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Contemporary microprocessors provide a rich set of integrated performance counters 
that allow application developers and system architects alike the opportunity to gather 
important information about workload behaviors. Current techniques for analyzing 
data produced from these counters use raw counts, ratios, and visualization techniques 
help users make decisions about their application performance. While these techniques 
are appropriate for analyzing data from one process, they do not scale easily to new 
levels demanded by contemporary computing systems. Very simply, this paper 
addresses these concerns by evaluating several multivariate statistical techniques on 
these datasets. We find that several techniques, such as statistical clustering, can 
automatically extract important features from the data. These derived results can, in 
turn, be fed directly back to an application developer, or used as input to a more 
comprehensive performance analysis environment, such as a visualization or an expert 
system. 

1 Introduction 
Contemporary microprocessors provide a rich set of integrated 

performance counters that allow application developers and system 
architects alike the opportunity to gather important information about 
workload behaviors. These counters can capture instruction, memory, 
and operating system behaviors. Current techniques for analyzing the 
data produced from these counters use raw counts, ratios, and 
visualization techniques to help users make decisions about their 
application source code. 

While these techniques are appropriate for analyzing data from one 
process, they do not scale easily to new levels demanded by 
contemporary computing systems. Indeed, the amount of data 
generated by these experiments is on the order of tens of thousands of 
data points. Furthermore, if users execute multiple experiments, then 
we add yet another dimension to this already complex picture. This 
flood of multidimensional data can swamp efforts to glean important 
ideas from these counters. 

With the trend toward larger systems, users will have no choice but 
to rely on automated performance analysis tools to sort through these 
massive data sets, recognize important features, identify parts of the 
application that are underutilizing the platform, and prescribe possible 
solutions. Figure 1 shows the major components of such a system. At 
step !, the performance instrumentation captures and sorts the data 
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at runtime or offline. Although users can examine the raw data 
immediately with a visualization tool like VGV [7] or Paraver [4], 
feature extraction tools and rule-based recommender systems [10, 16] 
can support the visualization process. For example, at step ", a 
decision tree algorithm could identify those messages that are 
performing abnormally [19] and identify them in the visualization with 
a special glyph or color.  

Very simply, this paper addresses these concerns by evaluating 
several multivariate statistical techniques on these datasets. We find 
that techniques such as statistical clustering offer promise for 
automatically extracting important features from this performance 
counter data. These derived results can, in turn, be fed directly back to 
an application developer, or used as input to a more comprehensive 
performance analysis environment, such as a visualization [7] or an 
expert system [10]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Components  of  a  comprehensive  performance  analysis  environment. 

2 Microprocessor Hardware Performance Counters 
Modern microprocessors include integrated hardware support for 

non-intrusive monitoring of a variety of processor and memory system 
events. Commonly referred to as hardware counters [3, 14], this 
capability is very useful to both computer architects [2] and 
applications developers [23]. Detailed software instrumentation can 
introduce perturbation into an application and the measurement 
process itself. On the other hand, simulation can become impractical 
for large, complex applications. These counters fill a gap that lies 
between detailed microprocessor simulation and software 
instrumentation because they have relatively low perturbation and can 
provide insightful information about processor and memory-system 
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behavior [20, 22]. Even though this information is statistical in nature, 
it does provide a window into certain behaviors that are realistically 
impossible to harvest otherwise. For instance, on IBM's POWER3 
microprocessor, these events include various counts of instructions, 
cache activity, branch predictions, memory coherence operations, and 
functional unit utilization. 

Several tools and microprocessors have extended this functionality 
beyond simple event counting. Intel's Itanium processors [9] have 
features that allow monitoring based on an instruction address range, 
a specific instruction opcode, a data address range, and/or the privilege 
level. In addition, the Itanium supplies event address registers that 
record the instruction and data addresses of data cache misses for 
loads, the instruction and data addresses of data TLB misses, and the 
instruction addresses of instruction TLB and cache misses.  

As another example, DEC implemented a useful strategy for 
hardware counters: instruction sampling within the microprocessor. 
Using this approach, a performance-monitoring tool, such as ProfileMe 
[5] or DCPI [1], could randomly elect to measure performance 
characteristics of individual instructions as they flowed through the 
processor pipeline. The tool could, then, gather this information over 
the execution of an application and attribute performance problems to 
certain instructions statistically. 

