
Performance Analysis of Distributed Applications using
Automatic Classification of Communication Inefficiencies

Jeffrey Vetter
Center for Applied Scientific Computing

Lawrence Livermore National Laboratory

Livermore, California, USA 94551

+1.925.424.6284

vetter3@llnl.gov

ABSTRACT
We present a technique for performance analysis that helps users
understand the communication behavior of their message passing
applications. Our method automatically classifies individual
communication operations and it reveals the cause of
communication inefficiencies in the application. This
classification allows the developer to focus quickly on the culprits
of truly inefficient behavior, rather than manually foraging
through massive amounts of performance data. Specifically, we
trace the message operations of MPI applications and then classify
each individual communication event using decision tree
classification, a supervised learning technique. We train our
decision tree using microbenchmarks that demonstrate both
efficient and inefficient communication. Since our technique
adapts to the target system’s configuration through these
microbenchmarks, we can simultaneously automate the
performance analysis process and improve classification accuracy.
Our experiments on four applications demonstrate that our
technique can improve the accuracy of performance analysis, and
dramatically reduce the amount of data that users must encounter.

1 INTRODUCTION
Message passing serves as an effective programming technique
for exploiting coarse-grained concurrency on distributed
computers as evidenced by the popularity of the Message Passing
Interface (MPI) [9, 22]. Nowadays, most applications for
terascale computing environments, such as the systems at the NSF
Alliance Centers, the DOE ASCI Labs, and the computational
grid [6], rely totally on MPI for inter-nodal communication.
Often, users even employ MPI for intra-nodal communication
because many implementations of MPI provide highly optimized
communication operations that use shared memory rather than
networking protocols for message transfers.

The performance of these distributed applications can be
challenging to comprehend, as an application’s performance
stems from three factors: application design, software
environment, and underlying hardware. This comprehension is
even more complex when considering computer systems with
hundreds, if not thousands, of processors. One strategy for
optimizing the performance of these applications is to eliminate
the application’s communication inefficiencies. These
inefficiencies arise under many scenarios; one common scenario
occurs when processors are staled for long periods waiting to
receive a message or when the application loses the opportunity to
perform computation simultaneously with communication.
Traditionally, programmers infer explanations for these types of
inefficiencies manually, basing their conclusions on knowledge of
the source code, message tracing, visualizations, and other
customized performance measurements. This manual analysis is
time-consuming, error-prone, and complicated, especially if the
developer must analyze a large number of messages, or if the
messages are non-deterministic.

1.1 Key Insights and Contributions
Simply put, given a reliable technique for automatically
evaluating an application’s message transfers, users could expect
the performance analysis system to converge on inefficient
communication operations. Such automation would typically
reduce the data volume dramatically and would highlight specific
operations in the application that are suspected of communication
inefficiency. Additionally, for any performance analysis
technology to help users understand their application’s
performance, the technology should be able to explain
performance phenomena in terms of decisions a user makes while
constructing their application.

This paper contributes new ideas in regards to both concerns.
First, we automate a portion of the performance analysis process
by categorizing the performance data, emphasizing only those
communication operations that appear unusual in the context of
the current software and hardware configuration. Our method
automatically classifies individual communication operations for
an application and it attempts to reveal the specific causes of
inefficiencies in the application’s communication by mapping
these classifications to source code. This automation allows the
developer to focus quickly on the culprits of truly inefficient
behavior, rather than manually foraging through massive amounts
of performance data.

Second, we show that an extensible, trainable technique is both
practical and valuable for analyzing message behavior across

Appears in ACM International Conference on Supercomputing
2000 (Santa Fe, NM USA).



different hardware and software
configurations. Accordingly, our technique
is rooted in machine learning, and, in
particular, decision tree classification
(DTC). Using this method, we train our
classification system with MPI benchmarks
that exhibit both efficient and inefficient
communication behaviors. Since our
classification technique adapts to the target
software and hardware configuration, we
provide users with precise evaluations of
their messaging activity while reflecting
differences across configurations. Also, our
choice of decision tree classification is a
considerable advantage in that a user can
easily understand how the filter produced
each specific classification.

We demonstrate our ideas with an
operational prototype by applying it to four
message-passing applications. We use the
classification system to reveal the specific
location of communication inefficiencies in the source code, as
well as an explanation for the inefficiency.

1.2 Paper Organization
The remainder of this paper discusses these issues in more detail.
Section 2 introduces MPI and trace-based performance analysis.
Section 3 explains decision tree classification. Section 4 provides
an implementation overview, and in particular, describes how we
integrated trace-based performance analysis with decision tree
classification. Next, Section 0 uses several MPI applications to
evaluate the goals our approach. Section 6 outlines related work.
Finally, Section 7 states our conclusions.

2 USING MPI FOR DISTRIBUTED
APPLICATIONS

We focus our evaluation on the message-passing interface (MPI)
[9, 22] because MPI serves as an important foundation for a large
group of applications, and because the elimination of
communication inefficiencies from MPI applications is a well-
known technique for improving application performance.

Concisely, MPI provides a wide variety of communication
operations including both blocking and non-blocking sends and
receives, and collective operations such as broadcast and global
reductions. We concentrate on basic message operations: blocking
send, blocking receive, non-blocking send, and non-blocking
receive. Note that MPI provides a rather comprehensive set of
messaging operations and we do not evaluate every combination
of these operations. We focus our attention on this subset of
operations because they are well understood and widely used. We
believe that our strategy is applicable to other MPI operations, and
we are beginning to evaluate them.

2.1 MPI Blocking Send–Receive
MPI’s primitive communication operation is the blocking send to
blocking receive. The first message operation in Figure 1
illustrates one message transfer from task 0 to task 1 using a
blocking send and blocking receive, respectively. A blocking send
(MPI_Send) does not return until both the message data and

envelope have been safely stored. When the blocking send
returns, the sender is free to access and overwrite the send buffer.
Note that these semantics allow the blocking send to complete
even if no matching receive has been executed by the receiver.
Task 0, in Figure 1, uses MPI_Send to transfer the contents of
sdata to task 1. Once MPI_Send returns, task 0 is free to use or
overwrite the data in sdata.

