
IPDPS/HIPS’13 

TSHMEM: Shared-Memory 

Parallel Computing on Tilera 

Many-Core Processors 

May 20, 2013 

Bryant C. Lam (speaker) 

Alan D. George 

Herman Lam 
 

NSF Center for High-Performance Reconfigurable 
Computing (CHREC), University of Florida 



Motivation 

 Emergent many-core devices vary considerably 
in architecture and performance characteristics 
 e.g., scalable mesh networks, ring-bus topologies 

 Platforms provide separate APIs to individually 
leverage underlying hardware resources 
 Difficult to develop efficient cross-platform apps 

 

 Objective 
 Bridge the gap between many-core hardware 

utilization and developer productivity 

 Approach 
 Quantify performance of many-core devices via 

application kernels and microbenchmarks 

 Develop TSHMEM to increase device utilization of 
various many-core platforms with arch-specific insights 

2 



Outline 

 Tilera Many-Core 
 Chip Architectures 

 Microbenchmarks 
 Shared Memory Copy 

 UDN Latency 

 TMC Spin/Sync Barriers 

 TSHMEM Computing 
 Design Infrastructure 

 Performance Analysis 
 Put/Get Transfers 

 Barrier Synchronization 

 Collectives 

 Application Case Studies 

 Conclusions, Q&A 

3 



Tilera TILE-Gx Architecture 

 64-bit VLIW processors 

 32k L1i cache, 32k L1d cache 

 256k L2 cache per tile 

 Up to 750 BOPS 

 Up to 200 Tbps of on-chip mesh 

interconnect 

 Over 500 Gbps memory bandwidth 

 1 to 1.5 GHz operating frequency 

 Power consumption: 10 to 55W for 

typical applications 

 2-4 DDR3 memory controllers 

 mPIPE delivers wire-speed packet 

classification, processing, distribution 

 MiCA for cryptographic acceleration 

VLIW: very long instruction word 

BOPS: billion operations per second 

mPIPE: multicore Programmable Intelligent Packet Engine 

MiCA: Multicore iMesh Coprocessing Accelerator 



TILE-Gx36 vs. TILEPro64 

 TILE-Gx8036 
 64-bit VLIW processors 

 32k L1i cache, 32k L1d cache 

 256k L2 cache per tile 

 Up to 750 billion op/sec 

 Up to 60 Tbps of on-chip mesh 

interconnect 

 Over 500 Gbps memory bandwidth 

 1 to 1.5 GHz operating frequency 

 Power consumption: 10 to 55W for 

typical applications 

 Two DDR3 memory controllers 

 TILEPro64 
 32-bit VLIW processors 

 16k L1i cache, 8k L1d cache 

 64k L2 cache per tile 

 Up to 443 billion op/sec 

 Up to 37 Tbps of on-chip 

interconnect 

 Up to 50 Gbps of I/O bandwidth 

 700 MHz and 866 MHz operating 

frequency 

 Power consumption: 19 – 23W 

@700MHz under full load 

 Four DDR2 memory controllers 

5 



iMesh On-Chip Network Fabric 

TILEPro64: MDN (Memory), CDN (Coherence), IDN (I/O), 

TDN (Tile), UDN (User), STN (Static Network) 

TILE-Gx36: Five networks instead of six (removed static network) 

 

 MDN replaced by QDN (reQuest) and RDN (Response) dynamic network 

 Memory controller has two QDN (0/1) and RDN (0/1) network connections 

 Reduced congestion in memory accesses from TILEPro 

 SDN (Share) 

 Provides accesses and coherency for cache system 

 IDN (Internal) 

 Used primarily for communication with external I/O 

 UDN (User) 

 Allows user applications to send data directly between tiles 

 UDN and IDN can be accessed by users 

6 



TILE-Gx36 Benchmarking 

 Why microbenchmark? 

