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Abstract
Computer systems and applications are

growing more complex. Consequently,
performance analysis has become more difficult
due to the complex, transient interrelationships
among runtime components. To diagnose these
types of performance issues, developers must use
detailed instrumentation to capture a large number
of performance metrics. Unfortunately, this
instrumentation may actually influence the
performance analysis, leading the developer to an
ambiguous conclusion. In this paper, we introduce
a technique for focussing a performance analysis
on interesting performance metrics. This
technique, called dynamic statistical projection
pursuit, identifies interesting performance metrics
that the monitoring system should capture across
some number of processors. By reducing the
number of performance metrics, projection pursuit
can limit the impact of instrumentation on the
performance of the target system and can reduce
the volume of performance data.

1 Introduction
As high-performance computer systems and

applications continue to increase in complexity,
the process of performance analysis grows more
difficult. Runtime performance problems result
from a web of interactions among components
including both physical (e.g., cache hierarchy) and
logical resources (e.g., I/O buffers). Although the
performance implications of each isolated
component is relatively well understood, it is less

clear how this web of time-varying relationships
influences overall system performance. To
understand these relationships and correct
performance problems, developers must use
performance instrumentation systems that capture
detailed information on a large number of these
time-varying performance metrics. Unfortunately,
this instrumentation can influence the performance
of the target system and can produce tremendous
volumes of data [13].

To help combat these consequences of
performance instrumentation, the instrumentation
system should provide support for selecting
metrics and measurement points so as to minimize
the effects of its instrumentation. As a result, the
challenge for developers of performance analysis
systems is to reconcile these goals of generating
detailed, useful performance information while not
dramatically impacting the characteristics of the
performance analysis.

We introduce dynamic statistical projection
pursuit (or PP) as one possible strategy to reduce
perturbation and data volume while retaining
interesting characteristics of performance data.
This statistical technique, when used for
performance analysis, attempts to reduce the
number of performance metrics (or
dimensionality) that a monitoring system must
manage, which, in turn, can dramatically reduce
perturbation and data volume. Our tool, which
uses projection pursuit, achieves this goal by
periodically identifying interesting performance
metrics. The runtime monitoring system can use
this information to focus instrumentation on the
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interesting metrics. By reducing the number of
performance metrics, the system can reduce the
cumulative amount of data it must manage.

1.1 Framework
Our prototype framework for projection

pursuit is event-based performance monitoring.
This type of monitoring gathers performance
metrics on as shown in Figure 1. Individual
processors, whether parallel or distributed nodes,
generate streams of events. Each event, in turn,
contains a timestamp, event identifier, and some
number of metric-value pairs. Subsequently, these
events can be either written to files or consumed
by a runtime monitoring system. Often, some
centralized agent merges multiple event streams in
ascending timestamp order for additional analysis
or visualization. In this framework, event tracing
provides the detailed data needed to understand
software component interactions, albeit potentially
at great cost. Consider that with P processors
generating n metrics as discrete events, the
monitoring system must accept data at the rate of
approximately n × P events at any time t.
Consequently, over a very short period of time,
this data rate can overwhelm most runtime
monitoring systems or storage facilities. Thus, an
intricate and complex problem emerges: event

tracing is desirable to understand detailed
behavior, but the potentially large data volume,
large number of performance metrics, and
behavioral perturbations make event-tracing
impractical for large, long-running applications.

To retain the advantages of event tracing while
reducing total data volume and perturbation, one
must intelligently manage both the number of
metrics needed to identify bottlenecks (i.e., n) and
the number of locations where data must be
captured (i.e., P).

1.2 Motivation
Two factors motivate our particular

investigation of projection pursuit: the necessity to
provide additional support to users’ analysis of
huge performance datasets, and the desire to
automate instrumentation management within the
runtime monitoring system.

First, we wanted a technique that could
provide users with hints about interesting regions
of the dataset. Given the size of these  datasets,
locating anomalies and other patterns can be
tedious and error prone for humans. Projection
pursuit solves this problem directly by extracting
statistically interesting features from the dataset.
This information can be mapped to a software
visualization or some other analysis tool to aid a
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Figure 1: Overview of the generation of performance metrics in a HPC environment.
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user’s exploration of the performance data.
Second, the ultimate goal of automated

performance analysis is to have a runtime
monitoring system capable of automatically
focussing on important sections of code and
performance data. To achieve this goal, the
monitoring system must have a suitable, objective
policy that it can perform automatically without
human intervention. Because projection pursuit is
a statistical technique that describes a dataset with
objective measures, it is one good candidate for
this policy.