A blocking receive (MPI_Recv) returns when a message that
matches its specification has been copied to the buffer.  The
receive operation specifies three parameters that identify which
message it wishes to match: a source identifier, a message tag, and
a communicator. In Figure 1, task 1 continues only when
MPI_Recv returns, which assures task 1 that rdata is ready to use.
Both task 0 and task 1 must use the same communicator and
message tag for this message transfer.

2.2 MPI Non-blocking Send–Receive
As an alternative to blocking communication operations, MPI
provides non-blocking communication to allow an application to
overlap communication and computation. Usually, this overlap
improves application performance, albeit at the cost of some
software complexity. In non-blocking communication, initiation
and completion of communication operations are distinct. The
second message operation in Figure 1 illustrates one message
transfer from task 1 to task 0 using a non-blocking send and non-
blocking receive, respectively.

A non-blocking send has both a send start call and a send
complete call. The send start call (MPI_Isend) initiates the send
operation and it may return before the message is copied from the
send buffer. The send complete call (MPI_Wait) completes the
non-blocking send by verifying that the data has been copied from
the send buffer. It is this separation of send start and send
complete that provides the application with the opportunity to
perform computation. Task 1, in Figure 1, uses MPI_Isend to
initiate the transfer of sdata to task 0. During the time between
MPI_Isend and MPI_Wait, task 1 cannot modify sdata because the
actual copy of the message data from sdata is not guaranteed until
the MPI_Wait call returns. After MPI_Wait returns, task 1 is free to
use or overwrite the data in sdata.

Task 0 Task 1
#define size 1024
int sdata[size];
int rdata[size];
MPI_Status status;
MPI_Request request;
int tag = 30;
/* initialization */
/* ---- blocking send-recv 0 -> 1 */
/* fill sdata */
MPI_Send (sdata, size, MPI_INT, 1,
      tag, MPI_COMM_WORLD);
/* use or overwrite sdata */
/* ---- non-blocking send recv 1->0 */
MPI_Irecv (rdata, size, MPI_INT, 1,
     tag, MPI_COMM_WORLD, &request);
/* computation excluding rdata */
MPI_Wait(&request,&status);
/* use rdata */
/* finish */

#define size 1024
int sdata[size];
int rdata[size];
MPI_Status status;
MPI_Request request;
int tag = 30;
/* initialization */
/* ---- blocking send-recv 0 -> 1 */
MPI_Recv (rdata, size, MPI_INT, 0,
    tag, MPI_COMM_WORLD, &status)
/* use rdata */
/* ---- non-blocking send recv 1->0 */
/* fill sdata */
MPI_Isend (sdata, size, MPI_INT, 0,
     tag, MPI_COMM_WORLD, &request);
/* computation excluding sdata */
MPI_Wait(&request,&status);
/* use or overwrite sdata */
/* finish */

Figure 1: Example message operations with MPI.



Similarly, a non-blocking receive has both a receive start call and
a receive complete call. The receive start call (MPI_Irecv) initiates
the receive operation and it may return before the incoming
message is copied into the receive buffer. The receive complete
call (MPI_Wait) completes the non-blocking receive by verifying
that the data has been copied into the receive buffer. As with non-
blocking send, the application has the opportunity to perform
computation between the receive start and receive complete calls.
Task 0, in Figure 1, uses MPI_Irecv to initiate the receive of sdata
from task 1. During the time between MPI_Irecv and MPI_Wait,
task 0 cannot read or modify rdata because the message from task
1 is not guaranteed to be in this buffer until the MPI_Wait call
returns. After MPI_Wait returns, task 0 is free to read rdata.

2.3 Communication Efficiency
Poor communication efficiency can restrict both the performance
and scalability of distributed applications [5]. Qualitatively, we
define poor communication efficiency as excessive cost for
sending, receiving, or transferring messages, where we define
excessive cost as greater than the cost for a normal message
transfer with a similar configuration and message size. From the
performance perspective, several timings can help reveal the
efficiency of MPI communication.

Figure 2(a) shows the normal flow of messages for the code
segment in Figure 1. Each MPI operation has a start time,
MPI_OpTS, and duration, MPI_OpDUR. We define the duration of a
complete message transfer to be the difference between the end of
the receive and the beginning of the send. For blocking receives,
this message duration is (MPI_RecvTS + MPI_RecvDUR) –
MPI_SendTS. For nonblocking receives, we must use the
completion time of the matching MPI_Wait, so the message
duration is (MPI_WaitTS + MPI_WaitDUR) – MPI_SendTS. Send start
applies to both blocking and non-blocking sends. Messages A and
B in Figure 2(a) illustrate a normal blocking message transfer and
a normal non-blocking message transfer, respectively. Although
this definition does not capture the actual departure and arrival of

messages in hardware, it does capture sufficient
information from the viewpoint of the application
to make decisions about communication
efficiency.

Put simply, our notion of efficiency expects MPI
tasks to expend only a normal amount of time for
any message transfer, where a normal message
transfer on the target system is empirically
measured. Any deviation from this standard
causes the task to idle unnecessarily while
waiting on the communication operation to
complete.

Figure 2(b) shows several types of
communication inefficiencies. For example,
message C has a high MPI_RecvDUR when
compared to the normal transfer for message A.
Further examination reveals that both the
message duration and the MPI_SendDUR are
normal. Based on this information, we label this
inefficiency a late send. We identify these
inefficiencies with labels that have direct
meaning to the user in terms of software design.
In this example, a user could improve the
efficiency of this message transfer by moving the

MPI_Send forward in the control flow of task 0. Using this
process, we initially developed seven types of message transfers
as shown in Table 1.

We selected and named these inefficiencies with the goal of
helping users improve the performance of their applications.
Many other categories would be valid and could provide similar
types of diagnostic information; however, our categories are
consistent and they prescribe to the user straightforward
modifications to the application.

