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We present a second-order accurate projection method for numerical solution
of the incompressible Navier—Stokes equations on moving quadrilateral grids. Our
approach is a generalization of the Bell-Colella—Glaz (BCG) predictor—corrector
method for incompressible flow. Irregular geometry is represented in terms of a
moving, body-fitted cylindrical coordinate system. Mapped coordinates are used to
smoothly transform in both time and space the moving domain onto a logically
rectangular domain which is fixed in time. To treat the time dependence and inhomo-
geneities in the incompressibility constraint introduced by the presence of deforming
boundaries, we introduce a nontrivial splitting of the velocity field into vortical and
potential components to eliminate the inhomogeneous terms in the constraint and a
generalization of the BCG algorithm to treat time-dependent constraints. The method
is second-order accurate in space and time, has a time step constraint determined by
the advective CFL condition, and requires the solution of well-behaved linear sys-
tems amenable to the use of fast iterative methods. We demonstrate the method on
the specific example of viscous incompressible flow in an axisymmetric deforming
tube. (© 2001 Academic Press
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192 TREBOTICH AND COLELLA

1. INTRODUCTION

The incompressible Navier—Stokes equations are a combination of evolution equati
and constraints resulting from the incompressibility condition:

U + div(iu ® u) = —grad p) + vAu

1
div(u) = 0. @)

As such, the formulation of appropriate time-discretization methods is more subtle tt
is the case for evolution equations. To address this issue, Chorin [10] introduced pro,
tion methods, based on the Hodge decomposition of any vector field into a divergence-
part and a gradient of a scalar field. Projection methods are fractional step methods
which an intermediate velocity is computed that does not necessarily satisfy the incc
pressibility constraint. Then this velocity is corrected so that it satisfies the constraint. M
recently, Bell, Colella, and Glaz (BCG) [6] introduced a predictor—corrector method bas
on Chorin’s ideas. Some of the key advantages of their method are that the advective te
can be treated using explicit high-resolution finite difference methods for hyperbolic PD
and that only linear systems, coming from standard discretizations of second-order ellj
and parabolic PDEs which are amenable to solution using fast iterative methods such a
multigrid method, must be solved. This leads to a method that is second-order accura
space and time. It has a stability constraint on the time step due only to the CFL condit
for the advection terms and provides a robust treatment of underresolved gradients ir
Euler limit. This method has been the basis for the extensive development of new algoritt
for the treatment of a variety of low Mach number flow problems [1, 2, 8, 9, 13, 21, 23, 2
27, 30].

The purpose of this paper is to present the extension of the BCG algorithm to the ¢
of moving deformable boundaries. The principal difference is that the boundary conditic
for the divergence-free constraint become both inhomogeneous and time-dependent. T
have been a number of previous methods which model deformable boundaries [15, 24,
but none combine the accuracy, efficiency, and robustness of the BCG approach. We a
this problem using three ideas. First, we address the deformable nonrectangular domain
a moving, mapped grid. Second, we eliminate the inhomogeneity in the constraint equa
by performing a nontrivial Hodge splitting of the velocity field into a potential componer
that carries the inhomogeneities in the boundary conditions for the divergence constr
and a vortical component that satisfies an evolution equation with time-dependent,
homogeneous, constraints. The third idea is a new time discretization for time-depend
constrained systems. The end result is a method that retains the advantages of the
algorithm, but for the more general case of flows in deforming domains.

Preliminary versions of these results appear in [14, 31].

2. PHYSICAL PROBLEM

We consider the problem of flow in an axisymmetric, flexible tube (see Fig. 1). Tt
dashed top boundary of the figure is the centerline, or axis of symmetry, of the tube wh
r = 0. There is flow into the tube at the left boundary where the classic Poiseuille veloc
profile for viscous flow in pipes is prescribed. The wall of the tube is the bottom bounda
r = R(z, t). Thisinfinitely thin solid wall boundary is allowed to move in the middle sectior
of the tube with a prescribed velocity. The inlet and outlet remain fixed.
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FIG.1. Flow through an axisymmetric deforming tube.