1.3 Paper Organization
The rest of this paper discusses these issues in

more detail. Section 2 introduces performance
metric spaces. Section 3 explains projection
pursuit and describes how we use it for
performance analysis. Section 4 uses experimental
traces to evaluate projection pursuit. Section 0
outlines related work. Finally, Section 6
summarizes our conclusions.

2 Performance Metric Spaces
To formalize this notion and to provide a basis for
analysis, consider a set of n dynamic performance
metrics, each measured on a set of P parallel tasks.
Conceptually, one can then view an event trace as
defining a set of n dynamic performance metrics,
mi(t), on each of P tasks

(m1(t), m2(t), ... , mn(t))p     p = 1, 2, …, P

that describe parallel system characteristics as a
function of time t. Following [16], if Ri denotes the
range of metric mi(t), we call the Cartesian product

M = R1 × R2 × ... × Rn

a performance metric space. Thus, the ordered n-
tuples

(m1(t) ∈ R1; m2(t) ∈ R2; ... ; mn(t) ∈ Rn) (1)

are points in M(t), and the event trace defines the
temporal evolution of these P points in an n
dimensional space.

Figure 2 illustrates a 3-D performance metric
space. Each of the ten points represents the value
of three metrics for one processor at one point in

time. The collection of these ten points defines a
metric trajectory over time. While this trivial
example illustrates our formalization, we expect to
use our techniques on much larger systems where
n > 10 and P > 10.
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Figure 2: Example of performance metric space. (Single
processor with three metrics and 10 sample points.)

The goal of event trace data reduction is now
clearone must reduce both the number of
measurement points (i.e., reduce P) and the
dimensionality of the metric space (i.e., reduce n).
Dynamic statistical clustering [16] has addressed
the first problem of reducing the number of
measurement points. We propose projection
pursuit as a solution to the second problem of
reducing the dimensionality of the performance
metric space.

3 Projection Pursuit
Projection pursuit [15] is a statistical

technique for exploratory data analysis on high-
dimension data. It shares many ideas with other
techniques such as Grand Tour [6] and Parallel
Coordinate Plots [20]. Intuitively, projection
pursuit projects many different views of high-
dimension data onto a 3-D space and then, it
judges the success of this mapping with an
objective, mathematical calculation. Upon
termination, projection pursuit outputs the
particular mapping that provided the most
successful view. For instance, Figure 3 illustrates
the mapping of 3-D scatterplot data onto two
orthogonal 2-D planes. Given these two 2-D
projections of the 3-D data, it is easier to judge the
data’s underlying structure.
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3.1 Background
In this work, we use 3-D projection pursuit;

this version maps high-dimensional data into 3-D
space and measures the interestingness from
properties in three dimensions. However, note that
projection pursuit is not limited in the number of
input dimensions, and recently, researchers have
extended PP to higher-dimensions, such as 4-D
and 5-D [6]. Furthermore, if the system needs a
ranking of all dimensions, then PP can be used
repeatedly on one dataset while removing the
winning three dimensions after every PP phase
and re-executing PP on the smaller dataset.

Figure 3: Two projections of 3-D data onto two
orthogonal 2-D planes.

Specifically, projection pursuit optimizes
(pursues) a criterion for a projection of a
multivariate data set. The criterion of a projection
is calculated with an objective function, called the
projection index, that measures interesting
structure within a view [8]. PP, then, augments the
projection hoping to make the index more
successful. One of several common optimization
techniques can drive this augmentation of the
projection. When complete, PP reports what
projection of the multivariate data set had the most
successful index. This information about the
successful projection also furnishes the identity of
the subset of the dataset’s dimensions (or metrics)
that contributed to this projection.
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Figure 4: Data flow for Projection Pursuit System.

More formally, the n metrics (as presented in
Equation 1) collectively define a vector basis for
an n-dimensional coordinate system, the n
orthonormal unit vectors. Projection pursuit
identifies a smaller set k of orthonormal vectors
that are each a linear combination of the original n
vectors. The largest components of these
projection vectors represent the most successful
metrics (i.e., the set of metrics that contributed to a
successful projection). Typically, the
dimensionality k of the projection is two or three,
so one can easily comprehend the resulting metric
space. Moreover, because the most important
metrics are represented as the largest components
of the projection vectors, an algorithm can inspect
the magnitude of these components to
automatically select the subset of metrics to be
recorded. This process of reducing the number of
metrics that the system must record ultimately
reduces total data volume.

