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‘ Motivation

= Emergent many-core devices vary considerably
In architecture and performance characteristics

o e.g., scalable mesh networks, ring-bus topologies

= Platforms provide separate APIs to individually
leverage underlying hardware resources
o Difficult to develop efficient cross-platform apps

= Objective
o Bridge the gap between many-core hardware
utilization and developer productivity
= Approach

o Quantify performance of many-core devices via
application kernels and microbenchmarks

o Develop TSHMEM to increase device utilization of Open
various many-core platforms with arch-specific insights >HMEM
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‘ Outline

= Tilera Many-Core
o Chip Architectures

o Microbenchmarks
= Shared Memory Copy
= UDN Latency
= TMC Spin/Sync Barriers

= TSHMEM Computing

2 UART, 2USB
ITAG, IC, SPI

o Design Infrastructure —

o Performance Analysis —
= Put/Get Transfers L

= Barrier Synchronization s
= Collectives

o Application Case Studies

. Open
= Conclusions, Q&A SHMEM
CHREC UF [FLORIDA 3
NSF Center for High-Performance 3 m'ﬁm I,qu L e

Reconfigurable Computing ——

osearouEoescmsryre o AM VOURE g versiTy
A0 STATE Ve



 Tilera TILE-Gx Architecture

64-bit VLIW processors Eloxibl
. MiCA ax 12c 2x UART| 2x usB | JTAG exible
32k L1i cache, 32k L1d cache lio

256kL2caChepertiIe Ll LIl L LIl LIl L
Up to 750 BOPS 0.0 20 3,0 4.0 5,0
UptOZOOprSOfon-Chipmesh LT LI LTI [HREN [HREN [IREN
interconnect 0,1 21 3.1 4,1 5.1
Over 500 Gbps memory bandwidth I A I N R 1
1 to 1.5 GHz operating frequency

0,2 2,2 3.2 4,2 5,2
Power consumption: 10 to S5W for Eo) 1 A A A 1
typical applications

0.3 23 3,3 43 5.3
o 2-4 DDR3 memory controllers

MPIPE delivers wire-speed packet i i i (0 IO [0
classification, processing, distribution 0.4 24 [ 34 [ — 44

o MICA for cryptographic acceleration
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TILE-Gx36 vs. TILE Pro64

= TILE-Gx8036 = TILEProc4
o 64-bit VLIW processors o 32-bit VLIW processors

o 32k L1i cache, 32k L1d cache o 16k L1i cache, 8k L1d cache
o 256k L2 cache per tile o 64k L2 cache per tile
o Up to 750 billion op/sec o Up to 443 billion op/sec
o Up to 60 Thps of on-chip mesh o Up to 37 Thps of on-chip
interconnect interconnect
Over 500 Gbps memory bandwidth o Up to 50 Gbps of I/O bandwidth
1 to 1.5 GHz operating frequency o 700 MHz and 866 MHz operating
o Power consumption: 10 to 55W for frequency
typical applications o Power consumption: 19 — 23W
a Two DDR3 memory controllers @700MHz under full load
o Four DDR2 memory controllers
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iMesh On-Chip Network Fabric

TILEPro64: MDN (Memory), CDN (Coherence), IDN (1/0O),
TDN (Tile), UDN (User), STN (Static Network)

TILE-Gx36: Five networks instead of six (removed static network)

MDN replaced by QDN (reQuest) and RDN (Response) dynamic network

|
o Memory controller has two QDN (0/1) and RDN (0/1) network connections
o Reduced congestion in memory accesses from TILEPro i - " —
g jr\:‘ E\H: eee
= SDN (Share) N Al A ¥
o Provides accesses and coherency for cache system % 55 Dga .Ejj
= IDN (Internal) o i i I
o Used primarily for communication with external I/O = = S =
:- El; DJ'EL ..':EI
= UDN (User) J J 4 Ty
o Allows user applications to send data directly between tiles . : . .
By Bnl Be ==
o UDN and IDN can be accessed by users = o o e
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| TILE-Gx36 Benchmarking

= Why microbenchmark?

o Determines empirically realizable TILE-Gx performance
o Defines realistic upper bound for TSHMEM performance

= Benchmarking Overview
o Bandwidth of shared memory copy

o UDN latency varying test pairs of
sender/receiver tiles

o TMC spin/sync barrier primitives

MiCA

2 UART, 2 USB
JTAG, I*C, SPI

PCle2.0- 8 Lanes

PCle2.0- 4 Lanes

PCle2.0 - 4 Lanes
Flexible /O 36 Cores

MiCA DDR3 Controller
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' Shared-Memory-Copy Bandwidth