3HUIRUPDQFH�$QDO\VLV

$SSOLFDWLRQ�'HYHORSPHQW

$SSOLFDWLRQ
([HFXWLRQ

,QSXW�
'DWD

2XWSXW�
'DWD

$QDO\VLV�DQG
9LVXDOL]DWLRQ

3HUIRUPDQFH
7UDFH�'DWD

03,
$SSOLFDWLRQ
6RIWZDUH

+DUGZDUH�DQG
6RIWZDUH

&RQILJXUDWLRQ

,QVWUXPHQWHG
03,�/LEUDU\

7UDFH
5HFRUGV

Figure 3: MPI Application Performance Tracing.

2.4 Tracing MPI Applications
To capture the respective timings of MPI operations, we trace
application execution. As illustrated in Figure 3, using an
instrumented library (or an otherwise instrumented application),
tracing captures information about an application component in
the form of discrete events over a period of time. Users may
analyze these events at runtime or they may write these events to
a log file for post-mortem analysis. Most trace-based performance

Task 1

Task 0
MPI_Send

MPI_Recv MPI_Isend MPI_Wait

MPI_WaitMPI_Irecv

Task 1

Task 0
MPI_Send

MPI_Recv MPI_Isend MPI_Wait

MPI_WaitMPI_IrecvMPI_Send

MPI_Recv

A

C D E

Ba)

b)

Msg Duration Msg Duration

TS

DUR

Figure 2: Space-time diagrams of message operations.



analysis systems including PICL, Pablo, and Tau [8, 18, 21] use
this approach. We choose tracing because it provides a
chronological description of application events and consequently,
it is more general than techniques such as profiling.  This detailed
description of message activity is necessary because we must be
able to reconcile specific message sends with their receives. Our
tracing system takes advantage of MPI’s profiling layer by
capturing information about each MPI call into an event structure,
periodically flushing the event buffer to local disk.

These benefits of tracing in mind, several shortcomings can limit
tracing’s usefulness. First, instrumentation is necessary in either
the application itself or a library that the application calls. Second,
the perturbation introduced by tracing can change the results of
the analysis [7]. Third, tracing generates a tremendous volume of
data. Hence, users must extract useful information from these
large traces.

These shortcomings are manageable for our current
implementation. First, users can trace applications transparently
by using an instrumented library, which, in turn, uses the MPI
profiling layer. Second, tracing is especially useful for capturing
message passing and I/O activity because they are generally high-
latency operations and the amortized costs for tracing are
relatively small when compared to communication and I/O
operations. During our evaluation of MPI applications, the change
in overall application runtime with tracing was statistically
insignificant relative to the normal runtime. Finally, although the
third challenge has prompted significant research efforts,
especially in the area of visualization [10, 23], we advocate a
different approach, which is the subject of this paper.

3 DECISION TREE CLASSIFICATION
Decision tree classification, as defined in machine learning
literature [16], is a classification technique that discovers and
analyzes patterns in input feature vectors. This technique maps the
input feature vector into one of several predefined classes by
applying a series of tests to the feature vector. Very simply, a
decision tree is an unbalanced tree with internal nodes
representing tests, and leaf nodes signifying classes as represented
in Figure 4. Classification begins with the test at the root of the
tree, and continues along branches of the tree until a leaf (or class)
is encountered. Each test has mutually exclusive and exhaustive
outcome. In our domain of communication performance analysis,
Figure 4 illustrates two branches of an example decision tree for
classifying a message transfer. In Figure 4, the classification
procedure must apply three tests to arrive at either of the two
classes depicted, late recv and late send. As a supervised learning
technique, decision trees generate their series of tests inductively
from a set of representative examples provided by the user.

We focus on decision trees for three reasons [4]. First, models
developed by decision trees are intelligible to human users.
Unlike neural networks and genetic algorithms, decision trees
allow users to verify how the classification arrived at its answer
simply by looking at the set of tests applied to an input feature
vector. Second, decision trees are relatively efficient in both
modeling and classification when compared to other supervised
learning techniques. Finally, other techniques such as neural
networks may lower the error rate of the classification procedure;
however, we exchange this possible inaccuracy of decision trees

Type Applies to Performance diagnosis
Normal All operations Message operation appears normal.
Late Send MPI_Send Send operation appears late. Move forward in control flow.
Late Receive MPI_Recv Receive operation appears late. Move forward in control flow.
Late Send Post MPI_Isend Same as Late Send.
Late Send Wait MPI_Wait for matching MPI_Isend Wait operation appears late. Move forward in control flow to allow MPI task

earlier access to the data in send buffer.
Late Receive Post MPI_Irecv Same as Late Receive.
Late Receive Wait MPI_Wait for matching MPI_Irecv Wait operation appears late. Move forward in control flow to allow MPI task

earlier access to the data in receive buffer.
Table 1: Communication inefficiencies.

0VJ�'XU�!�����

5HFY�2S 6HQG�2S

yes no

5HFY�ZDLW�GXU
!�����

isendsend

/DWH
6HQG

Additional
Tests

Additional
Tests

Additional
Tests

recvirecv

5HFY�'XU
� �����

Additional
Tests

/DWH
5HFY

yes
no

yes

no

Figure 4: Example decision tree.

&ODVVLILFDWLRQ�3KDVH

0RGHOLQJ�3KDVH

03,
%HQFKPDUNV

([HFXWLRQ
3HUIRUPDQFH
7UDFH�'DWD

'7&�
7UDLQLQJ

'7&�
5XOHV

9HULILFDWLRQ

03,
$SSOLFDWLRQ

([HFXWLRQ
3HUIRUPDQFH
7UDFH�'DWD

'7&
&ODVVLILFDWLRQ

3HUIRUPDQFH�$QDO\VLV

Figure 5: Integration of decision tree classification with
performance analysis.



for their superior understandability.

As noted earlier, the use of decision trees has two distinct phases:
the modeling phase and the classification phase. In the modeling
phase, the user provides the decision tree with representative
examples of feature vectors along with the user-specified
classification. The decision tree constructs its set of tests from
these samples. In the classification phase, the user provides the
decision tree with unclassified feature vectors and the trained
decision tree, then, classifies each vector.