2.1 Counting Hardware Events 
Our approach to using hardware counters rests on bracketing 

targeted code regions with directives that program the counters to 
capture events of interest, start and stop the counters, and read and 
store the counter values. Users can insert these directives several ways 
including by hand, or with a compiler, a binary editor, or dynamic 
instrumentation. Hardware counters do require the appropriate 
operating system and library support to accredit counts appropriately 
to the proper processes and threads. 

call f_start_section(1,0,ierr) 
call hydxy( ddd, ddd1, ithread) 
call deltat(" Finished X sweep",2) 
call f_end_section(rank, 1,0,ierr) 
BARRIER 
call flag_clear 
BARRIER 
call f_start_section(2,0,ierr) 
call hydyz( ddd1, ddd, ithread) 
call deltat(" Finished Y sweep",2) 
call f_end_section(rank, 2,0,ierr) 
BARRIER 
call flag_clear 

Table 1: Sample code segment from function runhyd3 of sPPM. 

Table 1 shows a code segment from sPPM [17] that has been 
instrumented with high level library routines written on top of MPX 
[15] and PAPI [3] in order to capture eight hardware counter values: 
total processor cycles, total instructions, cycles stalled waiting for 
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memory accesses, floating point divide instructions, L1 cache misses, 
floating point instructions, load instructions, and store instructions. 

As Table 2 illustrates, every execution of this sequential code 
segment will generate one instance of counter values for each MPI 
task. Therefore, applications that execute this code segment millions of 
times will generate millions of instances of counter values. Table 1 
shows the raw counter value table that is generated from the code 
segment in Figure 1 using two MPI tasks. The G column lists the 
instrumentation identifiers that represent different regions of the code. 
The S column lists instances of these regions. Clearly, in real 
experiments, this data management problem can become intractable! 
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1 2 3 4 5 6 7 8 
1 1 1 8305760504 7795651387 2265349817 14689488 72993923 3744267304 2123235784 1253921843 
1 1 2 8233114700   7587713598   2257442295   8987587   72816919  3612932116   2100752913   1260163691 
1 2 1 8197360363    7701750765   2233070347    14695959   73425197    3736956914    2075722824   1237231534 
1 2 2 8135138668   7593760051  2207456335    9172755   73699055    3590374684    2060311042   1230463969 
2 1 1 8326329304   7559198564   2401195595  14583869   72382972   3717326869   2078653081   1233604083 
2 1 2 8291791110   7421248463   2334628952   8509892   72074918   3540521698    2060023498   1230670879 
2 2 1 8405106757   7645055689  2415396992   14655896   72785214   3708798229  2104739801   1248538508 
2 2 2 8381061956    7523753702   2377276028    8606055   72608329    3553288776    2084495857   1256915516  

Table 2: Counter values from code segment.    

In this situation, the sheer volume of information quickly eclipses 
useful characteristics of the performance data. Simple questions are 
difficult to answer: which counters appear to be providing similar 
information; are the same counters for each task performing similarly; 
which counters account for most of the variation across all the tasks in 
the application; which tasks cause this variation? 

Certainly, simple statistics, such as the minimum, maximum, and 
the average help here, but since these statistics apply to only one 
counter at a time, they reveal neither relationships among multiple 
counter values nor relationships across multiple instances or tasks. 

3 Multivariate Statistical Techniques for Performance 
Data 

As we illustrated in Section 2, each instrumentation point within 
an application can generate a vast number of hardware counter values. 
Multiple experiments can aggravate this issue even further. To analyze 
this data, we turn to multivariate statistical techniques to help focus 
the user's attention on the important metrics and the distribution of 
those metrics across parallel tasks. 
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3.1 Performance Metric Spaces 
For further analysis, we model these values as points in a 

multidimensional space. To make this notion more formal, consider a 
set of k dynamic performance metrics, hardware counters in our case, 
measured on a set of P parallel tasks, on a set of g instrumentation 
regions, and on s samples. Abstractly, one can then view these events 
as defining a collection of these points that describe parallel system 
characteristics. Following [21], if Ri denotes the range of metric k, we 
call the Cartesian product 

M = R1 × R2 × ... × Rk 

a performance metric space. Thus, the ordered k-tuples 

 (v1 ∈  R1; v2 ∈  R2; ... ; vk ∈  Rk) (1) 

are points in M. It is important to note that this definition of the metric 
space does not include the dimensions of instrumentation identifier, 
parallel task identifier, or measurement instance. Furthermore, this 
model assumes that this higher-dimension data can be down-sampled 
into this space as appropriate. For instance, we collect all the points for 
one instrumentation region across all tasks and across all 
measurements and then project it into this metric space. This situation 
would generate k × P × s points. While this trivial example illustrates 
our formalization, we expect to use our techniques on much larger 
systems where k > 10, g > 10, P >> 10, and s >> 10. 