Figure 4 illustrates the flow of data for the
projection pursuit algorithm as applied to our
performance analysis system. First,
instrumentation generates raw performance
metrics that can be any combination of physical
and logical resource measurements including
hardware counters, system software statistics,
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library information, and application data. These
metrics flow as events to filtering modules or
storage. Next, analysis begins with data
preprocessing that converts the raw performance
data into a suitable metric space for PP. Finally,
PP analyzes many views of the data and calculates
the corresponding index for each view. The most
successful index provides the most interesting
metrics.

Input smoothed data X
Create Y by sphering, centering, and scaling data X
Calculate product moment tensors on Y
For iterations

Generate initial projection directions(a,b,c)
Do

Modify projection directions(a,b,c) in Y
Calculate Power sums
Calculate k-statistics
Calculate projection index and derivatives

Until optimal?
Done
Output most successful projection solution

Figure 5: Projection Pursuit Algorithm.

Figure 5 outlines our implementation for the
projection pursuit algorithm. The input data set X
is a matrix with P rows and n columns:
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That is, each processor records at most n metrics,
and these n metrics from P processors serve as
input to PP.

3.2 Data Preprocessing
Initially, the smoothed performance metrics in

X require preprocessing prior to supplying them to
the PP algorithm. We execute several operations
on the input data. First, as shown in Equation 2,
we create continuous metrics from discrete events
with smoothing. Second, we trim the data. Finally,
we center and sphere the data, before passing it to

PP.

3.2.1 Smoothing
PP expects a metric space where processor

behaviors over time are temporal trajectories
through a continuous metric space. In contrast,
most monitoring systems, including our event-
based systems, define actions at discrete times and
locations. To solve this problem of continuous
performance trajectories, we smooth metrics for
key events. Our smoothing uses a sliding window
average technique as shown in Equation 2. The
user specifies the length of the sliding window w.
Although this sliding window average has the
disadvantage of being a non-linear band pass filter
that eliminates rapid variations, this technique for
smoothing is computationally inexpensive and
widely accepted.

3.2.2 Trimming
Outliers tend to influence the projections; so

we can modify the data to either remove the
outliers altogether, or to reduce their influence on
the dataset. Our implementation has several
trimming methods. The first method does not alter
the data set, however possible outliers are
indicated and logged. Second, the implementation
can remove outliers from the dataset. The third
method uses log trimming to change the outlier’s
distance from the origin from r to (1 + ln r). The
final method is similar to the third method but the
trimming uses a square root function to change the
outlier’s distance from the origin from r to

( ).23 r−
Our experiments indicate that for our

performance metric traces, the third and fourth
methods do not produce significantly different
results from the first method. Therefore, we do not
trim the data.

3.2.3 Centering
Some performance metrics have relatively

arbitrary origins, so we center each metric to have
zero mean. To each element of X, we apply

iijij xxx −=′  across all the values for each metric.

3.2.4 Sphering
Next, sphering transforms the metrics so that

they have an identity covariance matrix.
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Effectively, sphering and centering change the
data set so that their answers differ from variance-
based techniques, such as principal component
analysis. Tukey and Tukey provide additional
discussion on centering and sphering in [19]. Our
sphering algorithm, taken from [15], applies a
linear transformation Q to the centered data X’.
The result Y=QX’ remains centered and has
variance Sy=QSQT. The convenient choice of
Q=S−0.5 ensures that Sy is the identity matrix. Q is
easily computed from the principal components.

3.3 Projection Pursuit Algorithm
Once the smoothed performance metrics X are

transformed into preprocessed data Y, the
fundamental portion of the projection pursuit
algorithm begins. This algorithm, as given in
Figure 5, enters a loop that evaluates dataset Y
with several different initial projection directions.
Nason [15] provides additional details on this
algorithm.