4 IMPLEMENTATION OVERVIEW
Our experiment architecture consists of a MPI tracing tool that
captures a trace file for each MPI task and a post-mortem analysis
filter that merges and classifies the MPI message activity of the
application. As illustrated in Figure 5, our process divides into
two parts: the modeling phase and the classification phase.

4.1 Modeling Phase
In the modeling phase, we train the decision tree by providing it
with examples of efficient and inefficient MPI behavior. During
this phase, the decision tree generates the series of rules (or tests)
it will later apply to unclassified performance data. As Figure 5
depicts, the modeling phase begins with the execution of MPI
microbenchmarks on the target platform using the same software

and hardware configuration as the
user’s environment. We use multiple
microbenchmarks to train our
decision tree; they are normal MPI
programs with one simple procedure
call delineating the different phases of
performance behaviors. The
benchmarks reproduce these
behaviors for message activity in a
way that maps easily to the decisions
a user makes about application
design. These benchmarks currently
create the message transfer behaviors
introduced in Section 2.3; these
behaviors are normal, late send, late
recv, late send post, late send wait,
late recv post, and late recv wait.

Figure 8 illustrates the
microbenchmark for a late send post
of an isend-recv message transfer

between task 0 and task 1. After each task marks its phase, it
loops over a range of message sizes for several iterations. Since
the benchmark in Figure 8 is emulating a late send post, it delays
the MPI_Isend and generates the delay time with a uniform
distribution function over a predefined range. To prevent any
biases in the underlying synchronization mechanism, we execute
each benchmark with multiple pairs of tasks.

During microbenchmark execution, the tracing system captures an
event for each MPI call and writes it to a trace file. Each
microbenchmark labels each phase of their execution with a stamp
describing the behavior that it is emulating. Later, a filter merges
multiple trace files and reconciles sends with receives. The result
of this reconciliation is a series of records containing fundamental
information about each message transfer.

In Figure 6, all times are normalized to the average of those times
measured for the normal class for a range of message sizes. Each
record contains two attributes identifying the type of send
operation and receive operation, and five durations relating to the
transfer: send duration, send wait duration, receive duration,
receive wait duration, and message duration. All durations except
the message duration are the length of the time required to
complete the respective MPI call as noted in Section 2.3.

With these training records (or examples) in hand, we use the
DTC generator to create the decision
tree. The output of this process is a
decision tree and a set of production
rules as outlined in Section 3. Quinlan
[16] provides complete details on the
algorithm for decision tree generation.
We save this decision tree for the
classification process. Take note that
each decision tree applies to only one
software and hardware configuration.
When this configuration changes, the
user must regenerate the decision tree.

To verify the tests generated by the
decision tree, we apply it to the
original training data used to develop
the tree. For this training set, Table 2

Send
Type

Send
Dur

Send
Wait
Dur

Recv
Type

Recv
Dur

Recv
Wait
Dur

Msg
Size

Msg
Dur

Class

send 1.06 0.00 recv 0.98 0.00 16 0.97 normal
send 1.00 0.00 recv 0.92 0.00 16 0.93 normal

isend 1.77 1.22 recv 41.49 0.00 2 0.70 late send post
isend 1.26 1.14 recv 4.50 0.00 2 0.73 late send post
isend 0.65 1.84 irecv 1.12 0.82 32768 1.83 late recv post
isend 0.93 3.15 irecv 1.29 0.87 32768 3.05 late recv post

Figure 6: Examples of user classified training records
(input feature vectors) for modeling phase.

Send
Type

Send
Dur

Send
Wait

Recv
Type

Recv
Dur

Recv
Wait

Msg
Size

Msg
Dur

Class Conf
Factor

send 2.90 0.00 irecv 2.70 1.86 1250 2.07 late recv post 0.92
send 3.35 0.00 irecv 1.21 1.60 1250 2.36 late recv wait 0.99
send 3.36 0.00 irecv 1.21 1.45 1250 2.34 late recv wait 0.99

Figure 7: Trace records for CG-Heat messages after classification.

Task 0 Task 1
phase(“late send post”);
for (size = 1; size <= maxMsgSize; size *= 2)
    {
      for (i = 0; i < maxIterations; i++)
        {
          delay = delayVariance * drand48 ();
          MPI_Barrier (MPI_COMM_WORLD);
          usleep (delay);
          MPI_Isend (sdata, size, MPI_INT, 1,
                      tag, MPI_COMM_WORLD,
                     &request);
          MPI_Wait (&request, &status);
        }
    }

phase(“late send post”);
for (size = 1; size <= maxMsgSize; size *= 2)
    {
      for (i = 0; i < maxIterations; i++)
        {

          MPI_Barrier (MPI_COMM_WORLD);

          MPI_Recv (rdata, size, MPI_INT, 0,
                    tag, MPI_COMM_WORLD,
                    &status);
       }
    }

Figure 8: Microbenchmark for late send post of isend-recv transfer.



shows the confusion matrix. This matrix provides a notion of how
the actual classifications compare to the predictions made by the
decision tree. Our confusion matrix demonstrates that DTC does
not provide perfect classification; however, several techniques,
such as boosting, can improve this error rate. We are currently
exploring other data cleaning techniques that may improve the
predictive power of DTC for performance analysis data.

Prediction

no
rm

al

la
te

 s
en

d

la
te

 r
ec

v

la
te

 r
ec

v 
po

st

la
te

 r
ec

v 
w

ai
t

la
te

 s
en

d 
po

st

la
te

 s
en

d 
w

ai
t

normal 786 4 3 3 2 14 28

late send 13 406 0 0 0 0 0

late recv 21 0 399 0 0 0 0

late recv post 48 1 0 314 55 0 2

late recv wait 48 0 0 127 245 0 1

late send post 20 0 0 0 0 397 3

A
ct

ua
l

late send wait 16 0 1 0 0 9 394

Table 2: Confusion matrix.