= Bandwidth on iMesh e e
networks to caches and 3 Execution Pipelines 256K L2 cache per tile
memory controllers ENE

L1 ICache ITLB
L1 DCache || DTLB

L2 Cache

o Shared memory performance
critical for TSHMEM

o Bandwidth of memory

Terabit
Switch L1 DCache

[YYY

operations influenced by 3 of 5 AL -2 Cache
|MeSh networks =4=TILE-Gx36: heap to shared
_ Shared Memory Copy T e sharec 1o hean
= QDN memory requeSt network 5 II:tEPGrogi hr:eap fcjotshahredcI
= RDN: memory response network O | o TilEPro6d: shared to shared
= SDN: cache sharing network = 2500
o Significant bandwidth 2 000
performange tr_an_S|t|ons OCCur % 1500
at cache-size limits 3
8 1000

= L1 data cache: 3100 MB/s | N
m L2 cache: 2700 MB/s | insaliilll

[ I a'n [ o' I [ ' Yo JO ' o ' [ R [ ' Y [ ' Yo O ' [ ' [ o' [ ' Yo o I ' o 0 R 0]
= Memory-to-memory e N3ReNTIELLoO88883888¢S¢
performance thereafter S &b RS B - I
Transfer Size
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UDN Performance on Gx36

= Tilera User Dynamic = =x
Network (UDN) M 7’
o Hardware support for routing I‘IH /
of data packets between CPU ——
cores (tiles) _)I’ n
= UDN microbenchmark % ~—:—Eu;
o Measures average latency & 3
between two tiles by ping- =

ponging numerous packets

UDN benchmarks transfer between two tiles
Red for neighbors
Green for side to side
Blue for corner to corner
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‘ UDN One-Way Average Latency
UDN Latency 35 7| ®TILE-Gx36

| ®TILEPro64

@ 25 -
c

= Average latency of one-  i=
Way UDN tranSfe rS O: Neighbors Side-to-Side Corners

a TILEPro64’s slightly faster Teto el &6 e

Type Direction | Sender | Receiver Time (ns)
1 1 _ (6x6 area) TILE-Gx36 | TILEPro64
latency Is attributed to 32 T
bit switching fabric BN N I IO
= TILE-Gx uses 64-bit fabric; | nemeers | P57 | 00| 20 2|
yields roughly twice as much JN O IO IO
data throughput over TILEPro down | 28 | 34 22 18
right 6 11 26 25
a Low latency of UDN D A I R
attractive for fast inter-tile  [sdetosie| ** | 20| | % |
. . lef 26 25
communication down | 3 | 3 | 2 | s
up 3 33 26 24
down-right 0 35 32 33
up-left 35 0 31 33
CHRECQCGC Corners | jown-left | 5 30 31 33

NSF Center for High-Performance 10 .
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TMC Spin/Sync Barriers

= Barrier primitives provided
by Tilera’s TMC library

o Spin uses spinlock,
discouraging process
context switching
= Sync barrier rectifies this with

performance penalty

o Barrier performance on
TILEPro is order of 01
magnitude slower than
T I L E - G X ==¢=TMC spin, TILE-Gx36 ==#&=TMC spin, TILEPro64

= TILEPro barriers potentia”y too —@—TMC sync, TILE-Gx36 =—TMC sync, TILEPro64
slow for use in SHMEM

TMC Barrier Performance

100

Latency (us)
=
o

0 10 20 30 40
Number of Tiles
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TSHMEM Overview

HPC acceleration with SHMEM on many-core processors

directly over Tilera TILE-GXx
architecture and libraries

o Stay true to SHMEM principles
High performance with low overhead
Portability with easy programmability

Maximize architectural benefits
Tile interconnect, mPIPE, MiCA

a
]

a

(Investigate SHMEM reference design A

Extend design to multi-device systems

Evaluate interconnect capabilities
Explore optimizations to point-to-point
transfers and collectives

- DDR3 Controller

1 g g1 g g 11

Network IO
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samn
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- sSGMIl |

| Ittt

10 GbE &
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DDR3 Controller

OpenSHMEM and TSHMEM

.

