Autopilot: Adaptive Control of Distributed Applications

Randy L. Ribler

Jeffrey S. Vetter

*

Huseyin Simitci

Daniel A. Reed
{ribler,jsv,simitci,reed }Qcs.uiuc.edu

Department of Computer Science
University of Illinois
Urbana, Illinois 61801

Abstract

With increasing development of applications for het-
erogeneous, distributed computing grids, the focus of
performance analysis has shifted from a posteriori op-
timization on homogeneous parallel systems to appli-
cation tuning for heterogeneous resources with time
varying availability. This shift has profound impli-
cations for performance instrumentation and analysis
techniques. Autopilot is a new infrastructure for dy-
namic performance tuning of heterogeneous computa-
tional grids based on closed loop control. This paper
describes the Autopilot model of distributed sensors,
actuators, and decision procedures, reports preliminary
performance benchmarks, and presents a case study in
which the Autopilot library is utilized in the develop-
ment of an adaptive parallel input/output system.

1. Introduction

Although both programming models and parallel
computer systems continue to evolve rapidly, most per-
formance analysis remains grounded in a process devel-
oped over forty years ago:

o Application instrumentation. Application code
may be instrumented automatically (e.g., by ob-
ject code patching or by compilers) or manually
by inserting calls to instrumentation library rou-

*This work was supported in part by the Defense Advanced
Research Projects Agency under DARPA contracts DABT63-
94-C0049 (SIO Initiative), F30602-96-C-0161, and DABT63-96-
C-0027 by the National Science Foundation under grants NSF
CDA 94-01124 and ASC 97-20202, and by the Department of
Energy under contracts DOE B-341492, W-7405-ENG-48, and
1-B-333164.

tines. During subsequent execution, the instru-
mentation library records pertinent performance
data, including procedure, loop, and basic block
execution counts and times.

e Performance data extraction. After instrumen-
tation, performance data is captured from one or
more program executions. Ideally, these execu-
tions involve input data and computing resources
typical of those encountered in a production en-
vironment.

e Analysis and visualization. After post-process-
ing, performance data is visualized and analyzed
to identify application program performance bot-
tlenecks (e.g., using text-based profiling tools or
visualization systems like IPS-2 [8], AIMS [15],
or Pablo [9]).

e Application optimization. Based on measurement
and analysis, either the program is modified to al-
leviate the perceived bottlenecks or runtime sys-
tem policies are adjusted to better match pro-
gram resource requests.

Although effective for application codes with repeat-
able behavior, this a posteriori tuning model is ill-
suited to complex, multidisciplinary applications with
time varying resource demands that execute on hetero-
geneous collections of geographically distributed com-
puting resources. Not only may the execution context
not be repeatable across program executions, resource
availability may change during execution.

Consequently, we believe performance tuning sys-
tems must evolve to reflect changing requirements, ap-
plying real-time adaptive control techniques to dynam-
ically adapt to changing application resource demands
and system resource availability. Using real-time per-
formance data, these adaptive systems can either be

steered interactively or by an intelligent decision sup-
port system. In this model, the goal of the perfor-
mance analyst is to formulate general-purpose perfor-
mance optimization rules that can be applied by the
adaptive infrastructure.

Based on this hypothesis, the remainder of this pa-
per is organized as follows. In §2, we briefly describe
related work in adaptive control, followed in §3 by a de-
scription of the Awutopilot toolkit for closed loop adap-
tive performance tuning and resource management. In
84, we report the results of initial performance experi-
ments with Autopilot, followed in §5 by a summary of
experiences with PPFS II, our first major application
of Autopilot. Finally, §6 briefly describes our research
plans.

2. Related Work

Software mediated dynamic adaptation has been ap-
plied in many domains, including real-time and fault-
tolerant systems, dynamic load balancing, on-line con-
figuration management [4] and adaptive input/output
systems. The Autopilot toolkit differs by emphasizing
portable performance steering and closed loop adaptive
control and by decoupling the steering infrastructure
from the policy domain.

Likewise, interactive application steering [14] has a
long and rich history, particularly in the context of sci-
entific and immersive visualization. By separating per-
formance measurement, control and decision making,
Autopilot enables system designers to replace software
decision procedures with real-time visualization and in-
teractive steering [11] when the rate of change admits
human control.