The goal of our analysis technique is now apparent; we must reduce 
this massive number of measurement points and the dimensionality of 
the metric space to a comprehendible scale. Traditional multivariate 
statistical techniques warrant investigation as vehicles for 
understanding this data. In fact, projection pursuit [21] and clustering 
[18] have been applied to understanding real-time performance data; 
this previous work strongly suggests that such techniques will be 
useful for managing hardware counter data. These multivariate 
statistical techniques allow users to draw inferences from observations 
with multiple variables (dimensions) and they include dimension 
reduction and classification. 

3.2 Data Preparation  
Raw data as generated by reading the hardware counters directly 

can provide useful information; however, in the context of performance 
analysis, derived metrics are equally important. For example, the raw 
metric for number of cycles supplies a useful estimate of how long a 
code region executed; however, the derived metric of number of 
instructions divided by the number of cycles (IPC or instructions per 
cycle) can directly emphasize how well code regions are utilizing 
system resources. On the other hand, raw metrics are necessary to help 
gauge the overall importance of code regions per se. For instance, the 
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IPC of a code region that accounts for only minuscule numbers of cycles 
during the application execution is irrelevant. 

3.3 Cluster Analysis and F-ratio 
Cluster analysis is a rudimentary, exploratory technique that is 

helpful in understanding the complex nature of multivariate 
relationships [11, 12]. It provides a familiar means for assessing 
dimensionality, detecting outliers, and suggesting attractive 
hypotheses about relationships between the data. Cluster analysis 
makes no assumptions about the number of clusters or the cluster 
structure. It relies only on a metric that calculates the similarities or 
distances between data points. There have been a wide variety of 
clustering algorithms proposed. Major differences are whether 
particular methods simply partition data points into a given number of 
groups or build more complicated cluster (or data point) hierarchies. 

In the context of hardware counter data, we propose both 
hierarchical and non-hierarchical methods will help users identify 
equivalence classes of data points and an ‘important’ subset of entire 
performance metrics that make high contribution to the existence of 
those classes. 

 We will demonstrate how hierarchical algorithms give users 
insights about overall cluster structure of a data set by means of 
dendrogram, while nonhierarchical methods, such as the k-means 
algorithm, provide an efficient method to explain the importance of 
each metric on a cluster configuration by using F-ratio of each metric 
(Section 4.4).  

F-ratio is a technique for univariate analysis of variance that is 
defined as 

iablityClusterVarWithin
iablityClusterVarBetween

−
− . Apparently, metrics that vary greatly 

among different clusters and remain the same in the same cluster 
yields higher F-ratio. K-means and F-ratio can also be employed when 
the decision on number of clusters is not obvious. This situation 
happens often when users do not have reasonable prior knowledge 
about target application’s behavior. K-means and F-ratio provide a 
means by which a system can automatically partition data points into a 
number of clusters as to maximize the between-cluster variability 
relative to the within-cluster variability. 

3.4 Factor Analysis 
Factor analysis is a multivariate technique that describes the 

covariance relationships among many variables in terms of a few 
underlying quantity, factors. In the context of hardware counter space, 
we propose it will reduce the dimensionality of our performance metric 
space, M = [R1 × R2 × ... × Rk ], by assembling  highly correlated metrics 
in a peer group while separating uncorrelated ones into the other 
groups. (e.g. [ cba RRR ,, ], x[ dR ]x…x [ kji RRR , ]). This grouping can 
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guide users to choose a right set of metrics for refining their code 
optimization efforts.  

In the factor analysis model, our metrics space M can be rewritten 
as  
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Where Fi is the ith common factor, Rj  jth metrics, vk mean of Rj, and 
coefficient lji is the loading of Rj on the factor Fi. As this notation 
suggests, grouping R’s that have higher loadings for a particular F will 
yield a group whose R’s are highly correlated.  