« Dynamic symmetric heap management
* Point-to-point data transfer
* Point-to-point synchronization

Open
SHMEM

~ J * Barrier synchronization
. * Broadcast, Collection, Reduction
e TILEHA TSHMEM with opensHMEM API « Atomics for dynamic variables
Data » Extension to multiple many-core devices
Setup Sync
Transfers
utilizing vendor (TMC, gxio, etc.) Ontimizations 1 i)
libraries Device Functionalit * Optimizations for multiple many-core
( evice Tanctonality J » Exploration of new SHMEM extensions
TSHMEM reference design on TILE-Gx36
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TSHMEM Initialization

= Running TSHMEM applications >
+ SompleCon o oo (5o oo

= tile-gcc provided as cross compiler for TILE-GXx

o Transfer and run program using tile-monitor and
shmemrun executable launcher

= TSHMEM setup and initialization — shmemrun
and start_pes()

o Initializes TMC Common Memory (CMEM) for shared
memory allocation

o Initializes UDN for barrier sync and basic inter-tile
communications

ao Creates processes and binds them to unique tiles
o Allocates shared memory and broadcasts pointer
o Synchronizes PEs before exiting routine

UUUUUUUUUUU
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 Put / Get Transfers — De81gn

= Template functions
generated with macro
definitions

o Dynamic symmetric
variable transfers

= Performed via memcpy
and shmem_ptr into TMC
common memory

Point-to-point transfers
for static symmetric
variables

Handled via UDN
Interrupts and dynamic
shared memory buffer
allocation
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‘ Put/Get Transfers — Performance

TSHMEM Put/Get Performance

== TILE-GXx36 dynamic put
3000 =—TILE-Gx36 dynamic get
= ==fe=TILE-Gx36 static put
@ 2500 TILE-Gx36 static get
2 =3=TILEPro64 dynamic put
é 2000 =0=TILEPro64 dynamic get
3
©
c
& 1500
()
2
g
b=
w

o o [an] [an] o [aa] o [aa] o o [an] o o
< 0 Ite) ~ < 0 o ~ X~ 4 -~ -~ 4
— o (e} N n — — o~ < o0 O

i (o] N —

Transfer Size

\ TILE-Gx36 and TILEPro64 devices

o TSHMEM dynamic performance closely matches
shared-to-shared performance profile for both

e
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‘ Static Put/Get Transfers — Perf.

/ TSHMEM Put/Get Performance on TILE-Gx36 \
3500

=9—TILE-Gx36 dynamic put
== TILE-Gx36 dynamic get
==#=TILE-Gx36 dynamic-static put
e T|LE-GX36 dynamic-static get
TILE-Gx36 static-dynamic put
==@==TILE-Gx36 static-dynamic get
=f=TILE-Gx36 static put
=>¢=T|LE-Gx36 static get

3000

N
(]
o
o

2000

1500

Effective Bandwidth (MB/s)
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500

2 202 0% % 2 o2 2 02 2 2 2 2 2 2 2 8 2 2 g
<t o0 O N o wu N

Hm&onHHNvoouONq-oowNEEE

- N Hmmgmsﬂﬁlﬂ'

Transfer Size

o TSHMEM static transfers attempt to offload request
If possible, otherwise a temporary buffer is
K necessary and drastically degrades performance /
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Barrier Sync. — Design  AAS

= Barrier uses UDN for messages
o SHMEM allows for barriers with overlapping active sets
= Difficult to enable overlapping active sets with TMC barriers
o Barrier primitives for TILEPro too slow

= Barrier design leverages split-phase barrier internally
but externally appears as blocking

o Semantics for shmem_barrier is blocking

= Cores (tiles) linearly forward notify message until all receive it

0 Active-set information transmitted to avoid overlap errors from multiple
barriers

= Lead tile broadcasts release message to leave barrier routine

o Significant performance improvements with increasing
number of tiles on TILE-Gx

= 1.5 s latency at 36 tiles

UF‘ IIIIIIIIII
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 Performance — Barrier Sync

/ TSHMEM Barrier Performance TMC Barrier Performance \
3.5 1000
—=0=—TSHMEM, TILE-Gx36 (best)
3 +—| =l=TSHMEM, TILE-Gx36 (worst)

= TSHMEM, TILEPro64 100
2.5 -+ =%=TMC spin, TILE-Gx36
g
>
w o 10
e s
[J]
® 15
—
1

1 - ¢
O 5 0-1 T T T 1
' 0 10 20 30 40

Number of Tiles

0 5 10 15 20 25 30 35 40 ==4=TMJC spin, TILE-Gx36 ==k=TMC spin, TILEPro64

Number of Tiles —@—TMC sync, TILE-Gx36 —+—TMC sync, TILEPro64

o TSHMEM barriers leverage UDN for better scaling than
K most Tilera TMC barriers for TILE-Gx36 and TILEPro64 /
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‘ Collectives — Types U.
= Broadcast v ’

o One-to-all transfer

= Active-set tiles except root tile SHMEM
receive data from root tile’s

= Collection
o All-to-all transfer ©O 9 6 6 096 60
= Active-set tiles linearly W
concatenate their data