Mapped coordinates.We address the issue of domain deformability with moving
mapped coordinates. We define a continuous mapping from an abstract fixed coordi
system,£ = (&, ), to real axisymmetric coordinates which are time-dependenht,=
(r (0, z(t):

x=x(& 1. )
We then define divergence, gradient, and Laplacian operators in mapped coordinates

diviuy =V.-u=J"1v, . (JF'u)
gradp) = Vp=F "V;p ®3)
AU =V - (Vu) =3V, . JFF TV.u),

whereu and p are velocity and pressure, respectively, dnd the determinant df = g—g
The inverse transformation matrii; 2, is defined as

-1 _ -1 Zy —I'n
P9 Lzs re } ’ “

whereg = 2rr. The appropriate volume weighting of the inverse transformation is d
rived from the unrestricted three-dimensional definition of the transformation matrix. |
understand this quantity discretely, it must be placed into the correct context—nam
transformation of a vector in real coordinates to one in mapped coordinates. This will
discussed as needed in the details of the algorithm.

The incompressible Navier—Stokes equations (1) transform into mapped coordinate:

Utls + div[(u — ) ® u] = —gradp) + vAU

5
div(u) = 0, ®)

wheres = %—’t‘ is the velocity of the moving coordinate system ands the kinematic
viscosity.
The boundary conditions for viscous incompressible flow in an axisymmetric deformi

tube are

(1) along the axis of symmetry (no flow)

u-n=20,
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(2) atthe solid wall (prescribed boundary motion)
U = Up,
(3) atinflow (prescribed Poiseuille flow)

u=20
v=2(1-r3?,

(4) at outflow

au
i 6
57 (6)
In addition, we will specify a Dirichlet boundary condition grat outflow. The exact form
of this pressure boundary condition is deferred for later discussion.

Split-velocity formulation. We decompose the solution to (1) into two componem{s:
which carries the velocity field induced by the vorticity, ang a nontrivial potential flow
field induced by the deforming boundary:

div(uy) = 0 (7
Up = grad¢).

Here,¢ is the solution to Laplace’s equationg = 0, with normal boundary conditions
(see Fig. 1 for geometry) given by

(1) along axis of symmetry (no flow)
Up-n=0, )
(2) atthe solid wall (prescribed boundary motion)
Up-N=Upy-n, ©)
(3) atinflow (constant mean flow)
Up - N = Ujn, (10)
(4) at outflow (conservation of mass, 1D mean flow)
Up - N = vout, (12)

wherev, is the one-dimensional solution obtained from conservation of mass for flow
a flexible tube with fixed inlet and outlet:

Rout Rm I—WaII
an(up-n)dr+/ 2rr (up - nydr +/ 2rR(DH(up-n)dl =0. (12)
0 0
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This leads to the equation of motion fay,

au
aTV = F(uy, Up) — gradr)
N (13)
div(uy) =0,
where
F(uy, Up) = —As(Uy, Up) + VAU
As(Uy, Up) = Uy - VUp+ (U—9) - VUy (14)
__d¢ |up|?
T T TP

The advantage of this formulation is that it transforms inhomogeneous boundary conditi
into the corresponding homogeneous ones for the primary time-evolving variables, |
Uy. A similar approach was used in [19] to deal with inhomogeneous constraints al
ing in low Mach number combustion, motivated by the corresponding splitting of t
velocity field in [13] for the fully compressible case. We have also defined a Bernot
pressuresr, to absorb all gradients in the split, transformed equations. If the flow is fri
tionless and purely potentiah = V¢), the equation of motion (13) reduces to Bernoulli’'s
equation.
The boundary conditions am, are as follows:

(1) along the axis of symmetry

uy-n=0, (15)
(2) atthe solid wall
u,-n=20
(16)
Uy -t = (Up — up) - t,
(3) atinflow
ug=0
(17)
vg=1-— 2r2,
(4) at outflow
8UV
— =0. 1
07 (18)

The boundary condition o at outflow is7 = 0. It follows that the potential flow
solution, u,, satisfies the Euler equations. These boundary conditions lead to div and g
operators appearing in (13) that are formally adjoints to one another,

/ diviw)y dV = —/(w-gradxﬁ))dv, (29)
Q Q
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if w andy satisfy the boundary conditions. The reason this is the case is that the bounc
conditions foru, andx are set so that the boundary terms coming from application of th
divergence theorem tuﬁ2 V - (wyr) dV vanish. Finally, we can recover equations fior

au
ot

__dup

. ot

+ F(uy, up) — gradm). (20)
&

3. TIME DISCRETIZATION

Model problem. We use a model problem to address the issue of the time-depend
incompressibility constraint. The model problem is a finite dimensional version of tl
equation of motion (13). Lef,u € R", # € R™, and A be ann x m matrix, whereu, A,
and f are smooth functions of time. The model system is a differential-algebraic syst
comprising an equation of motion and a homogeneous, linear constraint:

% =f-A'xn
t (21)
Au = 0.