In contrast to cluster analysis, factor analysis reduces the data 
space from the standpoint of variables. (standpoint of performance 
metrics) Thus, combining both analyses supplies a powerful means in 
reducing the dimension of metrics as well as the dimension of 
processing element, quickly turning the data space into a manageable 
state. We will demonstrate how we combine factor analysis with cluster 
analysis and how it mines important performance features of an 
instrumented code region as a result of data reduction. 

3.5 Principal Component Analysis (PCA) 
Principal component analysis (PCA) [11] explains the variance-

covariance organization of a set of variables using a few linear 
combinations of these variables. The primary goals of PCA are data 
reduction and interpretation. Intuitively, PCA attempts to find a 
subset of the original variables that accounts for almost as much 
variability as all of the original variables. This subset can then replace 
the original variables, and thereby achieve a data reduction. 

4 Evaluation 
We empirically evaluated our techniques with three applications. 

As Table 1 illustrates, we first instrument the application and collect 
hardware counter data on the target platform. We then clean, merge, 
and prepare this data for statistical analysis. Next, we apply several 
statistical techniques to the prepared data.  

4.1 Instrumentation and Data Collection 
We manually instrument our target applications with source code 

annotations. Each instrumentation point identifies a code region to 
capture hardware counter metrics as Table 1 illustrates. Hence, each 
application has g instrumented code regions as defined in Section 3.1. 
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For these experiments, we assume that each region captures the same 
set of k hardware metrics.  

In this framework, our tool can either write the each sample to a 
tracefile during execution or accumulate the samples for each region 
and write the accumulated metrics to a file at termination. In the 
former context, tracefiles would grow at a rate proportional to k × g × s 
for each parallel task. We implemented both modes, but still, we use 
the latter technique, which generates only k × g measurement points 
for each parallel task, to prevent an explosion of data and 
measurement overhead. Our statistical techniques remain valid for 
accumulated data; however, this selection has the drawback that 
accumulated measurements can hide certain performance phenomena. 

At termination of the application experiment, each parallel task P 
generates a local file. Our prototype merges these P local files into one 
global file, containing all accumulated measurements for an 
application, and having size proportional to k × g × P. With all these 
raw metrics for one application now in one file, we can easily apply our 
statistical techniques to this file with a filter. This filter also 
manipulates the raw metrics for data cleaning and generating useful 
derived metrics as described in Section 3.2.  

4.2 Platform 
We ran our tests on two IBM SP systems, located at Lawrence 

Livermore National Laboratory. The first machine is composed of 
sixteen 222 MHz IBM Power3 8-way SMP nodes, totaling 128 CPUs. 
Each processor has three integer units, two floating-point units, and 
two load/store units. At the time of our tests, the batch partition had 15 
nodes and the operating system was AIX 4.3.3. Each SMP node 
contains 4GB main memory for a total of 64 GB system memory. A 
Colony SPSwitch--a proprietary IBM interconnect--connects the nodes.  

The second system is composed of 68 IBM RS/6000 NightHawk-2 
16-way SMP nodes using 375 MHz IBM 64-bit POWER3-II CPUs. The 
system has a peak performance rating of 1.6 TeraOps, 1088 GB of 
global memory, and 20.6 TB of global disk.  At the time of our tests, the 
batch partition had 63 nodes and the operating system was AIX 5.1. A 
Colony SPSwitch2--a proprietary IBM interconnect--connects the 
nodes.  

4.3 Applications 
We evaluate our proposed techniques on three scalable 

applications. Each application has different computational and 
communication characteristics [20, 22]. SPPM, for example, has large 
blocks of floating point computation with infrequent, large messages, 
while Sweep3D has frequent, small messages with smaller blocks of 
computation. 
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sPPM [17] solves a 3-D gas dynamics problem on a uniform 
Cartesian mesh, using a simplified version of the Piecewise Parabolic 
Method. The algorithm makes use of a split scheme of X, Y, and Z 
Lagrangian and remap steps, which are computed as three separate 
sweeps through the mesh per timestep. Message passing provides 
updates to ghost cells from neighboring domains three times per 
timestep. OpenMP provides thread-level parallelism within MPI tasks. 