Finally, a plethora of techniques for distributed de-
cision making have been proposed, ranging from deci-
sion tables and trees through standard control theory
to fuzzy logic. Although each has strengths, fuzzy logic
targets precisely the attributes of the performance opti-
mization problem that challenge classic techniques [16],
namely conflicting goals and poorly understood opti-
mization spaces. Autopilot builds on this observation
by coupling a configurable fuzzy logic rule base for dis-
tributed decision making with wide area performance
sensors and policy control actuators.

3. Autopilot Software Components

Any adaptive control system must implicitly or ex-
plicitly monitor pertinent system state(s), determine
what changes are needed, and realize those changes to
meet the desired goals. To dynamically optimize ap-
plication and runtime system behavior for distributed,

computational grids, a closed loop adaptive perfor-
mance system must include some variant of the fol-
lowing:

e Distributed performance sensors that can capture
quantitative application and system performance
data and generate both qualitative descriptions of
resource demands and quantitative performance
metrics.

e Software actuators that can enable and configure
application behavior and resource management
policies.

e Decision procedures, both local (e.g., per parallel
task) and global (e.g., per parallel program), for
selecting resource management policies and en-
abling actuators based on observed application
resource requests and the system responses cap-
tured by performance sensors.

e Distributed mame servers that support regis-
tration by remote sensors and actuators and
property-based requests for sensors and actuators
by remote clients.

e Sensor and actuator clients that interact with
remote sensors and actuators, monitoring sensor
data and issuing commands to actuators.

o Robust decision mechanisms that exploit data
from distributed sensors to balance often conflict-
ing optimization goals.

Below, we describe each of the Autopilot components
and their design rationale in greater detail.

3.1 NexusToolkit

Based on the successful Nexus [3] communication
substrate, the Autopilot toolkit embodies sensors, ac-
tuators, decision procedures, servers, and clients in a
policy and platform independent infrastructure. Nexus
creates a global address space that encompasses all pro-
cesses executing on a network.

The Nexus term endpoint refers to an address in
the global address space, and the term startpoint iden-
tifies a pointer to an endpoint. In addition to a global
address, Nexus endpoints specify a set of message han-
dlers that are invoked when messages are sent to the
endpoint.

Before a client can communicate with a sensor or
actuator, it must obtain a startpoint to that sensor or
actuator. Similarly, sensors and actuators must obtain
startpoints to their clients. The Autopilot manager,
described in §3.4, is a daemon process that acts as a

name server, providing remote clients with the ability
to obtain startpoints to sensors and actuators.

In the following sections we describe each of the Au-
topilot components and their design rationale in greater
detail.

3.2. Sensors

Sensors extract qualitative and quantitative perfor-
mance data from executing applications, providing the
requisite data for informed decision making. Because
measurement perturbs the system under study, any
sensor implementation must minimize the overhead for
data capture and extraction. Moreover, in the dis-
tributed collection of sequential and parallel systems
forming a computational grid [2], some subset of the
sensor data must be extracted and transmitted to re-
mote sites for global decision making. Finally, to avoid
oscillating decisions due to stale sensor data, the lag
between data collection and processing must be small.

3.2.1 Sensor Design Principles

The ideal sensor is lightweight, minimally perturbing,
remotely accessible, and applicable to multiple archi-
tectures and programming models. Approaching this
ideal is possible only if the sensor implementation can
be tailored to the execution environment, trading com-
putation against communication based on available re-
sources and acceptable perturbation.

For example, sensors can either capture and trans-
mit raw data (e.g., a stream of file request sizes) or com-
pute and periodically transmit derived metrics (e.g., a
sliding window average of request sizes). Unless the
sensor and the data sink are co-located or the metric
computation is extraordinarily expensive (e.g., a criti-
cal path calculation), calculating metric values at the
sensors is usually less invasive. Because appropriate
choices depend on the execution context, application
perturbation constraints, and metric complexity, any
sensor implementation should include configuration op-
tions for adjusting the balance.

If the raw sensor data stream is monitored, trans-
mission overhead can be reduced by data buffering, al-
beit at the expense of increased lag. Hence, sensors
should also provide controls for adjusting buffer sizes
and transmission frequencies.