For each initial direction, the algorithm repeats
the optimization process. The algorithm first
calculates the product moment tensors of the input
data Y. These tensors provide computationally
efficient methods for all evaluations of the index
and its derivatives. Then, the power sums and k-
statistics calculations generate a new projection of
the data Y using the projection directions (a,b,c).
With each new projection of Y, the algorithm
calculates a new index and derivatives. The index
represents the success of the current projection of
Y while the derivatives furnish the proximity to a
local maximum and the direction that should be
followed to maximize the index. When optimality
is found for a particular projection direction, the
algorithm saves this direction and continues trying
new projection directions for a finite, user-
specified number of iterations. When the
algorithm finishes trying these different initial
projections, it returns the most successful
projection in a structure called the varimax matrix.
The results of the varimax matrix are easily
interpreted where the most important three metrics
correspond to the maximum value for each column
(x, y, z) such that there are three distinct metrics.

PP attempts to find linear combinations of the
original variables to maximize the index. In other
words [15], these linear combinations can be
thought of as projections onto a projection vector

a: Z=aTY. Let I(a) denote a generic projection
index. The optimization problem for PP then
becomes

max I(a) subject to aTa=1.

Extending the projection index to 3-D, we can
change the optimization problem to

max I(a,b,c) subject to
aTa=1, bTb=1, cTc=1 and
aTb=0, aTc=0, bTc=0.

The additional three constrains (e.g., bTc=0)
guarantee that the three projection vectors are
orthogonal unit vectors.

In our implementation of PP, the initial
projection directions are randomly generated
vectors using 128 byte random seeds. This
randomization allows the algorithm to quickly
generate multiple views and prevents any
unnecessary bias towards a particular projection
direction.

3.3.1 Projection Index
Clearly, the choice of the projection index

dramatically influences the results of PP. The
index usually measures some physical property of
the data, such as clottedness or the difference
between the Shannon entropies of the projected
data density and the standard normal density. In
one model by Friedman-Tukey [9], the index
measures clottedness and the optimization
algorithm uses a general hill climbing technique to
generate new views of the subspace.

Comparatively, projection pursuit differs from
principal component analysis (PCA) because if
sample variance is selected as the projection index,
then PP creates results similar to PCA (albeit PCA
itself provides an analytical solution directly [15]).
In fact, other methods including discriminate
analysis and factor rotation are special cases of PP.

Our implementation uses the 3-D index
decribed by [15]. Nason extended a one-
dimensional index formulated by Jones and Sibson
to three dimensions. The original one-dimensional
index is based on the approximation of the
difference between the Shannon entropies of the
projected data density, f, and the standard normal
density, φ. In the one-dimensional case, the
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equation is

∫ ∫− dxxxdxxfxf )(log)()(log)( φφ

3.3.2 "Interestingness"
In PP, the index provides an objective measure

of interestingness for each view of the dataset.
Although interestingness has a variety of
definitions, it is generally considered to be an
overall measure of pattern value [7]. This measure
can include notions such as novelty,
understandability, usefulness, and validity.
Unfortunately, notions like understandability are
subjective and frequently, difficult to quantify.

Our index for PP, created by Nason, locates
non-normal, novel views of the centered, sphered
dataset. For this index, we were chiefly interested
in a focus on novelty in the data, and we were less
interested in these other notions. Also, because of
the randomness inherent in the projection vector
generation and the optimization process, PP does
not guarantee that two similar datasets produce
comparable PP results.

3.4 Implementation Issues

3.4.1 Projection Pursuit Updates
As noted earlier, projection pursuit selects

interesting metrics from all of the smoothed input
data in M(t) at some discrete point in time.
Consequently, projection pursuit must be
performed periodically on consecutive snapshots
of M(t). Like M(t), the results of PP (or the
importance of individual metrics for performance
analysis) vary with time. Hence, the frequency of
triggering projection pursuit becomes an important
issue. If the frequency is too high, then the
performance analysis system generates additional
overhead. On the other hand, if PP is seldom
triggered, then the performance analysis system
might retain one set of interesting metrics when, in
fact, the set of interesting metrics has changed.

3.4.2 Degenerate Performance Metrics
The data preprocessing must manage at least

one type of degenerate performance metric: any
metric that has zero variance across processors.
This attribute of the performance data creates a

matrix X that does not allow the PP algorithm to
calculate eigenvectors. Therefore, data
preprocessing removes any degenerate metric
prior to executing the PP algorithm by
repackaging X without the degenerate columns.