Sweep3D [8, 13] is a solver for the 3-D, time-independent, particle 
transport equation on an orthogonal mesh and it uses a 
multidimensional wavefront algorithm for "discrete ordinates" 
deterministic particle transport simulation. Sweep3D benefits from 
multiple wavefronts in multiple dimensions, which are partitioned and 
pipelined on a distributed memory system. The three dimensional 
space is decomposed onto a two-dimensional orthogonal mesh, where 
each processor is assigned one columnar domain. Sweep3D exchanges 
messages between processors as wavefronts propagate diagonally 
across this 3-D space in eight directions. 

UMT is a 3D, deterministic, multigroup, photon transport code for 
unstructured meshes. The algorithm solves the first-order form of the 
steady-state Boltzmann transport equation. The equation's energy 
dependence is modeled using multiple photon energy groups. The 
angular dependence is modeled using a collocation of discrete 
directions. The spatial variable is modeled with an upstream corner 
balance finite volume differencing technique. The solution proceeds by 
tracking through the mesh in the direction of each ordinate. For each 
ordinate direction all energy groups are transported, accumulating the 
desired solution on each zone in the mesh. The code works on 
unstructured meshes, which it generates at run-time using a two-
dimensional unstructured mesh and extruding it in the third 
dimension a user-specified amount.  

4.4 Scatterplot/Correlation Matrix 
A scatterplot matrix is a convenient mechanism to display the 

variance relationships among the multiple dimensions of counter 
metrics. The scatterplot matrix contains all the pairwise scatter plots 
of the variables on a single plot in a matrix format. Therefore, if there 
are k variables, the scatterplot matrix will have k rows and k columns 
and the ith row and jth column of this matrix is a plot of variable i versus 
variable j.  
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Table 3: Scatterplot matrix for UMT on 288 tasks with raw data from 7 counters. 

Consider the presentation in Table 3 for UMT on 288 tasks. This 
figure quickly illustrates the relationships between each of the seven 
counter data points for all 288 tasks. Noticeably, six counters (fma, 
fpu0, fpu1, inst, ld, st) are highly correlated as Table 4 confirms with 
values greater than 0.99. 

 fma fpu0 fpu1 inst ld st tlb.miss 
fma 1.0000000 0.9986839 0.9985139 0.9997846 0.9997262 0.9992478 0.3598753 

fpu0 0.9986839 1.0000000 0.9946780 0.9987720 0.9987540 0.9984938 0.3576571 
fpu1 0.9985139 0.9946780 1.0000000 0.9984684 0.9984306 0.9980825 0.3621886 
inst 0.9997846 0.9987720 0.9984684 1.0000000 0.9999964 0.9998370 0.3612941 

ld 0.9997262 0.9987540 0.9984306 0.9999964 1.0000000 0.9998803 0.3614241 
st 0.9992478 0.9984938 0.9980825 0.9998370 0.9998803 1.0000000 0.3625394 

tlb.miss 0.3598753 0.3576571 0.3621886 0.3612941 0.3614241 0.3625394 1.0000000 
     fma:  PM_EXEC_FMA, fpu0: PM_FXU0_PROD_RESULT, fpu1: PM_FXU0_PROD_RESULT 
     inst:  PM_INST_CMPL, ld: PM_LD_CMPL, st: PM_ST_CMPL, tlb.miss: PM_TLB_MISS (AppendixA) 

Table 4:  Correlation  matrix  for UMT on  288  tasks  with  raw  data  from  7 counters. 
 

Using this result, we can quickly prune counters from our set of 
measurements because we can select one of the six counters (fma, fpu0, 
fpu1, inst, ld, st) as a representative and use that counter as a predictor 
for the others. Any task with a higher value for one of these six implies 
a higher value for the other five. The tlb.miss counter, on the other hand, 
is only slightly positively correlated with these other six counters.  