As distributed resource availability and applica-
tion demands change, the requisite performance data
change, necessitating deactivation of current sensors
and activation of new ones. To dynamically change the
mix of performance data without detailed knowledge
of the physical location of all software components, re-

mote clients should be able to locate sensors via de-
scriptions of their properties (e.g., TCP or I/O sen-
sors). Concomitantly, the sensor infrastructure should
support sensor registration and dynamic activation.

3.2.2 Autopilot Sensor Features

Based on the design principles just outlined, Autopilot
implements a suite of configurable sensors that can be
dynamically activated, managed and deactivated.

Property Lists. FEvery sensor has a set of associated
properties that are defined at the time the sensor is cre-
ated. These typically include the sensor name, type,
identifier, network IP address and any user-defined
attribute-value pairs. Remote clients can specify prop-
erty lists during queries to the Autopilot manager. The
manager then provides the client with start points to
all remote sensors that currently satisfy the query. Ad-
ditionally, clients can request notification each time a
sensor with the specified set of properties is created.
Together, these capabilities allow clients to acquire and
manage remote sensors without embedded knowledge
of their physical location or creation times.

Activation Modes. Sensor creation associates a set
of application or runtime system variables with the
sensor monitoring software. After activation by a re-
mote client, the sensor periodically records the values
of these variables and optionally applies a set of real-
time reductions to the values before transmission to
remote sites.

Sensors collect data in either threaded or non-
threaded modes. In the threaded mode, a monitoring
thread records the values of the associated variables
at intervals specified either during sensor creation or
by a remote client. The nonthreaded monitoring mode
relies on insertion of sensor monitoring calls in either
source or object application or library code.

Data Reduction. For local data reduction, sensors
can apply data transformation functions to captured
data prior to recording. These attached functions ac-
cept raw sensor data as input, and record function out-
put for transmission.

Attached functions can compute simple statistics
(e.g., sliding window averages) or more complex trans-
formations. For example, one set of attached functions
generates qualitative file access pattern descriptions
from input/output request measures (e.g., converting a
sequence of file offsets to sequential, strided, or random
access descriptions).

// Define Properties for RequestSize Sensor
ApProperties RequestSizeProperties(progName, mgrName) ;
RequestSizeProperties.addProperty("Name",
"RequestSizeSensor") ;
RequestSizeProperties.addProperty("Application",
"PPFS II");

// Construct RequestSizeSensor.

ApIntegerSensor RequestSizeSensor("RequestSizeSensor",
RequestSizeProperties,
requestSize,
variableCount=1, bufferSize=8);

// Register Sensor with Autopilot Manager
RequestSizeSensor.registerStartPoint();

Figure 1. Sensor registration code.

3.2.3 Sensor Creation Example

To illustrate the properties of Autopilot sensors,
Figure 1 shows the creation of a sensor named
RequestSizeSensor using C++ syntax. This sen-
sor is used to monitor the application-level variable
requestSize. The ApProperties constructor speci-
fies the program name and the name of the host ex-
ecuting the Autopilot Manager. The addProperty
method then assigns properties to the sensor as key-
value pairs. Because this sensor is monitoring an inte-
ger, the ApIntegerSensor sensor variant is used. Au-
topilot supports scalar and array sensors for all the
basic data types, as well as a MultiSensor that can
monitor aggregates of variables of different data types.

The parameters for the ApIntegerSensor specify
the sensor name, the sensor properties, the memory lo-
cation that will be monitored, the number of integers
that comprise the monitored location, and the size of
the buffer that should be used to hold sampled values
prior to their transmission to clients. In this case, up
to eight samples of the scalar integer requestSize may
be buffered.

Finally, the registerStartPoint method com-
pletes the sensor production process with the transmis-
sion of the sensor startpoint and property list to the
Autopilot Manager. Later, the sensor destructor will
inform the Autopilot manager of the sensor’s demise.

3.3. Software Actuators

Autopilot actuators allow clients to modify the val-
ues of application variables and to remotely invoke ap-
plication level functions. Typically, actuators are used
to modify parameter values or to change resource man-
agement policies (e.g., changing file caching policies).

To simplify management and code development, Au-
topilot actuators share most of the features of sensors,
including property lists, attached functions, and dy-
namic insertion and control. Hence, actuators can be
identified using a set of properties, are managed by
Autopilot managers, and can be inserted or deleted dy-
namically.