 Determines empirically realizable TILE-Gx performance 

 Defines realistic upper bound for TSHMEM performance 

 

 Benchmarking Overview 

 Bandwidth of shared memory copy 

 UDN latency varying test pairs of 

sender/receiver tiles 

 TMC spin/sync barrier primitives 

7 



L2 Cache 

Shared-Memory-Copy Bandwidth 

 Bandwidth on iMesh 
networks to caches and 
memory controllers 
 Shared memory performance 

critical for TSHMEM 

 Bandwidth of memory 
operations influenced by 3 of 5 
iMesh networks 
 QDN: memory request network 

 RDN: memory response network 

 SDN: cache sharing network 

 Significant bandwidth 
performance transitions occur 
at cache-size limits 
 L1 data cache: 3100 MB/s 

 L2 cache: 2700 MB/s 

 Memory-to-memory 
performance thereafter 

 

8 

L1 DCache 

32k L1i cache 

32k L1d cache 

256k L2 cache per tile 

0

500

1000

1500

2000

2500

3000

3500

4
 B

8
 B

1
6

 B

3
2

 B

6
4

 B

1
2

8
 B

2
5

6
 B

5
1

2
 B

1
 k

B

2
 k

B

4
 k

B

8
 k

B

1
6

 k
B

3
2

 k
B

6
4

 k
B

1
2

8
 k

B

2
5

6
 k

B

5
1

2
 k

B

1
 M

B

2
 M

B

4
 M

B

8
 M

B

1
6

 M
B

3
2

 M
B

6
4

 M
B

B
an

d
w

id
th

 (
M

B
/s

) 

Transfer Size 

Shared Memory Copy 
TILE-Gx36: heap to shared
TILE-Gx36: shared to heap
TILE-Gx36: shared to shared
TILEPro64: heap to shared
TILEPro64: shared to heap
TILEPro64: shared to shared



UDN Performance on Gx36 

 Tilera User Dynamic 

Network (UDN) 

 Hardware support for routing 

of data packets between CPU 

cores (tiles) 

 UDN microbenchmark 

 Measures average latency 

between two tiles by ping-

ponging numerous packets 

9 

UDN benchmarks transfer between two tiles 

 Red for neighbors 

 Green for side to side 

 Blue for corner to corner 



UDN Latency 

 Average latency of one-

way UDN transfers 

 TILEPro64’s slightly faster 

latency is attributed to 32-

bit switching fabric 

 TILE-Gx uses 64-bit fabric; 

yields roughly twice as much 

data throughput over TILEPro 

 Low latency of UDN 

attractive for fast inter-tile 

communication 

10 

0

5

10

15

20

25

30

35

Neighbors Side-to-Side Corners

La
te

n
cy

 (
n

s)
 

Tile-to-Tile in 6x6 Area 

UDN One-Way Average Latency 

TILE-Gx36

TILEPro64

Type 
Direction Sender Receiver 

Time (ns) 

(6x6 area) TILE-Gx36 TILEPro64 

Neighbors 

left 14 13 21 19 

right 14 15 22 19 

up 14 8 22 18 

down 14 20 22 18 

left 28 27 21 19 

right 28 29 22 19 

up 28 22 22 18 

down 28 34 22 18 

Side-to-Side 

right 6 11 26 25 

left 11 6 25 25 

down 1 31 26 24 

up 31 1 26 24 

right 23 18 25 25 

left 18 23 26 25 

down 33 3 26 24 

up 3 33 26 24 

Corners 

down-right 0 35 32 33 

up-left 35 0 31 33 

down-left 5 30 31 33 

up-right 30 5 32 33 

0 1 4 5 

6 11 

24 29 

30 31 34 35 



TMC Spin/Sync Barriers 

 Barrier primitives provided 
by Tilera’s TMC library 
 Spin uses spinlock, 

discouraging process 
context switching 
 Sync barrier rectifies this with 

performance penalty 

 Barrier performance on 
TILEPro is order of 
magnitude slower than 
TILE-Gx 
 TILEPro barriers potentially too 

slow for use in SHMEM 

11 

0.1

1

10

100

1000

0 10 20 30 40

La
te

n
cy

 (
µ

s)
 

Number of Tiles 

TMC Barrier Performance 

TMC spin, TILE-Gx36 TMC spin, TILEPro64

TMC sync, TILE-Gx36 TMC sync, TILEPro64



OpenSHMEM and TSHMEM 

TSHMEM Overview 

Investigate SHMEM reference design 
directly over Tilera TILE-Gx 
architecture and libraries 

 Stay true to SHMEM principles 
 High performance with low overhead 

 Portability with easy programmability 

 Maximize architectural benefits 
 Tile interconnect, mPIPE, MiCA 

 Extend design to multi-device systems 
 Evaluate interconnect capabilities 
 Explore optimizations to point-to-point 

transfers and collectives 

12 

HPC acceleration with SHMEM on many-core processors 

Tilera Libraries
(TMC, gxio, etc.)