4.2 Classification Phase
In the classification phase, we feed trace data from MPI
applications into the decision tree classifier, and it classifies all of
the application’s message activity based on the decision tree
generated during the modeling phase. As with the modeling
phase, the classifier merges the trace files, reconciles message
sends with receives, and normalizes the durations. At this point,
the classifier reads the unclassified records and applies the
decision tree rules to each message transfer. Figure 7 presents
several classifications for the example application CG-Heat. The
last two columns show the classification and the confidence factor
that the DTC filter selected for each message transfer.

4.3 Mapping Classifications to Source Code
This initial classification of all the message transfers is very
useful; however, ultimately, we want to map these classifications
back to the original source code. Many tracing tools provide only
details on message sends and receives based on node identifiers
(e.g., task 0 sends to task 1) without regard to their location in the
source code. This limitation forces users into an arduous
procedure of first, gathering more information about the send-
receive pair, such as tag and communicator information, and then,
searching for those locations in the source code.

To improve this situation, our tracing tool captures the address of
the caller routine and a relative offset from the
beginning of the caller routine to the called MPI
function. With this additional information, we can
discriminate among the MPI calls and summarize the
decision tree classifications based on the location of
the sender and the receiver in the source code. In most
cases, this summary reduces all message transfers to a
handful of MPI calls that the user can immediately
investigate. Then, given the predominant class of the
communication operations, the user knows the
performance rating of each particular MPI call. Figure

9 presents an example of the caller-dependent classification
summary for sample application NAS SP. Columns 1 and 2
provide the names of the subroutines calling MPI functions. The
next seven columns furnish the classifications for the messages
transferred between the sender and receiver. For instance, row 2
of Figure 9 reveals that our system classified over 99.8% of the
messages transferred from x_solve+7716 to x_solve+888 as late
send posts. With this evidence in hand, a user could investigate
the software hoping to move forward this send's initiation in the
control flow of x_solve. We investigate this process of
communication optimization in more detail later in Section 5.2.

Location Class

Sender Receiver N
or

m
al

L
at

e 
Se

nd

L
at

e 
R

ec
v

L
at

e 
Se

nd
 P

os
t

L
at

e 
Se

nd
 W

ai
t

L
at

e 
R

ec
v 

Po
st

L
at

e 
R

ec
v 

W
ai

t

copy_faces
+4268

copy_faces
+3980

2 0 0 34 0 0 1572

x_solve
+7716

x_solve
+888

0 0 0 1600 0 0 4

Figure 9: Example of sender-receiver
classification summary for NAS SP.

5 EVALUATION
We focus our evaluation on the three primary goals: data
reduction, portability, and accuracy. We measure data reduction
by comparing our classification information to raw trace file size.
We subjectively gauge accuracy by investigating the underlying
causes of the abnormal message behavior in the application. If the
classification system misidentified the message behavior, we
provide an explanation when possible. This is exactly the same
procedure that a user would follow to examine application
performance. Our choice of decision trees as the classification
mechanism simplifies this evaluation.

5.1 Hardware and Software Configurations
To evaluate our classification system, we used an IBM SP2. Each
node had 2GB main memory and 4 processors. Our experiments
used the IBM's native 32-bit MPI implementation. We performed
several tests with two different software configurations for the
MPI communication subsystem: IP mode and US mode. IP mode
uses standard Internet protocol for messages, while US mode
exploits the SP’s high-performance switch. Like most platforms,
the SP2 has dozens, if not hundreds, of configuration parameters
that directly impact performance. Our experiments revealed that

Application

T
ra

ce
 F

ile
Si

ze
 (

M
B

)

N
um

be
r 

of
T

ra
ce

R
ec

or
ds

N
or

m
al

R
un

ti
m

e
(s

ec
on

ds
)

M
P

I_
Se

nd

M
P

I_
R

ec
v

M
P

I_
Is

en
d

M
P

I_
Ir

ec
v

CG-HEAT 2.7 39698 70 6828 148 0 6680
NAS BT 5.6 88522 1344 0 0 9672 9672
NAS SP 1.6 31394 840 0 0 19272 19272
sPPM 0.2 2066 287 0 0 480 480

Table 3: Profiles of example applications.



US mode performs better than IP mode for all message sizes up to
the maximum size for our tests, 4MB. This simple configuration
change in software invalidates techniques that rely on fixed
thresholds for analyzing performance. These differences
underscore the need for a performance analysis framework that
adapts to the target platform configuration to improve accuracy.
We return to this subject later in Section 5.4.

5.2 Applications
We selected two benchmarks and two scientific applications for
our experiments. As described earlier, we ran these applications
on the SP2 and collected trace files of their message passing
activity. Table 3 lists the applications and their basic
characteristics: 4-processor runtime, trace files size, number of
trace records, and number of send and receive operations. Since
these codes are reasonably mature, we expect them to be highly

Class

Application
Sender Location Receiver Location no

rm
al

la
te

 s
en

d

la
te

 r
ec

v

la
te

 s
en

d 
po

st

la
te

 s
en

d 
w

ai
t

la
te

 r
ec

v 
po

st

la
te

 r
ec

v 
w

ai
t

copy_faces+4056 copy_faces+3636 795 0 0 2 0 11 0
copy_faces+4000 copy_faces+3696 0 0 0 755 0 0 53
copy_faces+4168 copy_faces+3756 2 0 0 22 0 0 784
copy_faces+4112 copy_faces+3816 3 0 0 6 0 0 799
copy_faces+4280 copy_faces+3876 4 0 0 35 0 0 769
copy_faces+4224 copy_faces+3936 3 0 0 27 0 0 778
x_send_solve_info+612 x_receive_solve_info+124 804 0 0 0 0 0 0
x_send_backsub_info+432 x_receive_backsub_info+120 0 0 0 28 162 0 614
y_send_solve_info+608 y_receive_solve_info+124 804 0 0 0 0 0 0
y_send_backsub_info+420 y_receive_backsub_info+120 0 0 0 35 208 0 561
z_send_solve_info+908 z_receive_solve_info+124 804 0 0 0 0 0 0