Hereu corresponds to the fluid velocity in (13), arido the advection and viscosity terms.
AandAT are adjoint matrix operators that correspond to div and grad and include bound
conditions.

Integration of systems of differential-algebraic equations has been previously addre:
[29]. Methods based on backward differentiation formulae are often used to integrate s
systems [26]. In the present work, we use a second-order one-step method, analogo
Heun’s method for ODEs, that exploits the special structure of (21).

The constraint can be used to obtain an equatioarfofo obtain a “pressure-Poisson”
type equation, we differentiate the constreﬂﬁg(Au) = 0) and compare the result to the
divergence of the equation of motion (21), giving

dA
Lz = Af + Hu, (22)
whereL = AAT. Solvability is assumed for (22). In the case of an incompressible fluic
eitherL is invertible or it has a null space that is independent of time.
We define operators

Q=ATL!A

P=1-0Q. (3)

In the case wherd\ is independent of time, these operators can be used to eliminate |
constraint, yielding
du
— = Pf, 24
at (24)

with the initial conditions satisfying the constraitfu)(0) = 0. In that case, the BCG
discretization reduces to

untl = " 4 Atp(fn‘*‘%) = P(un + Atfm_%), (25)
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whereAt is the discrete time step anfl = u(0). This discretization is second-order owing
to use of the midpoint rule fof . Also, P(u™1) = u"*1if P(u") = u".
The BCG discretization can be written in predictor—corrector form as

U = u"+ At(f72 — ATx"2)
u"tt = P (26)

Lz"t2 = A%A(u“ + At(fnJr% - ATrrnf%)) +La" 2,

whereu" ~ u(t") andz "2 ~ 7 (t" — 5.

Next, we generalize the BCG discretization for the model problem with time-depend:
A.Inthetime-independent case, we obtained a second-order accurate method by elimin
the constraint and applying the midpoint rule to the resulting system of ordinary differen
equations. A reduction corresponding to (24) does not exist when the constraint is til
dependent, and we must construct a second-order accurate discretization directly fo
original constrained system. Such a discretization is given as

Ut = UM AL(FME — (AM2) T3

utl = Py = Pn+1(un + At(f +3 _ (An+%) n— %)) (27)
LMtz — %A““( +AL(FME = (AYE)TghoE)) 4 LM

where all terms are evaluated at the discrete time t"*2, unless otherwise indicated.
Let w"®" andq"" be solutions approximated by the predictor—corrector scheme:

ew _ Pn+1(w + At(fm_% + (An+%)Tq))
(28)
q" = q+ i(L"*l)‘lA”“(w—i—At(f”J”% + (An+%)Tq>).

Define u? = u(t") and #]*%2 = 7 (t"*%/2), whereu and = are solutions to the model
problem (21). Ifw = ul andq = #0~%2 + O(At), then

(1) the method is second-order accurate,
w" = ul™ 4 O(Atd), (29)

and

(2)
g™ = 7% 4 O(Ab). (30)

Proof of (1). To prove the consistency of the predictor—corrector discretization, tt
solutionw™VYis compared to the standard of a Crank—Nicolson solution which employs t
midpoint rule. It is noted that the midpoint rule for ordinary differential equations yielc
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global second-order accuracy.

w™ = Ul 4+ At(F™2 4 (AT7e)"2)
=ultt + O(Atd)
Pn+lwmid — wmid + O(Ats) (31)

. 1
WY — ™ = ALPML(AM3)T (n2+2 - q) + O(At®)
= 0(Atd)

sinceP™1(AM/2)T is O(At).

Proof of (2).
x" = q+ (L““)l[AMAt_ AL A el | aret (aned) Ty
= (L““)l(AMA; Ao+ A“+1fn+%) + AMH(ATE — AT Tg
— 70" + oAb, (32)

This predictor—corrector discretization requires the application of only a succession
fixed time operators rather than solution of problems resulting from differentiation of tl
constraint with respect to time. In this fashion, the solution always satisfies the constra

4. SPATIAL DISCRETIZATION

In this section, we use the split-velocity formulation and the time-discretization algorith
described in the previous two sections as the basis for developing a numerical method u
a time-dependent coordinate transformation to represent the deforming domain. The E
projection approach has been previously extended to mapped coordinates for the ca
which the mapping does not depend on time [9]. However, the extension to moving map
coordinates has not been done previously.

