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Outline

What is Wtc ?

Motivation

Unsaturated flow; nonsmooth constitutive laws
(Toccl, Jenkins, Kavanagh, Kees,
Howington, Farthing, Miller, K.)

CFD (Coffey, Keyes, McRae, McMullan, K.)
Local convergence

What do you use for a Taylor expansion?
Quality of derivative approximation.

Numerical example

C.T. Kelley - p.3



What is Wtc ?

Find steady state solutions of
X = F(X)

Mimic temporal integration.
Grow the time step in the terminal phase.
Addresses failure mode of Newton-Armijo.

Avoids non-physical results.
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Newton-Armijo: the obvious thing

Xnt1 = Xn+SWwhere s= Ad

and
IF"(Xn)d +F (Xn)[| < nn||F (Xn)|].

You pick A such that
IF(Xa+Ad)[| < (1—aA)[|F(xn)

where usually a = 1074
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Newton-Armijo bottom line

If F is smooth and the computation of d and A succeed,
then either
e BAD: the iteration is unbounded, i. e. limsup ||Xp|| = oo,

e BAD: the derivatives tend to singularity, I. e.
limsup ||F'(xn) || = o, Or

e GOOD: the iteration converges to a solution x*
In the terminal phase, A =1, and

X1 =X = O([[ %0 — X[|1In + |30 — X" ).
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So what’s the problem?

e Stagnation at singularity of F’ really happens.
steady flow — shocks in CFD

e Non-physical results
fires go out
negative concentrations

e Nonsmooth nonlinearities
are not uncommon: flux limiters, constitutive laws
globalization is harder
finite diff directional derivatives may be wrong

WPtc is one way to fix it.
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DAE Dynamics: semi-explicit

x=(u,v)" and

D11 0 :
D= nonsingular .
( 1 0 ) :

Differential variables u. Algebraic variables v.
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Wic for smooth problems

Xn+1 = Xn 1+

where
(8D + F(%a))$0 + F (x0)]| < 1l F 60|
and (SER)
) IF (o)
On = max (5“ [Foo 5“”‘““)
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Theory for smooth problems
Joint with Todd Coffey, David Keyes

If
e DX = —F(X); X(0) = Xo; X* = lim{_ X(t).
e DAE has uniform index one (gw nonsingular near x(t)).
e X' Is stable steady state.
e (p Is sufficiently small.
e Update o, with SER.

Then x, — x* and local convergence is what you'd expect
from inexact Newton.

C.T. Kelley - p.10



That’s nice, but ...

Not all nonlinearities are smooth.

e Slope limiters in CFD

¢ Non-differentiable constitutive laws.
e. g. Groundwater flow in the unsaturated zone.

¢ Nonsmooth reaction models (see example).
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Nonsmooth Calculus

Assume that F is Lipschitz continuous on RN. Then F is
differentiable almost everywhere.
The generalized Jacobian (Clarke) at x Is

IF (X) = co{ lim F’(xj)}

Xj—X;Xj EDF
You'd like to replace Newton’s method with
Xn_|_1 — Xn _Vn_lF (Xn)

where Vj, € 9F (Xn).
Does that work? How do you compute V,?
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Piecewise smooth function: o=@ + @
d9(0) =[@(0),n(0)], a set.
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Difference approximations

Scalar functions

For Lipschitz functions:
On@(X) € (%) +O(h)

where |[x—x| < h.
Same story for scalar constitutive laws in PDEs.
If you differentiate in coordinate directions!
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Difference approximation accuracy
¢ (0)+0O(h) < dhe(x) < ¢ (0) +O(h), so dho(x) € d9(0) +O(h)
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Semismoothness

A Lipschitz function F is semismooth (Mifflin, Pang, Qi) if

i IFEw) —Fo—vw|
w—0,VedF (x+w) HWH
and semismooth of order p at z if
F(z+w) —F(2) —Vw = O(||w||*"P)

for all we RN and V € dF (x+w) as w — 0.
What you need for local convergence of Newton’s method.
Piecewise smooth functions are semismooth of order 1.
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Why semismoothness?