TSHMEM with OpenSHMEM API

Setup

Device Functionality

Data 
Transfers

Sync

TSHMEM reference design on TILE-Gx36 

Modular design 

utilizing vendor 

libraries 

• Dynamic symmetric heap management 

• Point-to-point data transfer 

• Point-to-point synchronization 

• Barrier synchronization 

• Broadcast, Collection, Reduction 

• Atomics for dynamic variables 

• Extension to multiple many-core devices 

Achieved 

• Optimizations for multiple many-core 

• Exploration of new SHMEM extensions 

Ongoing 



TSHMEM Initialization 

 Running TSHMEM applications 
 Compile C or C++ program 

with TSHMEM library 
 tile-gcc provided as cross compiler for TILE-Gx 

 Transfer and run program using tile-monitor and 
shmemrun executable launcher 

 TSHMEM setup and initialization – shmemrun 
and start_pes() 
 Initializes TMC Common Memory (CMEM) for shared 

memory allocation 

 Initializes UDN for barrier sync and basic inter-tile 
communications 

 Creates processes and binds them to unique tiles 

 Allocates shared memory and broadcasts pointer 

 Synchronizes PEs before exiting routine 

13 

C or C++ 
SHMEM 
program 

tile-gcc 
TSHMEM 
executable 

tile-monitor shmemrun 



Put/Get Transfers – Design 

14 

 Template functions 
generated with macro 
definitions 
 Dynamic symmetric 

variable transfers 
 Performed via memcpy 

and shmem_ptr into TMC 
common memory 

 Point-to-point transfers 
for static symmetric 
variables 
 Handled via UDN 

interrupts and dynamic 
shared memory buffer 
allocation 

SHMEM Get 



Put/Get Transfers – Performance 

15 

 TSHMEM dynamic performance closely matches 

shared-to-shared performance profile for both 

TILE-Gx36 and TILEPro64 devices 

0

500

1000

1500

2000

2500

3000

3500
4

 B

8
 B

1
6

 B

3
2

 B

6
4

 B

1
2

8
 B

2
5

6
 B

5
1

2
 B

1
 k

B

2
 k

B

4
 k

B

8
 k

B

1
6

 k
B

3
2

 k
B

6
4

 k
B

1
2

8
 k

B

2
5

6
 k

B

5
1

2
 k

B

1
 M

B

2
 M

B

4
 M

B

Ef
fe

ct
iv

e
 B

an
d

w
id

th
 (

M
B

/s
) 

Transfer Size 

TSHMEM Put/Get Performance 

TILE-Gx36 dynamic put

TILE-Gx36 dynamic get

TILE-Gx36 static put

TILE-Gx36 static get

TILEPro64 dynamic put

TILEPro64 dynamic get



Static Put/Get Transfers – Perf. 

16 

 TSHMEM static transfers attempt to offload request 

if possible, otherwise a temporary buffer is 

necessary and drastically degrades performance 

0

500

1000

1500

2000

2500

3000

3500
4

 B

8
 B

1
6

 B

3
2

 B

6
4

 B

1
2

8
 B

2
5

6
 B

5
1

2
 B

1
 k

B

2
 k

B

4
 k

B

8
 k

B

1
6

 k
B

3
2

 k
B

6
4

 k
B

1
2

8
 k

B

2
5

6
 k

B

5
1

2
 k

B

1
 M

B

2
 M

B

4
 M

B

Ef
fe

ct
iv

e
 B

an
d

w
id

th
 (

M
B

/s
) 

Transfer Size 

TSHMEM Put/Get Performance on TILE-Gx36 

TILE-Gx36 dynamic put
TILE-Gx36 dynamic get
TILE-Gx36 dynamic-static put
TILE-Gx36 dynamic-static get
TILE-Gx36 static-dynamic put
TILE-Gx36 static-dynamic get
TILE-Gx36 static put
TILE-Gx36 static get



Barrier Sync. – Design 

 Barrier uses UDN for messages 
 SHMEM allows for barriers with overlapping active sets 

 Difficult to enable overlapping active sets with TMC barriers 

 Barrier primitives for TILEPro too slow 

 Barrier design leverages split-phase barrier internally 
but externally appears as blocking 
 Semantics for shmem_barrier is blocking 

 Cores (tiles) linearly forward notify message until all receive it 

 Active-set information transmitted to avoid overlap errors from multiple 
barriers 