= Reduction

o All-to-all transfer

= Active-set tiles perform e Y e
reduction arithmetic operation
on their data

A

-
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Aggregate Effective Bandwidth (MB/s)

‘ Performance — Broadcast

o Pull-based broadcast up to 46 GB/s aggregate bandwidth
at 29 tiles; 37 GB/s aggregate at 36 tiles

Push-based Broadcast on TILE-Gx36 Pull-based Broadcast on TILE-Gx36
i TTTTTTT ~
1 1 45000-50000 ] T TTTIT]
m 3000-3500 TTTTTTT ]
3500 ﬂﬂm ______ % 50000 ([ 40000-45000 ||| ||| | [ _______
| = 2500-3000 > || = 35000-40000 T L]
3000 Hiil[|/| m 2000-2500 S 45000 1l m 30000-35000 17177 LT
HHHH £ 40000 1| ™ - A T
2500 Hiill " 1500-2000 T ||| m20000-25000 ||| 1] || A
® 1000-1500 | 2 35000 il m 15000-20000 || T HHHL
5000 (11| = 500-1000 § 30000 (/| ™10000-15000 || || |1} L
| a || m5000-10000 |[[T1T] T
My ( CI>) 25000 m 0-5000 M- T T T
1500 + ‘g 20000 | L L]
1000 ¢ % 15000 H| aniy
| 2 ® 10000 | 2 9
5 % 5000 14 %
0 g = 0 f2a) 2620 g
€ < S@ammnq m €
3 PN en ity g 32 3
HQS‘—'quéé‘xxE@mmm
TAYTRo~N=SS
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N 0 <
Transfer Size Transfer Size
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Aggregate Effective Bandwidth (MB/s)

‘ Performance — FCollect, Reduction

o Results are for naive fast-collect and reduction:
additional algorithms planned for testing

Fast-Collect on TILE-Gx36 Reduction on TILE-Gx36
AT T T T T T AT e
¥ 900-1000 U_ﬂ___“ m
800-900 | 17 400-450 ([l 11T
1 L] _
000 ﬂﬂ? =700-800 [ - 7 40 mﬂm 350-400 |-
900 [l = 600-700 [T € 400 i :zgg'ggg -
800 LT m 500-600 (lINARER ;:;’ 350 ’,—"'_ ™ 200:250 =
700 Hl| m 400-500 T g ] = 150-200 |||
c00 MK m 300-400 S 300 | =100-150 ||| ||
| ™ 200-300 8 .50 1| m50-100
500 ] W 100-200 | g
| 2 200
400 4 S
300 | ;5 150
200 (] 7 & g 100 77 &
= o -
100 12 5 ® 50 <
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‘ App Case — 2D-FFT

= TILE-GXx executes order of magnitude faster than
TILEPro due to improved floating-point support

2D-FFT Performance with TSHMEM

m Speedup at 32 . y

. - 12
a TILE-Gx: 5 -
—_ s - 10
= al
a TILEPro: 12 : e e
% 1 = > - §
5 < \.\. -6 &
3 -~
F] 2 -4
'ax e
x’o" — -
$===""
0.1 0
1 2 4 8 16 32
Number of Tiles
=@ TILE-GX36 === TILEPro64 TILE-Gx36 Speedup  =9<= TILEPro64 Speedup
nnnnnnnnnn
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‘ App Case — CBIR

= Content-based image retrieval with searches
based on feature extraction of input image

CBIR Performance with TSHMEM

m Speedup at 32 . .

7S
. / |
o TILE-GX: 25 7 2
= /’ - 20
o TILEPro: 27 2 J .
- 7/ 3
S 10 % 159
5 &
2 ,’II’\ 10
,,,, - -5
m= K
e-====" ®-"
1 0
1 2 4 8 16 32
Number of Tiles
=@ TILE-GX36 === TILEPro64 TILE-Gx36 Speedup  =9<= TILEPro64 Speedup
nnnnnnnnnn
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‘ Conclusions

= TSHMEM is a new OpenSHMEM library focused
on fully leveraging Tilera many-core devices

= Microbenchmarks define the expected and
maximum realizable device performance

o TSHMEM reaches toward these microbenchmark results
with very little overhead for variety of functions

o UDN leveraged for SHMEM barriers due to lacking
performance of TMC barrier primitives on TILEPro

= Performance, portability, scalability demonstrated
via two app case studies : S

Performance & Scalability /

Performance
L

L] y
¥ n
Q HE

Fundamental bottlenecks
« Limited scalability
* Power inefficiency
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 Thanks for listening!

Questions?
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