Actuator creation follows the same basic model used
for sensor creation demonstrated in Figure 1. Finally,
actuator attached functions can mediate remote com-
mand manipulations in the context of local data (e.g.,
bounding a remote request to increase cache size based
on local memory availability).

3.4. Distributed Name Servers

As should now be clear, an Autopilot manager co-
ordinates connections between sensors, actuators, and
remote clients. Because the managers function as sen-
sor/ actuator name servers, clients can acquire remote
sensors or actuators without knowledge of their phys-
ical or logical location. This generality allows client
objects to dynamically attach to geographically dis-
tributed software components, exercise control, then
relinquish the attachment.

Sensors and actuators register their properties and
Nexus startpoints with an Autopilot manager immedi-
ately after creation, and inform the manager when they
are destroyed. Clients specify a set of desired proper-
ties, and the manager provides startpoints to the sen-
sors or actuators that match the request. This allows
the client to establish direct communication with ap-
plication instrumentation.

3.5. Remote Clients

Remote clients exploit sensors and actuators to real-
ize distributed control. As described previously, clients
connect to remote sensors and actuators using start-
points obtained from an Autopilot manager. After con-
nection, sensors send data to all the connected remote
clients, where data receipt activates a client-specified
callback to process the data. Clients can also change
sensor behavior, modifying attributes such as activa-
tion, buffer size, and sampling rate.

3.6. Flexible Decision M echanisms

Sensors provide the requisite data for decision mak-
ing, and actuators implement decisions — distributed
decision making is the final component of closed loop
adaptive control. Although one can implement decision

procedures using algorithmic or decision table tech-
niques, our experience with parallel resource manage-
ment policies [11, 6] suggests that more flexible mech-
anisms are needed to accommodate complex, poorly
understood policy spaces. Simply put, constructing
decision tables presumes a deep understanding of the
resource optimization space and the relation of system
controls to locations in that space.

In contrast to classic decision procedure techniques
and their emphasis on consistent parameter space di-
vision, fuzzy logic allows one to elegantly balance po-
tentially conflicting goals (e.g., minimize response time
and maximize throughput). Moreover, by changing the
fuzzy logic rule base, one can adjust the control system
or even retarget it to a new domain without extensive
software development. Autopilot includes a fuzzy logic
engine that accepts sensor inputs, fuzzifies the values
for rule application, computes the relative truth of each
rule, and defuzzifies the rule consequents to activate re-
mote actuators.

4. Autopilot Performance

The performance of an adaptive steering system like
Autopilot depends on the interplay of a great many
variables and configuration options, including sensor
buffer sizes, threaded and non-threaded sensor modes,
sensor fan out (number of clients/sensor), dynamic
data reduction via attached functions, fuzzy logic rule
base complexity, proximity of sensors/actuators and
their clients, available network bandwidth, data throt-
tling via sensor enablement/disablement, and actuator
synchronization. We briefly discuss the implications
of two of the most important of these issues. Follow-
ing this, we report the results of an initial performance
study and illustrate Autopilot’s use in an adaptive par-
allel file system.

4.1. Data Buffering and Data Reduction

As described in §3.2, when an Autopilot sensor
records data, it can be buffered as raw data or first
processed by an attached function. In either case, the
choice of buffer size determines transmission frequency
and overhead, as well as the buffering latency expe-
rienced by data before transmission. Small buffers re-
duce the latency before transmission, albeit by increas-
ing transmission frequency and overhead.

In the absence of constraints on acceptable data
buffering latency, the transmission costs for a given
communication substrate determine lower bounds on
efficient buffer sizes. For sizes below this point, commu-

nication latency will dominate total transmission over-
head.

Attached functions can reduce data transmission
costs by aggregating a sequence of raw sensor values
(e.g., by computing means, minima, or maxima). How-
ever, for a fixed buffer size, this aggregation increases
the buffering latency prior to transmission. For this
reason, Autopilot attached functions can force imme-
diate data transmission if necessary to bound buffering
latency.

4.2. Performance Evaluation

As just described, an optimal choice of performance
buffer size depends on both the parameters of the com-
munication substrate and the acceptable buffering la-
tency prior to transmission. To identify effective oper-
ating points, we conducted a series of experiments in
three contexts: geographic area, local area, and intra-
system (interprocessor) control. In all three cases, we
measured the round trip delay to send data from a
sensor to a remote client, and then back to the sensor
process.