 Lead tile broadcasts release message to leave barrier routine 

 Significant performance improvements with increasing 
number of tiles on TILE-Gx 

 1.5 µs latency at 36 tiles 

17 



Performance – Barrier Sync 

18 

 TSHMEM barriers leverage UDN for better scaling than 

most Tilera TMC barriers for TILE-Gx36 and TILEPro64 

0.1

1

10

100

1000

0 10 20 30 40

La
te

n
cy

 (
µ

s)
 

Number of Tiles 

TMC Barrier Performance 

TMC spin, TILE-Gx36 TMC spin, TILEPro64

TMC sync, TILE-Gx36 TMC sync, TILEPro64

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35 40

La
te

n
cy

 (
µ

s)
 

Number of Tiles 

TSHMEM Barrier Performance 

TSHMEM, TILE-Gx36 (best)

TSHMEM, TILE-Gx36 (worst)

TSHMEM, TILEPro64

TMC spin, TILE-Gx36



Collectives – Types 

 Broadcast 
 One-to-all transfer 

 Active-set tiles except root tile 
receive data from root tile’s 
memory 

 Collection 
 All-to-all transfer 

 Active-set tiles linearly 
concatenate their data 

 Reduction 
 All-to-all transfer 

 Active-set tiles perform 
reduction arithmetic operation 
on their data 

19 

0 1 2 3 4 5 6 7 



Performance – Broadcast 

 Pull-based broadcast up to 46 GB/s aggregate bandwidth 

at 29 tiles; 37 GB/s aggregate at 36 tiles 

20 

2
8

14
20

26
32

0

500

1000

1500

2000

2500

3000

3500

4
 B

8
 B

1
6

 B
3

2
 B

6
4

 B
1

2
8

 B
2

5
6

 B
5

1
2

 B
1

 k
B

2
 k

B
4

 k
B

8
 k

B
1

6
 k

B
3

2
 k

B
6

4
 k

B
1

2
8

 k
B

2
5

6
 k

B
5

1
2

 k
B

1
 M

B
2

 M
B

4
 M

B

N
u

m
b

e
r 

o
f 

Ti
le

s 

A
gg

re
ga

te
 E

ff
e

ct
iv

e
 B

an
d

w
id

th
 (

M
B

/s
) 

Transfer Size 

Push-based Broadcast on TILE-Gx36 

3000-3500

2500-3000

2000-2500

1500-2000

1000-1500

500-1000

0-500

2
8

14
20

26
32

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

4
 B

8
 B

1
6

 B
3

2
 B

6
4

 B
1

2
8

 B
2

5
6

 B
5

1
2

 B
1

 k
B

2
 k

B
4

 k
B

8
 k

B
1

6
 k

B
3

2
 k

B
6

4
 k

B
1

2
8

 k
B

2
5

6
 k

B
5

1
2

 k
B

1
 M

B
2

 M
B

4
 M

B

N
u

m
b

e
r 

o
f 

Ti
le

s 

A
gg

re
ga

te
 E

ff
e

ct
iv

e
 B

an
d

w
id

th
 (

M
B

/s
) 

Transfer Size 

Pull-based Broadcast on TILE-Gx36 

45000-50000
40000-45000
35000-40000
30000-35000
25000-30000
20000-25000
15000-20000
10000-15000
5000-10000
0-5000



Performance – FCollect, Reduction 

 Results are for naïve fast-collect and reduction; 

additional algorithms planned for testing 

21 

2
7

12
17

22
27

32

0

100

200

300

400

500

600

700

800

900

1000

4
 B

8
 B

1
6

 B
3

2
 B

6
4

 B
1

2
8

 B
2

5
6

 B
5

1
2

 B
1

 k
B

2
 k

B
4

 k
B

8
 k

B
1

6
 k

B
3

2
 k

B
6

4
 k

B
1

2
8

 k
B

2
5

6
 k

B
5

1
2

 k
B

1
 M

B

N
u

m
b

e
r 

o
f 

Ti
le

s 

A
gg

re
ga

te
 E

ff
e

ct
iv

e
 B

an
d

w
id

th
 (

M
B

/s
) 