3.4.3 Data Reduction
By definition, PP selects the three most

interesting performance metrics from a larger set
of metrics. Clearly, the degree of data reduction is
given by the ratio of three to the total number of
metrics: nr 3= . Note that PP selects three metrics
regardless of the number of actual interesting
metrics. In this regard, the key issue is that PP
must discard presumably uninteresting
performance metrics, and in some cases, it may be
very difficult to reduce the dimensionality of the
performance metric space in this way. Experience
indicates that PP and other statistical methods
often achieve this goal; however, it is not
guaranteed.

4 Experimental Evaluation
To explore our hypothesis of using projection

pursuit to highlight interesting performance
metrics, we have constructed an operational
prototype for periodic projection pursuit of
performance data. We empirically evaluated our
prototype with a synthetic trace and with
performance data from several applications.

Recall that the general goal of projection
pursuit is data reduction through the reduction of
the number of collected performance metrics (or
the dimensionality of the performance metric
space). To this end, it is important that projection
pursuit selects appropriate metrics without losing
important information. As illustrated in Figure 5,
PP relies on many factors for metric selection
including sliding window size, projection index,
optimization mechanism, jitter control threshold,
scaling technique, sphering technique, and a host
of other parameters that configure the numerical
analysis and optimization within PP.

Our experimental infrastructure consists of a
filter that accepts performance data in Pablo
SDDF record format [1]. Each SDDF record
contains a processor ID, a timestamp, and
numerous metric-value pairs. The filter reads these
SDDF records directly from a file or from the
Autopilot system [17] at runtime. The filter, then,
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periodically emits a SDDF record that describes
the relative importance of each performance
metric as judged by the PP algorithm.

Unless otherwise noted, we tested all the
applications on a cluster of twelve UltraSparc 30-
248 systems connected by 100Mbs ethernet.

4.1.1 Performance Metrics
Table 1 lists each performance metric that we

measured on our target applications. We captured
these measurements with a performance daemon,
which was constructed on Autopilot.

Name Measurement
cpu[idle] Percentage usage of CPU time as idle
cpu[user] Percentage usage of CPU time in user

mode
cpu[kern] Percentage usage of CPU time in

kernel mode
pswitch Number of CPU context switches
intr Number of interrupts
sysfork Number of system forks
bread Number of logical disk reads
bwrite Number of logical disk writes
phread Number of physical disk reads
phwrite Number of physical disk writes
packetsin Number of network packets received
packetsout Number of network packets sent

Table 1: Performance Metrics

The operating system maintains these
measurements as 64-bit monotonically increasing
counters. The performance daemon periodically
samples these counters and takes the difference
from the previous sample. The daemon records
this difference, along with other information
including a timestamp and location identifier.

4.2 Cactus
First, we traced a distributed application for

numerical relativity, called Cactus. The distributed
version of Cactus is primarily built on MPI and
Fortran 90. The Cactus developers describe Cactus
and the underlying physics of numerical relativity
in [4]. We ran the application on eight Sun
UltraSparc 148 workstations that were connected
by a 100Mbs Ethernet.

During application execution, we captured
nine performance metrics on each node and these
metrics were written to a SDDF trace file. The
trace spans the entire run of the application, from 0

to approximately 700 seconds. Figure 6 and Figure
7 provide one portion of these metric traces for
processor 0 and processor 6, respectively. Similar
traces exist for the other six nodes.

In these figures, each metric has been
normalized within its range over the entire trace.
Also, to prevent overlaps and highlight data
trends, we offset each metric.

We, then, fed this trace file into our PP
prototype. We set the sliding window size to 10
seconds and PP update period to 5 seconds. Hence,
the metric selection for PP changes in 5 second
intervals.

Figure 8 shows the results of the PP prototype
for this portion of trace. Three marks indicate
which three metrics PP selected during each 5
second time interval.

Over the selected interval, PP focused
primarily on metrics pswitch and intr with a
secondary emphasis on the three metrics for the
CPU. As represented in Figure 6 and Figure 7,
metrics pswitch and intr appear unrelated across
processors, and PP selects these metrics
consistently. Meanwhile, during this interval, PP
never selects metrics memfree, pgpgin, pgswapin,
or sysfork. All four of these metrics appear
nearly constant across all processors.

