwidth of shared memory copy 

 UDN latency varying test pairs of 

sender/receiver tiles 

 TMC spin/sync barrier primitives 
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L2 Cache 

Shared-Memory-Copy Bandwidth 

 Bandwidth on iMesh 
networks to caches and 
memory controllers 
 Shared memory performance 

critical for TSHMEM 

 Bandwidth of memory 
operations influenced by 3 of 5 
iMesh networks 
 QDN: memory request network 

 RDN: memory response network 

 SDN: cache sharing network 

 Significant bandwidth 
performance transitions occur 
at cache-size limits 
 L1 data cache: 3100 MB/s 

 L2 cache: 2700 MB/s 

 Memory-to-memory 
performance thereafter 
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L1 DCache 

32k L1i cache 

32k L1d cache 

256k L2 cache per tile 
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UDN Performance on Gx36 

 Tilera User Dynamic 

Network (UDN) 

 Hardware support for routing 

of data packets between CPU 

cores (tiles) 

 UDN microbenchmark 

 Measures average latency 

between two tiles by ping-

ponging numerous packets 
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UDN benchmarks transfer between two tiles 

 Red for neighbors 

 Green for side to side 

 Blue for corner to corner 



UDN Latency 

 Average latency of one-

way UDN transfers 

 TILEPro64’s slightly faster 

latency is attributed to 32-

bit switching fabric 

 TILE-Gx uses 64-bit fabric; 

yields roughly twice as much 

data throughput over TILEPro 

 Low latency of UDN 

attractive for fast inter-tile 

communication 
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Time (ns) 

(6x6 area) TILE-Gx36 TILEPro64 

Neighbors 

left 14 13 21 19 

right 14 15 22 19 

up 14 8 22 18 

down 14 20 22 18 

left 28 27 21 19 

right 28 29 22 19 

up 28 22 22 18 

down 28 34 22 18 

Side-to-Side 

right 6 11 26 25 

left 11 6 25 25 

down 1 31 26 24 

up 31 1 26 24 

right 23 18 25 25 

left 18 23 26 25 

down 33 3 26 24 

up 3 33 26 24 

Corners 

down-right 0 35 32 33 

up-left 35 0 31 33 

down-left 5 30 31 33 

up-right 30 5 32 33 

0 1 4 5 
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TMC Spin/Sync Barriers 

 Barrier primitives provided 
by Tilera’s TMC library 
 Spin uses spinlock, 

discouraging process 
context switching 
 Sync barrier rectifies this with 

performance penalty 

 Barrier performance on 
TILEPro is order of 
magnitude slower than 
TILE-Gx 
 TILEPro barriers potentially too 

slow for use in SHMEM 
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OpenSHMEM and TSHMEM 

TSHMEM Overview 

Investigate SHMEM reference design 
directly over Tilera TILE-Gx 
architecture and libraries 

 Stay true to SHMEM principles 
 High performance with low overhead 

 Portability with easy programmability 

 Maximize architectural benefits 
 Tile interconnect, mPIPE, MiCA 

 Extend design to multi-device systems 
 Evaluate interconnect capabilities 
 Explore optimizations to point-to-point 

transfers and collectives 
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HPC acceleration with SHMEM on many-core processors 

Tilera Libraries
(TMC, gxio, etc.)

TSHMEM with OpenSHMEM API

Setup

Device Functionality

Data 
Transfers

Sync

TSHMEM reference design on TILE-Gx36 

Modular design 

utilizing vendor 

libraries 

• Dynamic symmetric heap management 

• Point-to-point data transfer 

• Point-to-point synchronization 

• Barrier synchronization 

• Broadcast, Collection, Reduction 

• Atomics for dynamic variables 

• Extension to multiple many-core devices 

Achieved 

• Optimizations for multiple many-core 

• Exploration of new SHMEM extensions 

Ongoing 



TSHMEM Initialization 

 Running TSHMEM applications 
 Compile C or C++ program 

with TSHMEM library 
 tile-gcc provided as cross compiler for TILE-Gx 

 Transfer and run program using tile-monitor and 
shmemrun executable launcher 

 TSHMEM setup and initialization – shmemrun 
and start_pes() 
 Initializes TMC Common Memory (CMEM) for shared 

memory allocation 

 Initializes UDN for barrier sync and basic inter-tile 
communications 

 Creates processes and binds them to unique tiles 

 Allocates shared memory and broadcasts pointer 

 Synchronizes PEs before exiting routine 
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C or C++ 
SHMEM 
program 

tile-gcc 
TSHMEM 
executable 

tile-monitor shmemrun 



Put/Get Transfers – Design 
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 Template functions 
generated with macro 
definitions 
 Dynamic symmetric 

variable transfers 
 Performed via memcpy 

and shmem_ptr into TMC 
common memory 

 Point-to-point transfers 
for static symmetric 
variables 
 Handled via UDN 

interrupts and dynamic 
shared memory buffer 
allocation 

SHMEM Get 



Put/Get Transfers – Performance 
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 TSHMEM dynamic performance closely matches 

shared-to-shared performance profile for both 

TILE-Gx36 and TILEPro64 devices 
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Static Put/Get Transfers – Perf. 
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 TSHMEM static transfers attempt to offload request 

if possible, otherwise a temporary buffer is 

necessary and drastically degrades performance 
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Barrier Sync. – Design 