4.2.1 Experimental Testbed

As a basis for performance analysis, we conducted ex-
periments on a Sun Ultra 1 Model 170 (170 MHz Ul-
traSPARC processor) with 64 MB of memory, and an
SGI Origin2000 with 32 195MHz R10000 processors
and 4 GB of memory.

4.2.2 Communication Overhead

Our experiments showed that the local cost for sensor
monitoring of a single variable on the Sun Ultra was
a modest four microseconds. Hence, Autopilot sensor
overhead is comparable to other state-of-the-art mea-
surement systems like Paradyn [7], making it possible
to conduct fine-grained measurements.

Figure 2 shows the round trip delay for data buffer-
ing and transmission in the geographic, local area, and
intra-system contexts as a function of the sensor buffer
size. In four of these cases the underlying Nexus com-
munication was based on TCP, in one case it was based
on MPI, and in the final case it was based on shared
memory.

As expected, for small buffer sizes, communica-
tion overhead is dominated by communication latency,
ranging from roughly one millisecond between pro-
cesses on a single system to forty milliseconds in the
wide area. For these transmissions, there is little ad-
vantage to using buffer sizes smaller than 4 KB unless

Round-trip latency v. data size
T

Sun WAN (TCP) <—
Sun Local Machine (TCP) —+-
SGI Mpi -8-
Sun Fast Ethernet (TCP) -x
100 SGI Local Machine (TCP) -]
SGI Shared Memory - -

10

Round-trip latency (milliseconds)

—————— i gt
B . &

= -

x x *
* x x o N
O _-a a R=lg o -
A - o &

*
-
P
1 * * R *oomo X s * . i
1 10 100 1000 10000
Data size (bytes)

Figure 2. Round Trip Communication Latency

sensor data buffering delays mandate more frequent
transmission.

Interestingly, communication latency on a single Sun
Ultra is longer than the latency between two systems
connected with fast Ethernet. As Table 1 suggests,
the primary cause for this seeming disparity is context
switch overhead, system traps, and page faults.

| Measure | Local | Fast Ethernet |
Minor page faults 1916 100
System traps 101417 35755
Context switches 42794 22942

Table 1. Relative System Overhead

Because Nexus supports a variety of wide area com-
munication protocols (e.g., native ATM, UDP, and
TCP), as well as the ability to choose specialized low la-
tency protocols for specific contexts (e.g., shared mem-
ory or MPI), one can dynamically configure Autopilot
communication to minimize communication costs.!

4.2.3 Decision Procedure Overhead

Finally, to assess the overhead for fuzzy logic control,
we measured the time needed to evaluate a rule base as
a function of both the number of rules and the resolu-
tion of the fuzzy sets. The latter specifies the number
of sample points used to interpolate individual fuzzy

Hndeed, Autopilot performance studies have led to more effi-
cient Nexus implementations.

8 T T T T T T

7r 20 point resolution — i
40 point resolution -+~ -

Decision Time (milliseconds)
>

20 25 30 35 40
Number of Rules

Figure 3. Fuzzy Rule Evaluation Overhead

sets and determines the precision of fuzzy logic opera-
tions and the defuzzification process.

Figure 3 shows the fuzzy logic evaluation cost for a
rule base with nine rules, five inputs and four outputs
when evaluated on a Sun Sparc Ultra-1.2 To deter-
mine performance scaling as a function of the number
of rules, we then replicated the entire rule base two and
three times. The figure clearly shows that rule evalua-
tion overhead is linear in both the number of rules and
the fuzzy set resolution.

We believe most application and resource policy
steering decisions will be realized on a time scale mea-
sured in seconds or minutes. Hence, based on the re-
sults of these preliminary experiments, the Autopilot
prototype and fuzzy logic provide an effective infras-
tructure for closed loop adaptive control.

5. PPFS II: An Autopilot Testbed

Our recent characterization studies of parallel in-
put/output patterns [1, 13, 12] have shown that paral-
lel applications exhibit a wide variety of input/output
request patterns, with both very small and very large
request sizes, sequential and non-sequential access, and
a variety of temporal variations. Because the interac-
tions between these applications and the file system
software change during and across application execu-
tions, it is difficult or impossible to determine a glob-
ally optimal input/output configuration or to statically
configure runtime systems and resource management
policies for parallel input/output.