Discretization of problem domain.To approximate the derivatives, boundary conditions
and the incompressibility constraint in the equations of motion, the spatial and tempc
domains are discretized by finite differences. For spatial discretization, a grid is laid «
over the spatial domain such that the center of each cell carries the integer ifidices
Edges of cells are denoted liiy+ % p)andd, j+ %). The indices of a cell vertex are
(i + % i+ %). The discrete difference between two cells is eitheror Az, depending on
the direction of the gradient.

Time-centering is indicated by a superscHiptcorresponding to timé = t". Given a
discrete solution at a time=t", the solution is evolved to time= t"+1. The discrete
difference in the evolved time is called a time steyt, = t"*1 —t". The object of the
numerical algorithm is to successively obtain a solution updated from the previous til
increment until the desired final time is reached.

Discrete velocity is a cell-centered quantity and is represented’asThe vortical
component of velocity is also cell-centeréd); ;. The natural centering for the potential
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FIG. 2. Discrete mapping. Time-dependent quadrilateral grid mapped onto a fixed, rectangular grid.

velocity is atedgesMyi .12 i, Up'i j11/2)- Itcan be obtained at cell centers by an averagin
process described below. Pressure is a ceII—centeredzté'JF“rH,z, which is centered at the
half step in timef =t" + %. The discrete grid velocity§, is known at cell vertices and
can be averaged to cell edges and centers in the obvious manner.

Discrete mapping. Our approach to the discretization of this problem uses a movir
control-volume discretization of space that has been quite standard in compressible
calculations for some time. Although we do not discretize the velocity advection terms
conservation form, because of the split-velocity formulation, the spatial discretization u:
here allows for the addition of conservative transport of other scalars, using the apprc
in [8].

The transformation of coordinates (2) is used to model irregular domains which res
from movement of the solid wall boundary. A mesh composed of quadrilaterals is placec
the real domain of the problem. A logically rectangular, computational spasemapped
onto the physical space(see Fig. 2). Itis in the former space where the time differencin
and undivided spatial differencing take place.

Let the edge of each quadrilateral cell represent a tangent vector along a coordinate
(see Fig. 3):

N ~ A X
Ly T Xy T X diey TN hiey Y A | "
212
(33)
: ~ Ap2E
ti+%,j =Xngy T Xi+di+d T X444 © Aﬂ% oy
2

Note that the subscripted discretized variablgs, , ,, etc., denote undivided differences.

n|,j+1/2

\

n1+1/2,j
lines of
constant M
lines of
constant

FIG. 3. Cell volume, edge normals, and indices.
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Normal vectors can be defined from the tangents

|J+— = (=2, Te);, i+3

3
i+1 = (z), _rn)i-s-%,j

(34)
n

and averaged to cell centers when needed:

1
e _ Ll £
=5 (s +0iy)

n'; =7<n.”. s+n! )
’ 2

(39)

The volume metrics are similarly defined at cell edges:

n
G i3 = 200} 36)
gii—%,j = 2ﬂri+%yj.
These quantities can be averaged to cell centers in the same fashion as for normals. .
normals can be redefined to include the volume metrics at the respective edges on w
they are centereay = gn.
A discrete definition of the Jacobian of transformation, or cell volume, follows from th

tangent equations and is used to calculate the quantity at the half step in time:

n+ n+d (1] ¢ e
2 _ n
O-i,j Fa— gi'] (2’1:' J+2 t|+2 i ) . (37)

The analytical form of the Jacobian is seen in its representation at a cell edge,

1
o, xt",

+§‘ ij—3 |7—]

.| _
Oi+3i = gi+%,j (r§i+%.jzn\+%-1 r"wg,jzgw%.j)

(38)
Gij+y = gﬁi-&-% (rgi.u%z”i,n IJ+1 Z, i+ )
where metrics at other edges are obtained from the four “nearest neighbors”:
Xe 35 = %( ey T X6y TR T Xa,-,%)
(39)

1
X”i.j+% = Z(XUH%.H]. + X’h%.jﬂ +X + XnPi ])

The discrete Jacobian is evolved to a new time by conservation of volume [8] djsiag
V.s,

n+3 n+3

n+3
ot =0l + 80, — b0, [ T80, =80 7 (40)
N 2. Li+s 1=3
where
n+3 o ”+z n+1 n41
50|+ =9, E( i+3.0— 1’xl+2 J+§’Xl+2 j+3° Xi+%,j7§
(41)
n+3 n+; n+1 n+1

_ n
it —9u+;2( FENTEE SR RER e

are the partial cell volumes for a moving quadrilateral element (see Fig. 4).
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FIG. 4. Representation of the time dependencd ofell att" moves tat"*! showing partial cell volumes.

