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TOWARDS MANY-CORES 
 



TOWARDS MANY-CORES 
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Multi-cores: Multiple complex cores 

•  Power and heat limits 

Many-cores: hundreds of small cores 
•  High compute throughput with low power 

consumption 
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TOWARDS MANY-CORES 
 

TILERA processors:  
TILE-GX (72 cores),  
TILEPro (64 cores) 

KALRAY MPPA (256 cores) 

INTEL Xeon-Phi(60 cores) 

STMicroelectronics, CEA 
STHORM (69 cores) 



MANY-CORES CHALLENGES 
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 The main architects issue is:  

 
  Memory wall:  

 There is an inherent cost of accessing distant 
memory (NUMA) 

 Speed gap between processor and memory 
 
 Heterogeneous set of workloads:  

 Massively parallel applications with different 
memory requirements 

 Complex deployment on large NUMA platform 

 

 

Scalability  



MEMORY HIERARCHY SINGLE CORE 
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Figure 1: Cache hierarchy for distributed architectures 

L1/Data 

L1/Inst 

L2 L3 Main Memory 

More storage capacity, higher access  latency, lower cost 

 Cache hierarchy organization:  
  Number of levels 
  Cache size 
  Private/shared              

 Caching strategy:  
  Replacement policy 
  Data allocation 
  Cache coherency 
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PRIVATE  VS  SHARED 
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Figure 2: Private/Shared caching 
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+  Scale easily 
-   Unneeded data replication 

+  Avoid  some data transfers 
+  Higher storage capacity 
-   Contention 
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COOPERATIVE CACHING 

Aggregate   Low access latency of private caches 
  High storage capacity of shared caches 

Figure 3: Cooperative caching 

 Cooperative  caching is mainly used in power-aware large scale systems:  
wireless networking (MANET), data storage systems(web servers). 
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"   Hybrid Caching: 

  Static cache partitioning 
 

  
    

"   Adaptive Cache Partitioning 
  Dynamic cache partitioning 
 

 
 

"   Elastic Cooperative Caching** 
  Local cache  partitioning  
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Pour insérer une image : 
Menu « Insertion  / Image » 

ou 
Cliquer sur l’icône de la zone 

image  

COOPERATIVE  CACHING TECHNIQUES 

Private Shared 

Unified shared cache space 

Shared Private 

**E. Herrero, J. Gonzalez, and R. Canal, “Elastic cooperative a caching: an autonomous dynamically 
adaptive memory hierarchy for chip multiprocessors,” 

Cache Partitioning 
Unit 

Private Shared 

Spilled Blocks  
Allocator 

Figure 4: Hybrid Caching 

Figure 5: Adaptive Caching 

Figure 6: Elastic Cooperative Caching 
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STRESSED NEIGHBORHOOD CONTEXT  

 
 
 
"   In the  case of highly stressed neighborhood: 

  High data reuse amount 
  Concurrent accesses to cooperative zone 
 

 
 
 
 
 

"   Elastic Cooperative Caching: 
  Cyclic cache partitioning 
  Round Robin spilled blocks allocation 
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Private Shared 

Shared Private 
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CONTRIBUTION: DATA  SLIDING MECHANISM 
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Figure 7: Data Sliding  Approach 



DATA REPLACEMENT POLICY 

 
"   Use two types of counters: 

  LHC: Local Hit Counter for private data access  
  NHC[4]: One Neighbor Hit Counter per neighbor for shared data access 

"   Priority based replacement: 
 LHC> sum(NHC): Shared LRU block 
 LHC< sum(NHC): Private  LRU block 

"   Stressed  Neighborhood: Distance(LHC, sum(NHC))< Threshold  
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Pour insérer une image : 
Menu « Insertion  / Image » 

ou 
Cliquer sur l’icône de la zone 
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Replacement policy: Data replacement policy is based on access frequency to 
each data set (shared/private).  
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BEST NEIGHBOR SELECTOR POLICY 

Best Neighbor policy: Host  neighbor is the least stressed one ó Min(NHC[4]). 
**NHC: Neighbor Hit Counter 
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Pour insérer une image : 
Menu « Insertion  / Image » 

ou 
Cliquer sur l’icône de la zone 
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Figure 8: Data sliding through closest neighbors  

è Block’s destination is selected according to cache stress amount of each neighbor. 



"   Simulation tool calculates messages/node induced by application access. 
"  No timing is considered 
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Pour insérer une image : 
Menu « Insertion  / Image » 

ou 
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VALIDATION PROCESS: ANALYTICAL SIMULATION 

Figure 9: Validation Process Chain 
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GLOBAL TRAFFIC EVALUATION 

Figure 11: Stressed neighborhood 



Elastic  Cooperative Caching protocol 

Baseline protocol 

Cooperative Caching with Data Sliding 

Number of  Messages 

4x4 tiled chip 

Number of  Messages 

4x4 tiled chip 

Number of  Messages 

4x4 tiled chip 
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GLOBAL TRAFFIC EVALUATION 
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Cyclic Replacement Priority-based Replacement 

Number of  Messages Number of  Messages 

  Traffic is half reduced 
  Lower off-chip eviction rate 
 

             

PRIORITY-BASED REPLACEMENT EVALUATION 
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CONCLUSION 

 
 
  Data Sliding Mechanism: New  approach of Cooperative Caching that allows data 

migration between neighbors in highly stressed context. 
 
 
 

  Local/ Neighbor Counters (Local view built on local and remote access frequency): 

  Data Replacement policy 
 

  Best Neighbor Selector 
 

  Resulting Improvements:       
   

  Reduces by half on-chip communications 

  Improves cache miss rate (less data evictions) 
 
 
 

MAY 20TH 2013 |  PAGE 19 Boston, USA | MAY 20th 2013 

Pour insérer une image : 
Menu « Insertion  / Image » 

ou 
Cliquer sur l’icône de la zone 

image  



PERSPECTIVES 
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  Extension of data sliding from 1-Hop to N-Hop. 

   Allowing access to hosted blocks. 
Figure 12: N-Hop Data Sliding 
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Figure 13: Shared blocks access 
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