If
e F semismooth of order p,

e F(x*)=0, and
e everything in dF (x*) uniformly nonsingular,
e X hear X,

then if
Xy =X —V F(xc), where V € dF (xc),

you get fast local convergence

X = X[ = O([lxc — X[|**P).
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Convergence Proof, e=x—X"

Semismoothness (z= X",w = e;,Zz4+ W = X¢) Implies
F (xc) —Vee = O(|lec||*P)
Subtract x* from both sides of
X =X —V TF (%),
to get
e, = e~V (%) = & — e+ O(ec *P) = O([|ec]| *P).

Things get more complicated if x; Is far from x*.
Armijo may falil.
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Formulation of Wtc

Xn+1 = Xn 1+ S
where
[(87 D +V (%n))sn + F (xa) || < 1nl[F (%) |
and

V(x) € 9F (X) +O(h), [x—X]| < h.
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Local Convergence: e, =X,— X" — 0

Once close, grow the time step and get fast convergence.
If Qg =

e F semismooth of order 1.

e F(x*)=0. Everything in JF (x*) nonsingular.

e |(D4+0V(X)ID||<1/(1+B9), forall &> 0.

e Xo sufficiently near x*.

e h sufficiently small.
then &, — o and

|en+1ll = O(llen]|* + (1 + &5 ) [lenl +h).

Early stagnation comes from the difference.
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Stable steady state

Dx' = F(x),x(0) = Xg
has consistent initial data and
X(t) = X" ast — oo

Iteration confined to a neighborhood of the trajectory

X(t) :t > 0.
S(g) = {z| Infllz—x()]| = &}.
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lterations hug trajectory
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Assumptions in §¢)

e (07 D+V(x)) is uniformly bounded and
well-conditioned.

e Vv (X) is uniformly bounded and well conditioned.

We partition V consistently with F.

F (x) = ( ;EE;’; ) and V (x) = (1’/::‘ :’/3: )

Bottom line: x, — X*, &, — o0, everything works.
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Example

—Uz+ A max(0,u)P =0

ze€ (0,1),u(0) =u(1) =0,

where p € (0,1).
Reformulate as a DAE to make the nonlinearity Lipschitz.

Let
uP ifu>0
V= _
u Ifu<o
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Reformulation

Set x= (u,v)'" and solve
f f(uv) \ [ —ugz+Amax(0,v)
F09= ( (U, V) ) ) ( u— W)

oY) = vi/P ifv>0
]l v ifv<O

)

0,
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DAE Dynamics



Why not ODE dynamics?

Original time-dependent problem is
U = Uz — A max(0,u)P.
Applying WYtc to
Vi = U— (V)
rather than using u— w(v) =0 as an algebraic constraint
e adds non-physical time dependence,

e changes the problem, and
e doesn’t work.
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Parameters

e p=.1and A =200. Leads to "dead core".

e O =1.0, Oy = 10°.
e Spatial mesh size §, = 1/2048; discrete Laplacian L,

e Terminate nonlinear iteration when either
IF (%) [I/lIF (x0) || < 107 or ||sn|| < 107°.

Step Is an accurate estimate of error (semismoothness).
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Solution
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Analytic JdF

g(u,V)
—L52U A
p— O .
( u—v—max(0,v/P) >+< 1 )max( V)
Since

0, Ifv<O

dmax(0,v) = ¢ [0,1], ifv=0

1, if v>0,

we get ...
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oF

oF— [ - °
- 1 —1—(1/p)max(0,v(1-P)/P)

0 A
+ ( 0 1 )dmax(o,v).
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Convergence

10 T T T L T T T T
-
, -
, -
-

4 V-

100 K4 _
R4 = function norm
R4 = = step norm

2 e

10 o - O -

-12

10 " \ .

-14

10 | | | | | | | |

C.T. Kelley — p.32



Residual norms
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Residual norms
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Optimal difference increment

Let e be floating point roundoff. Include this and
V(X) € dF (X) +O(h+ &g /h)
So, if ||en]| = v/h, then
ent1 = O((h+é&r/h)]len]| +[|&n]|*+h)
=0 (% + h)

which is minimized if h= O(g%°) ~ 1010 in IEEE.
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Conclusions

Wtc can help if Newton-Armijo fails
Generalized derivatives can be used in Wtc

Difference approximations work well with care
Scalar functions and substitution operators
Differentiate in coordinate directions

Finite-difference Newton-Krylov needs more structure
(in the works)

Stagnation tied to difference increment
Many applications
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