NAS BT

z_send_backsub_info+348 z_receive_backsub_info+120 0 0 0 21 183 0 600
9672 3219 0 0 931 553 11 4958

copy_faces+4100 copy_faces+3680 1575 0 0 6 0 27 0
copy_faces+4044 copy_faces+3740 0 0 0 1474 0 1 133
copy_faces+4212 copy_faces+3800 6 0 0 22 0 0 1580
copy_faces+4156 copy_faces+3860 3 0 0 17 0 0 1588
copy_faces+4324 copy_faces+3920 0 0 0 33 0 0 1575
copy_faces+4268 copy_faces+3980 2 0 0 34 0 0 1572
x_solve+7716 x_solve+888 0 0 0 1600 0 0 4
x_solve+17864 x_solve+8272 0 0 0 1604 0 0 0
y_solve+7632 y_solve+872 0 0 0 1602 0 0 2
y_solve+17236 y_solve+8180 0 0 0 1604 0 0 0
z_solve+7612 z_solve+912 0 0 0 1603 0 0 1

NAS SP

z_solve+17224 z_solve+8184 0 0 0 1604 0 0 0
19272 1586 0 0 11203 0 28 6455

snd_int+80 rcv_int+128 141 3 4 0 0 0 0CG-HEAT
snd_r8+80 rcv_asynch_r8+136 1396 2321 0 4 0 819 2140

6828 1537 2324 4 4 0 819 2140

xbdrys+1248 xbdrys+152 40 0 0 0 0 0 0
xbdrys+1184 xbdrys+212 40 0 0 0 0 0 0
xbdrys+6028 xbdrys+288 29 0 0 0 10 0 1
xbdrys+5960 xbdrys+356 6 0 0 12 12 0 10
ybdrys+1248 ybdrys+152 40 0 0 0 0 0 0
ybdrys+1184 ybdrys+212 40 0 0 0 0 0 0
ybdrys+6588 ybdrys+288 31 0 0 0 9 0 0
ybdrys+6520 ybdrys+356 8 0 0 10 9 0 13
zbdrys+6268 zbdrys+288 19 0 0 0 19 0 2
zbdrys+6200 zbdrys+356 14 0 0 16 5 0 5
zbdrys+10920 zbdrys+432 33 0 0 0 7 0 0

sPPM

zbdrys+10852 zbdrys+500 12 0 0 17 4 0 7
480 312 0 0 55 75 0 38

Table 4: Results of classifications on example applications.



optimized. Currently, we are applying our tool to applications in
earlier stages of development.

5.2.1 NAS SP and BT
The benchmark applications NAS SP and BT [2] represent
computational fluid dynamics (CFD) applications that solve
systems of equations resulting from an approximately factored
implicit finite-difference discretization of the Navier–Stokes
equations. The SP and BT algorithms have a similar structure;
each solves three sets of uncoupled systems of equations. BT
solves block-tridiagonal systems of 5x5 blocks; SP solves scalar
pentadiagonal systems resulting from full diagonalization of the
approximately factored scheme.

NAS BT, as Table 4 shows, has seven subroutines that
communicate using MPI. The routine copy_faces exchanges
boundary values between neighboring nodes. The routines
{xyz}_send_solve_info, {xyz}_recv_solve_info,
{xyz}_send_backsub_info, and {xyz}_recv_backsub_info form the
core of the algorithm. Each routine performs line solves in the
XYZ direction by first factoring the block-tridiagonal matrix into
an upper triangular matrix, and then performing back substitution
to solve for the unknown vectors of each line.

Of the 9672 message transfers in BT, 3219 appear normal. The
other two major classes are late send post (931) and late recv wait
(4958). Most of the late recv waits occur in the last five of six
transfers. Interestingly, the structure of this routine issues all six
MPI_Irecvs immediately before all six MPI_Isends. The routine
then uses a MPI_Waitall function to complete these twelve
operations. The first transfer is instantaneous, but then the
following transfers appear to complete quickly. This strategy
overlaps multiple communication operations, but it does not
overlap any communication with computation. Both before and
after this cluster of communication, BT uses deeply nested loops
to pack and unpack the communication buffers. Decomposing
these loops to take advantage of communication overlap could
improve the communication performance, but risks disabling
compiler loop optimizations and disrupting efficient access to the
memory hierarchy.

The routines {xyz}_send_solve_info and {xyz}_recv_solve_info
appear normal, but {xyz}_send_backsub_info and
{xyz}_recv_backsub_info often have late receive waits. Closer
investigation of these routines revealed that they are part of a loop
that computes and then communicates for each cell allocated to
the MPI task. This compartmentalization of the messaging activity
improves the software design of the code, but it also limits the
possible opportunities for overlap of computation and
communication.

As expected, the results for NAS SP are strikingly similar to NAS
BT. The first message transfer of the copy_faces routine is
normal, but the succeeding transfers are consistently classified as
late recv wait. The classifications also reveal the different structure
of the solver in the results for {xyz}_solve. The majority of
message transfers for this subroutine are classified as late send
post. With this evidence, a user could try to move the send’s
initiation forward in the control flow of the solver. Upon further
examination, this solver does overlap communication and
computation; however, the intricate code for this solver separates
the respective sends and receives with data dependencies that
prohibit shifting the location of the send initiation.

5.2.2 CG-Heat
CG-Heat is a heat diffusion simulation that solves the implicit
diffusion partial differential equation (PDE) using a conjugate
gradient solver over each timestep. This code is built on
FORTRAN90 and MPI. CG-HEAT has a grid structure and its
data access methods are designed to support one type of adaptive
mesh refinement (AMR), although the benchmark code as
supplied does not handle anything other than a single-level AMR
grid.