Incompressible flow. We now apply the time discretization in the model problem tc
the split-velocity formulation describing the time evolutionwgf (13). First, we use the
Hodge decomposition to define the semidiscrete version of the operators (23). The Hc
decomposition [11] (derivable from the Helmholtz representation theorem in continut
mechanics [4, 17]) is a splitting of any smooth vector field on a simply connected dom:
into two orthogonal components: a divergence-free paitand a gradient of a scalar field,
¥. If w = w(x) is a vector field defined on a simply connected dom&inthenw can be
orthogonally decomposed as follows:

W=Wq+ V¢

(42)
V-wg=0, AYy=V-w.
The boundary condition at ouflow i = 0; on the rest of the boundar% =w-n. This
decomposition is similar to that performed to obtain the split-velocity form of the equatior
However, it differs in that the boundary conditions at outflow are given a condition on t
normal component of the velocity, rather than the homogeneous Dirichlet conditign or
used here.
The projection operators are defined as

P(W) = wy

(43)
Q(w) = grady)
corresponding to the operators in (23).
Next, we compute a time-centered estimate of the right-hand side corresponilirig/to
in the model problem (21). Following [6], we solve the system of equations

U*=U"+ (Ut —uyp)

+ At|—As(Uy, Up)" 2 + %(ACH(U*)JrA’V‘(U“)) R

where U" =UJ + U] is the semidiscrete approximation to the solutian Here,
As(Uy, Up)”“/2 is an estimate of the advective terms at tither %, computed using

a second-order accurate Godunov method [12k"fY/2 were replaced byr"+%/2, this
would be a Crank—Nicolson discretization for the diffusion terms. As is, it is suffcient 1
obtain anO(At?) estimate ofy (AT(U™) + ANFE(U*)).
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We apply the discrete evolution by forming
Vv
Ug = U+ At —As(Uy, Up™™2 4 S (ATFHU") + AJUMN) — VH2rM42) - (45)

and obtain the updated solution in pressure correction form:
U n+1 — Pn+1(U *)
\ v

n,n+l/2 — Ait(ArH»l)fl(anrl . U&k) + n,nfl/Z (46)

Uﬂ+1 — U* _ Atvn+l(nn+1/2 _ n,rl—l/Z)
\ \ °
To complete the specification of the algorithm, we must specify the spatial discretizatior
P, Au, u- Vu, anduy.

Discrete Hodge projection. We use an approximate projection of a type first introduce
in [1]. The particular discretization we use is a generalization of that in [22], in which tt
scalar field is cell-centered. First, we define a Laplacian operator based on an edge-cen
divergence and gradient:

L = DG. (47)

The divergence operatdD, is discretized based on a finite volume approach to calculatic
of conservation of mass within a cell (see Fig. 5):

(V-Uij = ((@n° - Uipazj — (@0 - U)i1pn
+(@"n" - Ui jr172 — (@07 - Ui j_1/2) foi ;- (48)
An undivided difference in thé¢ gradient has been dotted into a transformed velocit
whose two components are defined at edges which are described by a cgnstamt
constant, line, respectively (denoted by a superscript). The spatial centering of the inve

transformation matrix is seen in this relation where the rows df are made up of the
normals at corresponding edges.

1:‘;.j+l/2

E
i+1/2,j
P;-I/Z,j \? +1/2,)
E

ij-172

FIG. 5. Finite volume description of divergencé.= U - ny is the flux at an edge of a cell.
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The gradient operato, is discretized at edges in the following manner:

g _ e
(Vo)1) = % l z, Ze] [ $ii1j — i ]
i+3.]

_ 1
L 7@i+rj+1t Bij+1 — Pivrj-1 — Pij-1)

—zﬂ F(d’iﬂ,jﬂ +divr) —di-1j+1— ¢i—1,j)]
Li+3

n

o |—Iy e

Boundary conditions are applied towhen the stencil for the gradient extends beyond th
problem domain. At edges orthogonal to boundareis, extrapolated into a “ghost” cell
to calculate the transverse componenve$. For example, at the= % edge,

¢o.j = 3(P1j — P2j) + #3j, (50)

where the subscript 0 denotes the ghost cell value.