4.3 CG-Heat
CG-Heat is a heat diffusion simulation that

solves the implicit diffusion PDE using a
conjugate gradient solver over each timestep. This
code is built with FORTRAN 90 and MPI. Figure
9 and Figure 10 illustrate the traces for the
performance metrics on processors 0 and 2,
respectively.
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Figure 6: Processor 0 of Cactus.
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Figure 7: Processor 6 of Cactus.
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Figure 8: PP result for Cactus.
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Figure 9: Processor 0 of CG-Heat.
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Figure 10: Processor 2 of CG-Heat.
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Figure 11: PP result for CG-Heat.
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During application execution, we captured
twelve performance metrics on each node. The
trace spans the entire run of the application, from 0
to approximately 120 seconds. Figure 9 and Figure
10 show a segment of these metric traces for
processor 0 and processor 2, respectively. This
segment shows the startup section of CG-Heat.
Similar traces exist for the other 10 nodes. For our
experiment, we set the sliding window size to 10
seconds and PP update period to 5 seconds. Figure
11 shows the results of the PP prototype for this
trace segment.

Over the selected interval, PP focused
primarily on metrics bwrite, pswitch,
cpu[idle], and packetsin/out while ignoring
the other metrics. As represented in Figure 9 and
Figure 10, metric bwrite appears unrelated across
these representatives. Further examination of the
other processors reinforced the notion that bwrite
appears random across processors. PP selects
bwrite consistently.

Although the remaining metrics selected by
PP are similar across processors, small differences
do exist. For instance, for packetsin and
packetsout, the interval from 20 to 25 seconds,
both metrics increased substantially; however,
processor 2 had a spike in both metrics while
processor 0 had a smoother increase. The
remaining ten metrics had trends most similar to
processor 0.

For this trace, PP properly ignores the nearly
constant metrics during this segment including
phwrite, phread, bread, and sysfork. In
addition, PP ignores metrics that have very similar
trends even if they are not constant: intr,
cpu[kern], and cpu[user].

4.4 Sweep3D
Sweep3D [11] is a solver for the 3-D, time-

independent, particle transport equation on an
orthogonal mesh. The solver computes along
wavefronts in the mesh in eight diagonal
directions through the cube. This code is built on
FORTRAN and MPI.

As with CG-Heat, during application
execution, we captured twelve performance
metrics on each node and these metrics were
written to a SDDF trace file. The trace spans the
entire run of the application, from 0 to
approximately 415 seconds. Figure 12 and Figure

13 provide one section of these metric traces for
processor 0 and processor 8, respectively. Similar
traces exist for the other ten nodes. This Sweep3D
trace extends the entire duration of the application
execution.

We, then, fed this trace file into our PP
prototype. We set the sliding window size to 4
seconds and PP update period to 2 seconds. Hence,
the metric selection for PP changes in 2 second
intervals, as opposed to the 5 second intervals we
used previously.

Over the selected interval, PP primarily
focused on four metrics: pswitch, bwrite, and
packetsin/out with a distant and secondary
emphasis on the two metrics bread and intr. As
represented in Figure 12 and Figure 13, both
packetsin and packetsout of processor 8 have
a different periodicity than processor 0. On the
other processors, these two metrics appear to have
slightly different periodicity as well as shown in
Figure 17. PP also selects bwrite often because
the magnitude of the spikes and their frequency
vary considerably across processors as Figure 16
illustrates.

As in the earlier cases, PP never selects
metrics phread, phwrite, sysfork, CPU[kern],
CPU[user], or CPU[idle]. Clearly, phread,
phwrite, and sysfork are nearly constant across
all processors, so PP never selects them.

Interestingly, PP does not select any of the
CPU metrics, even though both CPU[user] and
CPU[idle] exhibit considerable variance across
processors as Figure 15 portrays for CPU[user].
Note that in a large majority of the traces for
CPU[user] are at 100% with both periodic drops.
Most of these drops approach 0%, especially drops
taking more than a second. This fact when
combined with smoothing provides a relatively
small variance that is usually confined to two or
three outliers out of twelve.

Unfortunately, the empty time intervals in the
Sweep3D figures identify no metrics because our
current implementation of PP suffers occasional
numerical instabilities. These instabilities force the
PP algorithm to terminate early and, as a result, PP
does not output a selection for that interval.
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Figure 12: Processor 0 of Sweep 3D.

0

200

400

600

800

1000

1200

0 100 200 300 400 500
Time (Seconds)

Processor 8 of sweep3d.sddf.adjTime

cpu[IDLE]

cpu[USER]

cpu[KERN]

pswitch

intr

sysfork

bread

bwrite

phread

phwrite

packetsin

packetsout

Figure 13: Processor 8 of Sweep 3D.