Transfer Size 

Fast-Collect on TILE-Gx36 

900-1000
800-900
700-800
600-700
500-600
400-500
300-400
200-300
100-200
0-100

2
7

12
17

22
27

32

0

50

100

150

200

250

300

350

400

450

4
 B

8
 B

1
6

 B
3

2
 B

6
4

 B
1

2
8

 B
2

5
6

 B
5

1
2

 B
1

 k
B

2
 k

B
4

 k
B

8
 k

B
1

6
 k

B
3

2
 k

B
6

4
 k

B
1

2
8

 k
B

2
5

6
 k

B
5

1
2

 k
B

1
 M

B

N
u

m
b

e
r 

o
f 

Ti
le

s 

A
gg

re
ga

te
 E

ff
e

ct
iv

e
 B

an
d

w
id

th
 (

M
B

/s
) 

Transfer Size 

Reduction on TILE-Gx36 

400-450
350-400
300-350
250-300
200-250
150-200
100-150
50-100
0-50



App Case – 2D-FFT 

 TILE-Gx executes order of magnitude faster than 

TILEPro due to improved floating-point support 

 

 Speedup at 32 

 TILE-Gx: 5 

 TILEPro: 12 

22 

0

2

4

6

8

10

12

14

0.1

1

10

1 2 4 8 16 32

Sp
e

e
d

u
p

 

Ex
e

cu
ti

o
n

 T
im

e
 (

s)
 

Number of Tiles 

2D-FFT Performance with TSHMEM 

TILE-Gx36 TILEPro64 TILE-Gx36 Speedup TILEPro64 Speedup



App Case – CBIR 

 Content-based image retrieval with searches 

based on feature extraction of input image 

 

 Speedup at 32 

 TILE-Gx: 25 

 TILEPro: 27 

23 

0

5

10

15

20

25

30

1

10

100

1 2 4 8 16 32

Sp
e

e
d

u
p

 

Ex
e

cu
ti

o
n

 T
im

e
 (

s)
 

Number of Tiles 

CBIR Performance with TSHMEM 

TILE-Gx36 TILEPro64 TILE-Gx36 Speedup TILEPro64 Speedup



Conclusions 

 TSHMEM is a new OpenSHMEM library focused 
on fully leveraging Tilera many-core devices 

 Microbenchmarks define the expected and 
maximum realizable device performance 
 TSHMEM reaches toward these microbenchmark results 

with very little overhead for variety of functions 

 UDN leveraged for SHMEM barriers due to lacking 
performance of TMC barrier primitives on TILEPro 

 Performance, portability, scalability demonstrated 
via two app case studies 

24 



Thanks for listening! 

25 

Questions? 



References 
1. OpenSHMEM, “OpenSHMEM API, v1.0 final,” 2012. [Online]. Available: 

http://www.openshmem.org/ 

2. B. C. Lam, A. D. George, and H. Lam, “An introduction to TSHMEM for shared-memory 
parallel computing on Tilera many-core processors,” in Proceedings of the 6th Conference on 
Partitioned Global Address Space Programing Models, ser. PGAS ’12. ACM, 2012. 

3. Mellanox Technologies, “Mellanox ScalableSHMEM,” Sunnyvale, CA, USA, 2012. [Online]. 
Available: http://www.mellanox.com/related-docs/prod software/PB ScalableSHMEM.pdf 

4. C. Yoon, V. Aggarwal, V. Hajare, A. D. George, and M. Billingsley, III, “GSHMEM, a portable 
library for lightweight, shared-memory, parallel programming,” in Proceedings of the 5th 
Conference on Partitioned Global Address Space Programing Models, ser. PGAS ’11. ACM, 
2011. 

5. D. Bonachea, “GASNet specification, v1.1,” University of California at Berkeley, Berkeley, 
CA, USA, Tech. Rep., 2002. 

6. Tilera Corporation, “TILE-Gx8036 processor specification brief,” San Jose, CA, USA, 2012. 
[Online]. Available: http://www.tilera.com/sites/default/files/productbriefs/TILE-Gx8036 
PB033-02.pdf 

7. ——, “TILEPro64 processor product brief,” San Jose, CA, USA, 2011. [Online]. Available: 
http://www.tilera.com/sites/default/files/productbriefs/TILEPro64 Processor PB019 v4.pdf 

8. J. Huang, S. Kumar, M. Mitra, W.-J. Zhu, and R. Zabih, “Image indexing using color 
correlograms,” in Computer Vision and Pattern Recognition,1997. Proceedings., 1997 IEEE 
Computer Society Conference on, Jun 1997, pp. 762–768. 

26 