The cell-centered divergence operafdg, is actually an edge-centered divergence op
erator applied to edge-centered velocities which have been averaged from cell cen
Wis1/pj = “HEEE% for example. The boundary conditions are those given in (15)—(18
where the outflow condition is discretized using an extrapolation from the interior:

3 1
U-Minzey = | SYin-1 = 5Uin-g )N (51)

The cell-centered gradient operat@i, is a more complicated discretization. The pro-
cedure for computinoe¢i j is

(1) Compute the edge-centered gradief@®s))i;1/2,j and(Ge); j+1/2, Oninterior edges.
(2) Linearly extrapolate the vecto(&¢)i 1,2, j, (Gé)i,j+1/2 to boundaries.

(3) Computen - Gg¢ at all edges.

(4) Compute(Goe)i j by solving the equations

nié,j (Gog)i,j = [(n- Go)iyr + (n‘G¢)if%,j]/2= aig,j

;- (Gog)ij = [(N-Gg); 1.1 +(N-Gg) ;1] /2=2], (2)
et Jreon] &
= (Gog)ij = (rez, — ryZe)i {Zs 2’7:|i,j L']Lj,

where the normalh, without the volume metric is used in the calculation of the cell-centere
pressure gradient for consistency.

Boundary conditions for edge-centered gradients in the cell-centered calculation a
linear extrapolation oG¢ from interior edges,

(Go)1; =2Gp)s | — (GP)s ;. (53)

for example, at the axis of symmetry boundary edge,%.
We now define the approximate projection operator appearing in (46) as

P= (I — GoL'Dy). (54)
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Solve:
L, = DF
G, 0, F
Gr¢l-[ 0 = F extrap
G, 0, F
iyL ¢ =0
G, ¢4, 0
G0, 0 = 0 0
G0, 0
i) L g, =0
G, 0
G4, 0 = 0 0
G0, 0

FIG. 6. Discrete representation of solution to an elliptic equation.

We demonstrate how the solution procedure described above gives the solution to
inhomogeneous problem, andL have homogeneous boundary conditions. However, w
are solving an inhomogeneous problem (42). Consider the following elliptic equation &
its graphic representation in Fig. 6:

Lo =V.F. (55)

In general, the potentiap, is composed of a homogeneous pat, and an inhomogeneous
part,¢g:

¢ =én + ¢s. (56)
¢n is the solution to the homogeneous problem,
Lugn = DF, (57)

with n- G¢y = 0 on the boundary. The boundary conditions kg are homogeneous
and extrapolated for the flux aF in the divergence. The other pattg, satisfies the
inhomogeneous problem

Ligg =0 (58)

with n - G¢g = H on the boundary, wher = n - F is an inhomogeneous boundary con-
dition which contains the normal component of the extrapolated pie¢e fobm the di-
vergence flux at the boundary in the homogeneous step. The inhomogeneous proble
rewritten into an equivalent one for the homogeneous operator by transferring the inhoi
geneity inL, to the right-hand side of the equation (see Fig. 6), giving

Lugs = D(—H) (59)
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with n - G¢g = 0 on the boundary. The homogeneous problem and the equivalent inhor
geneous problem can now be added into one discrete equation since the same apgratc
is used in both:

Lug = D(F — H). (60)

A key observation in the numerical implementation of the projection is that the extrar
lated boundary condition for the divergenceffs consumed in the pressure and is neve
seen in the actual discretization. Also, desirable homogeneous boundary conditions
applied to fluxes ofF in the divergence at boundaries since the pressure is carrying t
extrapolated piece.

Discrete Laplacian operator. The Laplacian operator is based upon a nine-point stenc
for quadrilateral grids. The stencil is the same throughout the algorithm with the or
variation being boundary conditions &g. The Laplacian op at cell(i, j) can be expressed
as a weighted sum of the valuesg#tt (i, j) and at its nearest neighbors:

1
(Lo = 7236¢T+§~ (61)
i

The stencil coefficientss, are defined as

a11=((G's)_y; +(G"9); ,1)/4

= (—(G*9)i11 ) + (G*9);_1 ) /4+ (G"F); 41

= (—(G*9)j,1 ) — (G"9); j,1) /4

((G"9)i 41 — (G"9); j_1) /4+ (GFIM)_4 |

= —(G*IMy_1j = (G 1M1y — (G911 — (GI%); s (62)
a0 = (—(G"9); 41 + (G"8); j_1) /4+ (G141