Naturally, this result assists users in determining which counters 
are  redundant. Since many microprocessors have only a limited 
number of counters on which to count many events, users must choose 
events to count wisely. This straightforward analysis helps with this 
decision. 
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4.5 Cluster Analysis 

4.5.1 Agglomerative Hierarchical Method (AHM) 

This method gives users insights about overall cluster structure 
that exist in a data space by constructing dendrograms. Figure 2 shows 
the dendrogram for one instrumented section of an sPPM experiment 
with 16 MPI tasks and 16 OpenMP threads per task. Since sPPM 
exploits parallelism with message passing for inter-node 
communication and OpenMP within shared memory for thread level 
parallelism, it is expected to have at least two natural clusters when 
using the raw counter data. Agglomerative Hierarchical Method clearly 
identifies in Figure 2 the existence of two classes; one housing all 240 
slave threads and the other cluster containing the 16 master threads. 
As expected, the distance between two natural clusters is much larger 
than a distance between any other pairs of clusters (or tasks). 

Figure 2: Dendrogram for a section of sPPM using 23 raw counter metrics 
(task numbers elided). 

Figure 3 illustrates the dendrogram of the same section of sPPM 
using some derived metrics. The configuration does not change much 
from Figure 2, suggesting that the hardware counter performance 
counters show that these tasks are performing similarly and any 
changes to code for either the master thread or the slave thread will 
propagate to its peers. (Statistical techniques with raw metrics alone 
would not provide this perspective immediately.) That is, the 
optimizations to one of the representatives in this group will most 
likely propagate to its peers in the same cluster. Derived metrics that 
are used in the experiment include instructions per cycle (IPC), TLB 
misses per cycle, and floating point instructions per cycle. We use 
derived metrics with the same scale in producing such a dedrogram to 
avoid bias that can be incurred when scales of selected metrics are 
different. 
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Figure 3: Dendrogram for a section of sPPM using derived metrics  (task 
numbers elided). 

4.5.2 k-means clustering and F-ratio 

While AHM gives a general idea about cluster structure, it is not 
entirely convenient to compare clusters and compute the importance of 
an individual metrics that yield the particular cluster configuration. 
Using k-means clustering and F-ratio, we order metrics for the same 
section on sPPM by their F-ratios(

iablityClusterVarWithin
iablityClusterVarBetween

−
− ) and display 

seven metrics with highest F-ratios out of 23 metrics in Table 5. 
(Appendix A lists entire performance metrics used in experiments) 

Metrics Description  F-ratio 
PM_FXU2_PROD_RESULT FXU 2 instructions 607415
PM_ST_CMPL  Stores completed 65.1062
PM_FXU0_PROD_RESULT  FXU 0 instructions 38.2457
PM_FXU1_PROD_RESULT  FXU 1 instructions 16.3252
PM_0INST_CMPL  No Instructions completed 13.1642
PM_ST_DISP  Stores dispatched 12.3751
PM_LD_DISP  Loads dispatched 12.3165

Table 5: Metrics ordered by F-ratio size for a section of sPPM. 

Table 5 suggests that major differences between master-thread 
cluster and slave-thread cluster stem from hardware events that are 
related to integer instructions, system idling, and load/store behaviors. 

On further investigation of F-ratio results, we find that the hybrid 
MPI/OpenMP version of sPPM has significant differences between the 
master and worker threads in the target section: only master threads 
conduct MPI operations. Also, the master thread must manage the 
remaining worker threads; it incurs more copying of data and 
synchronization as evidenced by the F-ratio and k-means clustering 
results. 

4.6 Factor Analysis 
Table 6 shows the result of factor analysis at a section of sweep3D 

on 256 MPI tasks. Each column represents loadings of metrics for each 
factor. We group together those metrics with larger loadings. Grouping 
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is depicted with different font color and background shapes/colors in 
the table. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                   Table 6: Factor Analysis of a code section of sweep3D  

As table 6 suggests, highly correlated metrics fall into the same peer group. 
For example, with respect to Factor 3, it appears that all three metrics belonging to 
it are closely related to floating point operations. Hence, it is fairly easy to 
speculate that this underlying factor measures computation aspect of the 
performance. Similarly, in the case of Factor 2, the fact that all the grouped 
metrics are memory system related leads us to infer it as memory behavior factor. 
Finally, we speculate Factor 3 as a performance implication that is caused by 
resource idling during message passing, in part because it includes measures on 
hardware event of no instruction completed (PM_0INST_CMPL) in absence of 
floating point related metrics in its peer group. In addition, it also involves a direct 
measure for a functional unit (load/store unit) idling. (PM_LSU_IDLE) 
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             Table 7: Factor Analysis of a code section of umt2k. 