Small input/output requests are best managed by
aggregation, prefetching, caching, and write-behind,

2This rule base defines a set of adaptive file caching policies
used in the PPFS II parallel file system prototype described in
§5.

200 1 T

| |
180 - o | [

| |

| |
g 160 = Sequential Writes——> M

e}
§ 140 -, o | Random I
@ §° ' Reads !
=120 o : - :7
é 7000 % o o I \7
FI0pG S RN |
o O

T L I | 1
o 8 | |
B 60 % I
p=} |
T I
x |
|

I

10 20 30 40 50 60 70 80

Timestamp (seconds)

(a) Non-adaptive

200 T T T T

=
a
(=]

=
Q
o

Request Duration (milliseconds)
(o1}
(=]

Timestamp (seconds)

(b) Autopilot Adaptive

Figure 4. PPFS Il Input/Output Benchmark

though large requests are better served by streaming
data directly to or from storage devices and applica-
tion buffers. Complementary performance measure-
ments using experimental parallel file systems [5, 11]
confirmed that exploiting both runtime knowledge of
input/output access patterns and real-time perfor-
mance data to control data placement, caching, and
prefetching could dramatically increase achievable in-
put/output performance.

Based on these experiences, we are designing and
implementing a second generation parallel file sys-
tem, called PPFS II, that supports real-time adaptive
control of file system policies and policy parameters.
PPFS I is designed to operate atop either parallel sys-
tems or PC/workstation clusters and provides a flexi-
ble testbed for high-performance input/output experi-
ments. It includes automatic behavioral classification
techniques to identify and group application resource
request patterns and a flexible set of fuzzy logic rule
bases that can intelligently select file system policies
based on input/output resource demands and supplies.

As an example of the potential power of an adaptive
parallel file system using the Autopilot infrastructure,
consider the caching policies in parallel input/output
systems. These policies should ensure that the data
that will be reused in the near future is retained in the
cache, and that caching is disabled when it will degrade
input/output performance.

Such a policy selection method is implemented in
PPFS II using a fuzzy logic rule base that contains rules
similar to those in Figure 5. This rule base obtains its
inputs using Autopilot sensors, and policy parameters
are changed using actuators. In this way, the caching

system will adapt to the changes in the access pattern.

Figure 4 shows the effect of adaptive caching policies
on performance.? For both experiments shown in the
figure, a 128 MB file is first written sequentially in
16 KB units. Following this, a 32 MB section of the
file is read randomly four times using 16 KB access
sizes.

In the first experiment, PPFS II uses default caching
parameters: 4 KB cache blocks and a 16 MB client
cache. In the second experiment, a fuzzy logic deci-
sion procedure continuously monitors the file system
using Autopilot sensors and obtains access pattern in-
formation through a neural network classification. At
the beginning of the first sequential pattern, PPFS II
chooses a small cache with an MRU replacement pol-
icy for write-only sequential accesses. When the access
pattern transitions to small, random reads, the decision
procedure chooses a larger, 30 MB cache and 80 KB
blocks.

A comparison of these figures reveals the advantages
of choosing the cache parameters dynamically. Dy-
namic adaptation decreases the benchmark execution
time from over 80 seconds to less than 70 seconds and
also decreases the mean response time for each request.

6. Status and Future Work

Although the initial Autopilot prototype is opera-
tional, much work remains. We are developing a more
extensive suite of sensors and sensor attached functions

3These experiments were conducted on a UltraSparc 1 with
Solaris 2.5.1 and a Western Digital 4.3 GB SCSI-3 hard disk.

if (ReadWriteMix == READONLY &&
Sequentiality == NONSEQUENTIAL &&
RequestSize == LARGE)
{ CachingEnable = DISABLED; }
if (ReadWriteMix == READONLY &&
Sequentiality == NONSEQUENTIAL &&
RequestSize == TINY)

{ CachingEnable = ENABLED;
CacheSize = HUGE;
BlockSize = LARGE; }

if (ReadWriteMix == WRITEONLY &&

Sequentiality == SEQUENTIAL)

{ CachingEnable = ENABLED;
CacheSize = SMALL;
BlockSize = LARGE;

ReplacementPolicy = MOSTRECENTLYUSED; }

Figure 5. Adaptive I/0 Rule Base

for real-time data reduction, coupling Autopilot with
an immersive virtual environment [10] for interactive
steering using the Pablo Self-Describing Data Format
(SDDF) [9], and conducting an extensive set of per-
formance studies using instrumented applications and
libraries.