(—(G¥s)i_y; — (G"); j_1) /4

= ((G*8)i11.j — (G'9)_1 )[4+ (G"%); s

= ((G*9)i41,) + (G"9) 1) /4,

Poe
I

g
|

ay-1=

where
é
G’ = N
ez, —IyZe
G" = _ 9
rszy — IyZ
2 2
1§ =12+ 2 (63)
n— 2 2
1" = r,+z,

S=rel, + 22,

Viscous operator. The viscous operatol,,, possesses the same stencil as the discre
Laplacian operatot,, on the interior, but differs at the boundaries where physical bounda
conditions are applied. The boundary conditions are
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(1) along the axis of symmetry

u*=0
a (64)
9z
(2) atthe solid wall (prescribed wall velocity)
ur=ug, (65)
(3) atinflow (Poiseuille flow)
=0 (66)
vt =2(1-r?),
(4) at outflow
au*
=0. 67
57 (67)

Inhomogeneous boundary conditiokk; = Uy, are applied using a higher order extrapo-
lation in the following manner:

U*=at?+bt+c

au* 1 8
=b=-3U} + =U} —yn+t 68

BE |, N, T 3 N—1T 3b (68)

au*|  auptt

8” wall 877 .

Potential flow solution. The potential velocity, = V¢, can be obtained at any time,
t", given the special boundary conditions féf at inflow and outflow and the prescribed
velocity of the solid wall. The solution is obtained by solving Laplace’s equation,

L"¢ = 0, (69)

where the boundary conditions for the solution are given in (8)—(11).
Once the solution to (69) is found, the edge-centered gradient is applied to the poter
to obtain the edge-centered potential velocity:

Up =G"¢. (70)

These velocities can be averaged to cell centers using the averaging procedure desc
above forGy.

Convective discretization.The nonlinear convective derivativis(Uy, Up)"+%/2,in (14)
is calculated using a second-order Godunov method with a projection to account for
pressure [6, 22]. First, the cell-centered velodty; ;, is extrapolated to cell edges and
to the half step in time by Taylor series expansion, where the effect of pressure is or
ted. An edge-centered projection similar to that used in [7, 18] is then applied to e

force the incompressibility constraint &f*1/2. Nonconservative differencing is used to
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n+l2

t=t

=t" - - .- - -
1 i+1/2,§ i+l,j

FIG. 7. Godunov box depicting extrapolation of cell-centered velocities to edges and to the half step in tirr

approximateAs(Uy, Up)”“/z. There is a time step restriction for the entire algorithm be
cause of the explicit convective discretization.

The discrete divergence-free veloclty)); ;, is expanded to the half step in timé + 4t
and to cell edges in a Taylor series (see Fig. 7):

I"I+2

AE dUy At 9U, |2
— N i
virkj = Jvig T 2 0¢ T

An+i

U (71)

§

The termaUv |¢ (without the pressure gradient) is then substituted from (13) into (71). Tt
velocities at constargtedges are extrapolated from cell-centered values to the left (denot
by L) and to the right R) of an edge:

Ty [ =ul+ 1(1_J”F.’W-”At> au“_m(v,,ﬂauvr
VI+ 2 Sl O’Ir:'] 8&,] 2 , 877 i,j

At (G". .%4_5”_ %) _U_AIL U”
2 \""Mag o M o 2

(72
el 1 wn At Uy At /v [0U,
U 2 = yn" (1+ Tup! ) 4+ = )
VI+ i+1,j 2 Sl+ll I+1J 8§.+1, 2 Uirjy-l,j 877 ny

A G‘--%+m Yy + Y8
2 \AN aél’J VI J an

Velocities are computed in a similar manner at consgadges where the directiohsand
R are referred to the subscript

N+l 1 —upwn At At vl At ugi i\ [ouy]"
UVIT+1_Un 2<1 Ulj I 2 3 N
s 7]I,] |,] S i,

At auy auy At
- = L_‘Ci'ip‘f"j\?i'ip _LL U”
2 \ "ok "o, 2
- (73)
An+iR 1 At auy At 1) [9Uy
Un—f-z_, — U-n- (1+—upwn > \ + = < S, j+ ) |:
vihi+s L2 Uit ofiz1/ Mmijr1 2 \ o4 98 i j+1
At BUR o BUY At g,
2 ,,Jaéi,j Vljan 2 v
A transformed “upwind” velocity is used for the convective velocity,
ucP" = max(u — s, 0)
(74)