0

200

400

600

800

1000

1200

0 100 200 300 400 500
Time (Seconds)

cpu[IDLE]

cpu[USER]

cpu[KERN]

pswitch

intr

sysfork

bread

bwrite

phread

phwrite

packetsin

packetsout

Figure 14: PP result for Sweep 3D.
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Figure 15: CPU[user] across processors for Sweep3D.
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Figure 16: bwrite across processors for Sweep3D.
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Figure 17: packetsout across processors for Sweep3D.
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4.5 SMG98
SMG98 is a parallel semicoarsening multigrid

solver for the linear systems arising from finite
difference, finite volume, or finite element
discretizations of the diffusion equation,

fuuD =+∇⋅∇ σ)( on logically rectangular
grids. The code solves both 2D and 3D problems
with discretization stencils of up to 9-point in 2D
and up to 27-point in 3D. [5] furnishes details on
the algorithm and its parallel implementation and
performance. This code is a distributed memory
application based on C and MPI.

During application execution, we captured
twelve performance metrics on all workstations at
the frequency of 2 Hertz. All metrics were written
to a SDDF trace file, spanning from 0 to
approximately 120 seconds. Figure 19 and Figure
20 display a portion of the SMG98 traces on
processors 2 and 6, respectively. As with the
earlier traces, each metric has been normalized
within its range over the trace and the metrics are
offset to help discriminate trends.

Figure 21 shows the results of PP for this trace
segment. During this evaluation, we set the sliding
window size to 4 seconds and the PP update
interval to 2 seconds. For this segment, PP focused
on five metrics: packetsin, packetsout, bwrite,
bread, and pswitch. The three metrics of
packetsin, packetsout, and pswitch vary
considerably over the trace segment due to the
setup phases of SMG98. Although these phases
are very closely related given the granularity of
our measurements, PP selects them because they
vary across all processors. Of the twelve metrics,
PP selects bwrite and pswitch most often. As in
the earlier examples, bwrite appears totally
unrelated to the other metrics as well as the
bwrite metric on all other processors. As such, PP
appropriately selects it. On the other hand, PP
chooses pswitch during the startup phase of SMG
when it appears different across processors, as
Figure 19 and Figure 20 show. After this startup
phase, pswitch becomes similar across
processors, resulting in fewer selections by PP.

During this segment, PP never selects
sysfork, intr, cpu[KERN], cpu[USER],
cpu[IDLE], phread, or phwrite. As before,
because the metrics sysfork, phread, and
phwrite are nearly constant, PP never selects
them. On the other hand, intr, cpu[KERN],

cpu[USER], and cpu[IDLE] are surprisingly
similar across all processors. Although these
metrics do vary, they are more consistent across
processors than the remaining metrics. As we
mentioned with the discussion of Sweep3D,
smoothing eliminates many of the rapid changes in
each metric trace.

Note that the empty time intervals in the
SMG98 figures identify no metrics due to the
numerical instabilities in our PP implementation.

4.6 Data Reduction
PP reduces the data volume for the monitoring

system by periodically selecting a subset of
metrics that appears interesting. As mentioned
earlier, PP selects three metrics from n
performance metrics, so the resulting data
reduction is approximately nr 3= ; however, all
records must contain an event identifier, processor
number, and a timestamp. Although, this overhead
on each record reduces the possible gains for PP,
the benefits of using PP grow as the number of
metrics grows.
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Figure 18: Data reduction due to PP metric selection for
Sweep 3D.

For our Sweep 3D example, Figure 18
illustrates the cumulative data reduction due to PP
over the run of the entire application if only those
metrics selected by PP are captured. For this test
on twelve metrics, PP reduces the data volume by
41%. Remember that the advantages of PP
increase with the increase in the number of
metrics; many HPC systems, such as ASCI-scale
platforms, can generate more than 50 performance
metrics.
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Figure 19: Processor 2 of SMG98.
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Figure 20: Processor 6 of SMG98.
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Figure 21: PP result for SMG98.
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4.7 Experiment Summary
Several issues reappeared across all of our

experiments. First, we found that in our
implementation, projection pursuit locates metrics
that appear to have little correlation between itself
and the same metric on other processors.

Second, the numerical instabilities in our
implementation of the PP routines were a
significant problem.