 Barrier uses UDN for messages 
 SHMEM allows for barriers with overlapping active sets 

 Difficult to enable overlapping active sets with TMC barriers 

 Barrier primitives for TILEPro too slow 

 Barrier design leverages split-phase barrier internally 
but externally appears as blocking 
 Semantics for shmem_barrier is blocking 

 Cores (tiles) linearly forward notify message until all receive it 

 Active-set information transmitted to avoid overlap errors from multiple 
barriers 

 Lead tile broadcasts release message to leave barrier routine 

 Significant performance improvements with increasing 
number of tiles on TILE-Gx 

 1.5 µs latency at 36 tiles 
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Performance – Barrier Sync 
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 TSHMEM barriers leverage UDN for better scaling than 

most Tilera TMC barriers for TILE-Gx36 and TILEPro64 
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Collectives – Types 

 Broadcast 
 One-to-all transfer 

 Active-set tiles except root tile 
receive data from root tile’s 
memory 

 Collection 
 All-to-all transfer 

 Active-set tiles linearly 
concatenate their data 

 Reduction 
 All-to-all transfer 

 Active-set tiles perform 
reduction arithmetic operation 
on their data 
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Performance – Broadcast 

 Pull-based broadcast up to 46 GB/s aggregate bandwidth 

at 29 tiles; 37 GB/s aggregate at 36 tiles 
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Performance – FCollect, Reduction 

 Results are for naïve fast-collect and reduction; 

additional algorithms planned for testing 

21 

2
7

12
17

22
27

32

0

100

200

300

400

500

600

700

800

900

1000

4
 B

8
 B

1
6

 B
3

2
 B

6
4

 B
1

2
8

 B
2

5
6

 B
5

1
2

 B
1

 k
B

2
 k

B
4

 k
B

8
 k

B
1

6
 k

B
3

2
 k

B
6

4
 k

B
1

2
8

 k
B

2
5

6
 k

B
5

1
2

 k
B

1
 M

B

N
u

m
b

e
r 

o
f 

Ti
le

s 

A
gg

re
ga

te
 E

ff
e

ct
iv

e
 B

an
d

w
id

th
 (

M
B

/s
) 

Transfer Size 

Fast-Collect on TILE-Gx36 

900-1000
800-900
700-800
600-700
500-600
400-500
300-400
200-300
100-200
0-100

2
7

12
17

22
27

32

0

50

100

150

200

250

300

350

400

450

4
 B

8
 B

1
6

 B
3

2
 B

6
4

 B
1

2
8

 B
2

5
6

 B
5

1
2

 B
1

 k
B

2
 k

B
4

 k
B

8
 k

B
1

6
 k

B
3

2
 k

B
6

4
 k

B
1

2
8

 k
B

2
5

6
 k

B
5

1
2

 k
B

1
 M

B

N
u

m
b

e
r 

o
f 

Ti
le

s 

A
gg

re
ga

te
 E

ff
e

ct
iv

e
 B

an
d

w
id

th
 (

M
B

/s
) 

Transfer Size 

Reduction on TILE-Gx36 

400-450
350-400
300-350
250-300
200-250
150-200
100-150
50-100
0-50



App Case – 2D-FFT 

 TILE-Gx executes order of magnitude faster than 

TILEPro due to improved floating-point support 

 

 Speedup at 32 

 TILE-Gx: 5 

 TILEPro: 12 
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App Case – CBIR 

 Content-based image retrieval with searches 

based on feature extraction of input image 

 

 Speedup at 32 

 TILE-Gx: 25 

 TILEPro: 27 
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Conclusions 

 TSHMEM is a new OpenSHMEM library focused 
on fully leveraging Tilera many-core devices 

 Microbenchmarks define the expected and 
maximum realizable device performance 
 TSHMEM reaches toward these microbenchmark results 

with very little overhead for variety of functions 

 UDN leveraged for SHMEM barriers due to lacking 
performance of TMC barrier primitives on TILEPro 

 Performance, portability, scalability demonstrated 
via two app case studies 
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Thanks for listening! 
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Questions? 
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