Of the later, the most ambitious is the application of
Autopilot to the implementation of the PPFS II adap-
tive, parallel file system and experiments with inter-
active steering of distributed software via immersive
virtual environments.

7. Acknowledgments

Ruth Aydt, Christopher Elford, Tara Madhyastha,
and Eric Shaffer all contributed important ideas to the
Autopilot design. We are also grateful to lan Foster,
Carl Kesselman, and Steve Tuecke for their guidance
on the use of Nexus.

References

[1] P. E. Crandall, R. A. Aydt, A. A. Chien, and D. A.
Reed. Characterization of a Suite of Input/Output
Intensive Applications. In Proceedings of Supercom-
puting 95, Dec. 1995.

[2] I. Foster and C. Kesselman. Computational Grids:
The Future of High-Performance Distributed Comput-
ing. Morgan-Kaufmann, 1998.

[3] L. Foster, C. Kesselman, and S. Tuecke. The Nexus
Approach to Integrating Multithreading and Commu-

[10]

[11]

[12]

[13]

nication. Journal of Parallel and Distributed Comput-
ing, 37:70-82, 1996.

W. Gu, J. Vetter, and K. Schwan. An Annotated Bib-
liography of Interactive Program Steering. SIGPLAN
Notices, 29(9):140-8, 1994.

J. V. Huber, C. L. Elford, D. A. Reed, A. A. Chien,
and D. S. Blumenthal. PPFS: A High-Performance
Portable Parallel File System. In Proceedings of the
9th ACM International Conference on Supercomput-
ing, pages 385-394, July 1995.

T. M. Madhyastha and D. A. Reed. Exploiting Global
Input/Output Access Pattern Classification. In Pro-
ceedings of Supercomputing 97, Nov. 1997.

B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K.
Hollingsworth, R. B. Irwin, K. L. Karavanic, K. Kun-
chitkapadam, and T. Newhall. The Paradyn Parallel
Performance Measurement Tools. [IEEE Computer,
28(11):37-46, Nov. 1995.

B. P. Miller, M. Clark, J. Hollingsworth, S. Kierstead,
S.-S. Lim, and T. Torzewski. IPS-2: The Second Gen-
eration of a Parallel Program Measurement System.
IEEE Tranactions on Computers, 1(2):206-217, Apr.
1990.

D. A. Reed. Experimental Performance Analysis of
Parallel Systems: Techniques and Open Problems.
In Proceedings of the 7th International Conference on
Modelling Techniques and Tools for Computer Perfor-
mance Evaluation, pages 25-51, May 1994.

D. A. Reed, C. L. Elford, T. Madhyastha, W. H.
Scullin, R. A. Aydt, and E. Smirni. I/O, Performance
Analysis, and Performance Data Immersion. In Pro-
ceedings of MASCOTS 96, pages 1-12, Feb. 1996.

D. A. Reed, C. L. Elford, T. Madhyastha, E. Smirni,
and S. L. Lamm. The Next Frontier: Interactive and
Closed Loop Performance Steering. In Proceedings of
the 1996 International Conference on Parallel Process-
ing Workshop, pages 20-31, August 1996.

H. Simitci and D. A. Reed. A Comparison of Logi-
cal and Physical Parallel I/Oa Patterns. In Interna-
tional Journal of Supercomputer Applications, to ap-
pear 1998.

E. Smirni, C. L. Elford, and D. A. Reed. Performance
Modeling of a Parallel I/O System: An Application
Driven Approach. In Proceedings of the Eighth SIAM
Conference on Parallel Processing for Scientific Com-
puting, Mar. 1997.

J. Vetter and K. Schwan. High Performance Computa-
tional Steering of Physical Simulations. In Proc. Int’l
Parallel Processing Symp., pages 128-132, Geneva,
1997.

J. C. Yan. Performance Tuning with AIMS — An Au-
tomated Instrumentation and Monitoring System for
Multicomputers. In Proceeedings of the 27th Hawaii
International Conference on System Sciences, pages
625—633, Jan. 1994.

L. A. Zadeh. Fuzzy Sets. Information and Control,
8(3):338-353, June 1965.