Of the 6282 messages transferred by CG-HEAT, 1537 are normal
while the majority of classifications fall between late send and
late recv wait. Unfortunately, our analysis of CG-HEAT reveals
that its MPI communication subroutines are encapsulated within
FORTRAN subroutines. This design limits the usefulness of our
strategy for locating the application function responsible for
particular message transfers; however, it does provide some
insight into CG-HEAT's software design. Only two user routines
call snd_r8 and rcv_asynch_r8. Both of these routines, faceget and
faceput, exchange information with neighbor tasks. As with the
earlier inspection of NAS BT, close examination of CG-HEAT
shows its communication primitives buried in three levels of
abstraction to improve portability and comprehension.
Nonetheless, this abstraction makes it impractical to restructure
the code to overlap this communication with nearby computation.

5.2.3 sPPM
The sPPM application [15] solves a 3D gas dynamics problem on
a uniform Cartesian mesh, using a simplified version of the
Piecewise Parabolic Method. The algorithm makes use of a split
scheme of X, Y, and Z Lagrangian and remap steps, which are
computed as three separate sweeps through the mesh per timestep.
Message passing provides updates to ghost cells from neighboring
domains three times per timestep. The sPPM code is written in
Fortran 77 with some C routines. The code uses the asynchronous
message operations: MPI_Irecv and MPI_Isend.

The results for sPPM are reasonably well balanced. The classifier
judges 312 of the 480 (65%) messages as normal. After inspecting
the code, we found that sPPM automatically creates the routines
{xyz}bdrys from a skeleton file and consequently, they have
identical sender-receiver structure. Our classifications exhibit this
regularity as well; the very last send-receive pair performs poorly
when compared to the other three message transfers. These
classifications make sense when one reviews the code structure of
{xyz}bdrys. The code posts all MPI_Irecvs immediately, and stages
the send initiations in four steps. Between consecutive sends, the
routine packages the next send’s buffer with deeply nested loops.

5.3 Data Reduction and Portability
Besides accuracy, data reduction and portability are two
additional goals of our approach. Numerous researchers have
developed techniques to reduce the volume of information that a
user must encounter while investigating and navigating a tracefile
[19]. Measuring the data reduction gained with these other
techniques is relatively easy because they sift the trace records,
keeping only those records that pass some criteria. Furthermore,
most of these trace reduction techniques do not consider the chore
of mapping these results back to source code. Our technique, on
the other hand, transforms the trace file from a series of trace
records into classified sender-receiver pairs, so a mathematical
calculation of the information reduction for this transformation is
awkward. Subjectively however, we consider the reductions of



information to Table 4; Table 3 presents the size of the trace file
and the number of trace records in the file. Although these trace
files are relatively small because they are example executions on
only a 4-node SP2, our ideas and technique remain valid for larger
configurations. NAS BT, for example, has 9672 messages and
88522 trace records. Our classification technique transforms all
these records into seven classes across twelve sender-receiver
locations in the source code as Table 4 shows. A user can quickly
review this information and then, investigate modifications to the
source code.

Our work is highly extensible and portable. That is, to extend the
classes of recognizable performance phenomena, users need only
construct a microbenchmark that exhibits the problem, trace the
microbenchmark, and regenerate the tests for the decision tree. It
is unclear how a user would extend these other tools to recognize
new classes of performance problems. As to portability, our
approach is extremely portable because it adapts to target software
and hardware configurations by observing communication
operations empirically and by generating a new decision tree.

5.4 Evaluation Summary
Our experience with these four applications was promising. In
each case, our classification system summarized a huge amount of
information so that we could immediately investigate each
application. With the location information and the predominant
classification of the send-receiver pair, we could quickly
determine if we could modify the communications operations to
improve performance. In light of these benefits, several issues
linger. In the case of CG-HEAT, our location-mapping technique
did not provide enough information to distinguish the calling user
subroutines. Also, our location mapping technique currently
marks MPI calls using only subroutine names with a byte offset.
For usability, our system should map the performance information
directly to lines of source code.

6 RELATED WORK
Researchers have proposed numerous techniques and tools for
performance analysis. Although many of these efforts have
focussed on the underlying instrumentation and data collection
frameworks for performance analysis, only recently have
researchers addressed the higher-level goal of automating the task
of performance analysis, per se.

Many performance analysis techniques provide some level of help
for users to locate performance problems including Carnival [13],
a performance debugger by Rajamony and Cox [17], the Paradyn
performance tool [14], Tmon [11], Quartz [1], performance
indicies by Sarukkai, Yan, and Gotwals [20], and Cray’s MPP
Apprentice and ATExpert. In addition, numerous researchers have
applied statistical techniques to performance data in an effort to
reduce data volume or to automate tasks for the user. These
techniques include covariance analysis, discriminant analysis,
principle component analysis, and clustering analysis [3, 19]. In
the knowledge discovery field, Lee, Stolfo, and Mok [12] have
focused techniques for machine learning on traces of Internet
network activity to provide automated support for intrusion
detection in computer networks. To assist with the analysis of
large trace files, numerous researchers have investigated
visualization techniques [10, 23]. Visualizations provide users
with clever images of their application execution, but, in general,
these tools do not necessarily guide the user to performance

problems.

In contrast to this previous work, the novelty of our approach is
the use of a portable, extensible technique to provide automated
guidance to users, so that they can easily reason about the
underlying causes of their application's communication
inefficiencies. We do not claim a novel approach to
instrumentation or application tracing. We know, however, of no
other work that applies these types of classification techniques to
performance analysis. Our methodology not only locates and
classifies performance problems, but it also prescribes a strategy
for eliminating inefficiencies.

7 CONCLUSIONS
Our overall goal was to provide users with automated guidance
for discovering performance problems in their applications. From
the outset, we wanted to focus on technologies that were portable
and extensible, because MPI exists on many platforms and has
many different implementations and configuration parameters.
Extensibility offers users the opportunity to refine the
classification scheme in an fashion that suites their programming
requirements.

Our method automatically classifies individual communication
operations and it reveals the cause of communication
inefficiencies in the application. This automation allows the
developer to focus quickly on the culprits of truly inefficient
behavior, rather than manually foraging through massive amounts
of performance data. Our technique traces the message operations
of MPI applications and then, classifies each individual
communication event using a supervised learning technique:
decision tree classification. We train our decision tree using
microbenchmarks that demonstrate both efficient and inefficient
MPI behaviors. Because our technique learns normal MPI
behavior, it can adapt to the target system's configuration; this
improves the technique’s predictive accuracy. Our experiments on
four applications demonstrated that this technique improves the
accuracy of performance analysis, and dramatically reduces the
amount of data that users must encounter.