Table 7 shows the result of factor analysis on a code section of UMT 
at 288 MPI tasks. In contrast to that of sweep3D, a majority of metrics 
falls into one peer, suggesting computation behavior dominates 
performance characteristics at the code section. In fact, further 
investigation reveals that workload distribution imbalance caused by 
its unstructured mesh technique makes around 20% of tasks do less 
work (20−30% less) at this code section. Given such information, users 
can be advised now to focus on resolving workload imbalance issue at 
this section in their performance efforts. 

 

4.7 Combining Factor Analysis and Cluster Analysis 
We combine factor analysis with cluster analysis in an attempt to 

narrow down the multiple viewpoints on the original performance data 
space into a single viewpoint on a reduced data space. That is, instead 
of looking at multiple performance implications on individual tasks, we 
view one major characteristic at a time on the clusters. 
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Figure 4 illustrates a dendrogram at a section of Sweep3D. It is 
produced using only those metrics that have high factor loadings with 
respect to computation factor shown in Table 6. The fact that it includes 
only a group of computation metrics enables us to describe this 
dedrogram much easier; each task is assigned to its cluster solely based 
on its computation behavior. Three distinct clusters visually stand out.  
      

 
   A         B    C 

Figure 4: Dendrogram for �sweep� section of Sweep3D using counter metrics of 
computation factor. 

Figure 5 is a cluster membership map constructed from this 
dendrogram. It depicts membership by means of coloring on the 2-D 
processor grid. This representation is chosen in that Sweep3D itself 
decomposes the global 3-D problem onto such a 2-D orthogonal mesh 
for processor assignment. The map immediately reveals that 
computation behavior is different between corner tasks and edge/inner 
tasks, implying slight load imbalance between tasks in different 
equivalent classes. 

 
 

             A 
Task at the left  side of dendrogram  

  
  B 

                                                     Task in the  center  of   dendrogram  
 
             C 

      Task at the right side of dendrogram  
 
 

Figure 5: Cluster membership map constructed from Figure 4 on processor grid. 

Similarly, cluster analysis on the metrics belonging to memory 
system behavior factor [Table 6] yields a cluster configuration such that 
most tasks on the edges and at four corners (and a few inside tasks) 
differ themselves from the others. We believe at least two code features 
of Sweep3D algorithm contributes to such cluster assignments on its 
computation and memory system behavior. First, its corner and edge 
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tasks have fewer number of neighbor tasks to communicate with. 
Secondly, its wavefront algorithm starts from four corners of 2-D 
processor grid and then transfers waves diagonally to other tasks; 
thereby incurs more start-up burden to corner tasks. 

Figure 6 illustrates a similar cluster membership map of the same 
code section of Sweep3D with respect to Factor 1 shown in Table 8. 
This map represents three equivalence classes of tasks with respect to 
idling behavior during message passing. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Figure 6: Cluster memberships of MPI tasks on factor 1 

It suggests that tasks that are handling right and bottom side of 
problem domain tend to be underutilizing the system resources at this 
code section. Examining individual metrics used to produce Figure 6 
explains it in detail. For example, Figure 7 shows a subset of individual 
metrics that belongs to the Factor 1. It indicates that MPI tasks that 
are located toward right and bottom side of 2-D processor grid tend to 
spend more cycles at the code section; yet, the increased cycles are 
contributable to system idling; Counts for no instruction completion 
(PM_0INST_CMPL) event and load and store units idle 
(PM_LSU_IDLE)  event increase with cycle metric. (but floating point 
related metrics do not). 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 7: Each graph, from left to right, represents respectively number of 
cycle, no instruction completed, and load and store unit idling. (Vertical axis is 
counter value and horizontal axis is MPI task number) 
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4.8 Recursive application of statistical techniques. 
We recursively apply the statistical techniques when there exist 

statistically very distinct clusters such as the case of sPPM illustrated 
in Figure 2. As explained in section 4.5.1, sPPM has two significantly 
different clusters in its data space. Naturally, the same set of 
statistical analyses can be recursively applied to each of two clusters. 
Figure 8 shows the cluster membership of slave threads on the raw 
counter metrics of computation factor peer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Cluster membership of slave threads at a code section of sPPM on 256 
tasks. (Metrics from its computation factor is used)  

 
It indicates that threads spawned from high-ranked MPI tasks are 

doing more amount of floating point work than ones spawned from low-
ranked MPI tasks. Without recursive application of those techniques, 
such workload imbalance would not easily get discovered. Figure 9 
contains a couple of individual metrics that are used in producing 
Figure 8. Indeed, slave threads managed by high-ranked MPI tasks 
have about 3% more FMA instructions executed. 
 