Third, PP runtime is proportional to both the
number of metrics and the number of processors.
We found that our PP filter needed between 0.4
seconds and 1.9 seconds to calculate an answer
when n=12 and P=12.

Fourth, the highest resolution of time in our
experiments was seconds. To allow users the
capability to capture high frequency changes in
their application, we must increase this resolution.

Fifth, smoothing clearly affects the raw data.
We need to compare our sliding window average
technique to other techniques.

5 Related Work
Various research efforts have produced several

strategies to cope with these issues of data
management and application perturbation. Data
reduction strategies chiefly rely on statistical
techniques such as averaging, variance analysis,
covariance matrices, clustering [16], filtering [3],
and principal component analysis (PCA).
Additional data reduction strategies use ideas such
as critical path analysis that help the
instrumentation system focus on important
application components. Strategies for managing
perturbation also use these statistical techniques in
addition to dynamic instrumentation [14] and
minimizing instrumentation requirements [2].

In comparison to this related work, projection
pursuit is most closely related to other statistical
techniques like correlation analysis and clustering.
Correlation or covariance analysis reveals linear
associations among input variables; unfortunately,
this analysis does not identify non-linear
relationships. Also, these descriptive statistics can
be very sensitive to outliers and may indicate
linear association when little exists [10]. One
popular analysis method, principal component
analysis (PCA), relies on a measure of sample
variance to analyze the data, so it is subject to
these constraints as well.

5.1.1 Clustering
Clustering (or segmentation), as described in

both [18] and [16] is a well-know data analysis
technique that categorizes some raw dataset in the
hopes of simplifying the analysis task. Clustering
separates data points into clusters where points
that belong to the same cluster are more similar
than to points in different clusters. When used for
performance analysis [16], dynamic clustering
identifies clusters of processors with similar
performance metric trajectories and then, it selects
one processor from each cluster to represent that
cluster and to gather detailed performance
information. Other members of the cluster
decrease their collection rate for performance
information. Clustering can result in considerable
savings in data volume and instrumentation,
especially when many processors have
performance metrics that form a few basic
equivalence classes, as is the case with SPMD
executions.

Although statistical clustering can reduce the
number of processors or tasks from which event
data must be recorded, it does not reduce the
number of metrics or (equivalently) the
dimensionality of the metric space. Even after
clustering identifies a small number of processor
representatives, the total data volume may remain
high. As an example, when analyzing the
performance of WWW servers [12], researchers
found it necessary to capture nearly fifty metrics
on request types, processor, network, and memory
usage to reliably identify performance problems.

In this regard, clustering identifies clusters of
processors with common performance
characteristics, but clustering does not provide
information on which metrics caused separate
clusters. This is precisely what projection pursuit
provides: valuable information about why
processors have different characteristics, and
consequently, which metrics possibly deserve
more attention during performance analysis.

6 Summary
With a large and growing set of performance

metrics in complex, high performance computing
systems, performance analysts often have
difficulty predicting which performance metrics
are important. Dynamic statistical projection
pursuit is one technique that can help focus
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performance analysis on interesting metrics. It
identifies metrics that do not have well-understood
structure. In this regard, projection pursuit
provides a novel addition to a suite of important
performance analysis techniques that include
clustering and covariance analysis.

With regard to our earlier motivation,
projection pursuit (with our index by Nason) does,
in fact, provide users with additional, novel
information about their performance data. This
information is especially useful when users want
to ask the question “what metrics appear least
correlated across the processors within my
application?” Such a question is particularly useful
for examining SPMD-type applications.

To use projection pursuit as a policy for
automatically managing performance
instrumentation, we need several improvements to
our implementation of the projection pursuit filter.
First, we need a better understanding of the
numerical instabilities that cause projection pursuit
to fail. This understanding could hopefully lead us
to additional preprocessing or different numerical
technique that would eliminate most failures.
Second, we need to improve the performance of
our PP implementation. If users want to capture
rapidly changing metrics, then PP must operate at
an online speed.

Several opportunities exist for future work in
this area of performance analysis. Large systems,
such as the ASCI Blue Pacific system with 4000
nodes, can generate prohibitive amounts of
performance data. Put simply, on these systems,
automated tools to help users identify performance
problems are a necessity. Projection pursuit serves
as one tool that an analyst can use to interrogate
these massive, multidimensional performance
spaces.
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