Several goals remain. We plan to add hardware performance
information to our tracing system, and then integrate that
information into the classification framework. This additional
information, such as CPU busy-idle ratios, could improve the
technique’s predictive capabilities. Also, we are designing a
runtime version of the decision tree classification system. Such a
system would help reduce data volume at runtime and thereby
decrease the size of the resulting trace files and the perturbation
on the target system.

ACKNOWLEDGEMENTS
This paper has benefited from the detailed comments of the ICS
reviewers, and my colleagues at LLNL: Mary Zosel, John May,
Bronis de Supinski, Alane Achorn, Terence Critchlow, and
Chandrika Kamanth,. This work was performed under the
auspices of the U.S. Dept. of Energy at LLNL under contract W-
7405-Eng-48. LLNL Document Number UCRL-JC-136200.



REFERENCES

[1] T.E. Anderson and E.D. Lazowska, “Quartz: A Tool for
Tuning Parallel Program Performance,” Proc. 1990
SIGMETRICS Conf. Measurement and Modeling
Computer Systems, 1990, pp. 115-25.

[2] D. Bailey, E. Barszcz et al., “The NAS Parallel
Benchmarks (94),” NASA Ames Research Center, RNR
Technical Report RNR-94-007, 1994.

[3] M. Calzarossa, L. Massari et al., “Medea: A Tool for
Workload Characterization of Parallel Systems,” IEEE
Parallel & Distributed Technology, 3(4):72-80, 1995.

[4] U.M. Fayyad, G. Piatetsky-Shapiro et al., Eds., Advances
in knowledge discovery and data mining. Menlo Park, CA:
AAAI Press: MIT Press, 1996, pp. xiv, 611.

[5] I. Foster, Designing and building parallel programs:
concepts and tools for parallel software engineering.
Reading, MA: Addison-Wesley, 1995.

[6] I. Foster and C. Kesselman, Eds., The Grid: blueprint for a
new computing infrastructure. San Francisco: Morgan
Kaufmann Publishers, 1999, pp. xxiv, 677.

[7] J.A. Gannon, K.J. Williams et al., “Using perturbation
tracking to compensate for intrusion in message-passing
systems,” Proc. 14th Int'l Conf. Distributed Computing
Systems, 1994, pp. 414-21.

[8] G.A. Geist, M.T. Heath et al., “A Users' Guide to PICL -
A Portable Instrumented Communication Library,” Oak
Ridge National Laboratory, P.O.Box 2009, Bldg. 9207-A,
Oak Ridge, TN 37831-8083 1991.

[9] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: portable
parallel programming with the message-passing interface,
2nd ed. Cambridge, MA: MIT Press, 1999.

[10] M.T. Heath, A.D. Malony, and D.T. Rover, “Parallel
performance visualization: from practice to theory,” IEEE
Parallel & Distributed Technology: Systems &
Applications, 3(4):44-60, 1995.

[11] M. Ji, E.W. Felten, and K. Li, “Performance
Measurements for Multithreaded Programs,” Proc. 1998
ACM Int'l Conf. Measurement and Modeling of Computer
Systems, SIGMETRICS 98, 1998, pp. 161-70.

[12] W. Lee, S. J.Stolfo, and K. W.Mok, “Mining in a data-
flow environment: experience in network intrusion

detection,” Proc. Fifth ACM SIGKDD Int'l Conf.
Knowledge Discovery and Data Mining, 1999, pp. 114-24.

[13] W. Meira, Jr., T.J. LeBlanc, and A. Poulos, “Waiting Time
Analysis and Performance Visualization in Carnival,”
Proc. ACM SIGMETRICS Symp. on Parallel and
Distributed Tools, 1996, pp. 1-10.

[14] B.P. Miller, M.D. Callaghan et al., “The Paradyn parallel
performance measurement tool,” IEEE Computer,
28(11):37-46, 1995.

[15] A.A. Mirin, R.H. Cohen et al., “Very High Resolution
Simulation of Compressible Turbulence on the IBM-SP
System,” Proc. SC99, 1999.

[16] J.R. Quinlan, C4.5: programs for machine learning. San
Mateo, CA: Morgan Kaufmann Publishers, 1993.

[17] R. Rajamony and A.L. Cox, “Performance debugging
shared memory parallel programs using run-time
dependence analysis,” Performance Evaluation Review
(Proc. 1997 ACM Int’l Conf. Measurement and Modeling
of Computer Systems, SIGMETRICS 97), 25(1):75-87,
1997.

[18] D.A. Reed, R.A. Aydt et al., “An Overview of the Pablo
Performance Analysis Environment,” Department of
Computer Science, University of Illinois, 1304 West
Springfield Avenue, Urbana, IL 61801 1992.

[19] D.A. Reed, O.Y. Nickolayev, and P.C. Roth, “Real-Time
Statistical Clustering and for Event Trace Reduction,” J.
Supercomputing Applications and High-Performance
Computing, 11(2):144-59, 1997.

[20] S.R. Sarukkai, J. Yan, and J.K. Gotwals, “Normalized
performance indices for message passing parallel
programs,” Proc. 8th ACM Int'l Conf. Supercomputing,
1994, pp. 323-32.

[21] S. Shende, A.D. Malony et al., “Portable profiling and
tracing for parallel, scientific applications using C++,”
Proc. SIGMETRICS Symp. Parallel and Distributed Tools
(SPDT), 1998, pp. 134-45.

[22] M. Snir, S. Otto et al., Eds., MPI--the complete reference,
2nd ed. Cambridge, MA: MIT Press, 1998.

[23] J. Stasko, J. Domingue et al., Eds., Software Visualization:
Programming as a Multimedia Experience,. Cambridge,
MA: MIT Press, 1998.