Figure 9:  Each graph, from left to right, represents respectively FMA instruction, 
and cycle where no instruction completed.  
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4.9 PCA 
We primarily use PCA for a visualization technique on our 

multidimensional counter data. We first run cluster analysis to group 
together those similar data points and then project them onto first few 
principal component axes to validate cluster structure.  

 
Figure 10: Hierarchical clustering results after PCA on UMT raw 
metrics at 288 tasks. 

Figure 10 illustrates projection of cluster analysis result onto the 
first two components of PCA with the raw counter data from UMT at 
288 tasks. Component 1 is loaded to the PM_INST_CMPL (instructions 
completed) metric while Component 2 is loaded to the PM_TLB_MISS 
(TLB misses) metric. These two components capture 99.91% of the 
variability in this dataset. Thus, cluster separation should be 
reasonably depicted in the PCA plot as Figure 10 illustrates. 

5 Observations 
Our experiments revealed several important points. First, most of 

the multivariate statistical techniques that we evaluated helped us 
answer some question that would be a burdensome task otherwise. 
Clustering, for example, improves the ability to identify which tasks in 
the application have similar performance counter metrics. The F-ratio 
test discovers which metrics vary across tasks and why they form 
separate clusters. Second, these techniques are a means to an end. The 
output of these statistical methods is quite valuable, but they also 
require additional interpretation and integration with other methods, 
such as rule-based systems, to actually prescribe performance 
optimizations to the user. Third, raw performance counter data 
supplies information on load balance and correlation across metrics 
while derived performance data helps to identify regions of code that 
are performing in the same way. Fourth, although most of our 
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applications and experiment platforms are similar, resulting in well-
behaved performance and workloads, heterogeneous platforms or grid 
environments [6] offer new challenges in understanding performance 
data.  

6 Conclusions 
Scalable computing platforms generate tremendous volumes of 

performance data, especially when monitoring low-level, frequent 
events like those produced by microprocessor performance counters. 
Developers need new techniques to help them gain insight into these 
massive datasets. Traditional multivariate statistical techniques can 
play a prominent role in this effort by reducing the dataset 
dimensionality and classifying similar data points. Our experiments on 
several applications demonstrate the feasibility of this approach and 
highlight several useful implementation strategies. For example, our 
experiments with sPPM, Sweep3d, and UMT clearly confirmed that 
clustering on both raw and derived metrics can allow a user to 
understand the performance implications across all tasks in an 
application. Factor analysis is another technique that helps to correlate 
hardware counter data that appears closely correlated. 

We are beginning to use these results from statistical analysis 
techniques in our environment to drive more advanced performance 
analysis systems as motivated in Section 1. 
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Appendix A:  Power3 Events Used in Experiments 
Name Description 
PM_0INST_CMPL No Instructions completed  

PM_CYC Cycles  

PM_FXU0_PROD_RESULT FXU 0 instructions 

PM_FXU1_PROD_RESULT FXU 1 instructions 

PM_FXU2_PROD_RESULT FXU 2 instructions 

PM_INST_CMPL Instructions completed  

PM_INST_DISP Instructions dispatched  

PM_LD_CMPL Loads completed  

PM_LD_DISP Loads dispatched 
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PM_LSU_IDLE Load store unit idle  

PM_ST_CMPL Stores completed  

PM_ST_DISP Stores dispatched  

PM_BIU_LD_NORTRY L2 Misses 

PM_BIU_ST_NORTRY Write Back 

PM_IC_MISS Instruction cache misses 

PM_LD_MISS_L1 Load miss L1 

PM_LD_MISS_L2HIT Load miss in L12 

PM_EXEC_FMA FMA instruction executed  

PM_FPU0_CMPL FPU 0 instruction complete  

PM_FPU1_CMPL FPU 1 instruction complete  

PM_ST_L2MISS Stores misses in L2 

PM_ST_MISS Store misses in L1 

PM_TLB_MISS TLB misses 
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