" = max(v, 0),
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where the transformed veIocitlQ, = JF~1U, is centered component wise,

Ui j = Gij(Zyi,jUij —Fyijvij)
_ (75)
Vij = Gi,j(—Zi,jUij +Teijvij)-

The slopes in the normal direction of the spatial expansion in the Taylor extrapolation
approximated by centered undivided differences with one-sided differences at the bound

oUy  Uyigaj —Uyia

%5 2 (76)
Uy _ Uvij+r = Uvij1
oni.j 2 '
The slopes in the tranverse direction are given by
[BUV]” - {Uc,i,j —Ulig; IF (W —-8) =0
98 1ij Uligaj — Uy if (LTI]J _g?j) <0 77)
[auv]” - {Oc,i,j —U0j iU =0
an Ji; U0, 40— U0, i) <0,

with an instability correction for the diffusive, viscous term pointed out by Minion [25]:

A VAt

The slopes of the potential velocity are calculated from the edge-centered quantities

auD

g, - et~ Yeich

SUn (79)
P~ Ui —Ugs i

ani,j p.1)+3 p.l)=5"

At each cell edge, a Riemann problem exists where there is a left and right state fr
which to choose based on the upwind, convective velocity,

U\'; if ngw’l, uzP’ > 0
An+3 R i qupw,l upw,r
Uv’ij%’j =< Uy if UgPY UgP™r <0 (80)
Uy +UR if QuUPWl qupw.r <0
z s s
UL if guewd guewr 5 g
Anti R i —upw, | upw,r
Uv,i§+%: U, if pUPW! YUPWT - 0 (81)
Uy +U7 if puPwl Hupwr <0,

z
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where these upwind, convective velocities are defined as

1 1
qupw,l n _ "z ) nints
Us (U 1+3.] ni+%j
—upwr _ n+2 nfn'*‘z
|+1J |+ . i+3.] (82)
JuPwl — n ”'*‘z ’1”+2
(Ul i 1, ]+ nl J+2
pupwr n . nn+3
(Ul j+1 IJ+ ) ni,j+%‘

The boundary conditions for the upwind, extrapolated edge-centered velocities are
prescribed conditions (15)—(18) fok,. At boundaries where the condition is of Neumann
form, the extrapolated left or right state—whichever is on the interior side of the bound:
edge—is used.

The edge-centered velocities are projected to account for the effect of the pressure gra
att"t%/2 which was omitted in the Taylor extrapolation,

L¢“*2 DUz, (83)

where these operators are defined in the discussion of the discrete Hodge projection.
velocities are corrected by edge-centered gradients accordingly:

n+3 _ An+3 n-~-2
Uv,i+%,] UV|+ —V¢
n+ n+ n+ (84)
2 _ 2 _ 2
UVI J+E T T+ V¢| g+

Boundary conditions for the gradients are homogeneous Neur%%&no, atall boundaries
except outflow, where the boundary condition is homogeneous Diriehlet0. This is
discretized by setting the ghost cell valpe= —¢;.

The nonlinear convective derivatives = (U — S) - VU, + U, - VU, is calculated us-
ing nonconservative differencing with the formula

((U-9- vuo”*z =

(85)

1 —n+% 8Uv —n+18Uv
n+3
UI,J

us,i,j¥ Ij 377

FIG. 8. Grid coarsening. Solid lines indicate fine grid cells and dotted lines indicate coarse grid cell.
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FIG. 9. Radial potential velocity,, at timest = 0,0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4. (Scale0.945 to 0.780).
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FIG. 10. Axial potential velocity,u,, at timest =0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4. (Scale0.638 to 2.748).
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where
o+ Lgnd e
sij = E(us,H—l,j +US|—%,j>
—n+i 1/ a4 _n+i
Ui ] ‘= E(vi,jj;’ +v| J_Z:_ZL)
(86)
Uy n+3 n+1
=U 2 —-U "2
A& V,it+3,] vi—3.]
auUy n+3 n+3
= PR U
an Vi, j+3 vi,j—3
The solid wall boundary condition i&*Y/2| s = 0 becaus®) - N|yar = S Nwai-
The part ofAs due to the potential velocity is similarly calculated via
p p y y
n+i 1 _n+i 8Up n+3 8Up
(Uy-VUp)i ? = T (u"’ijag vv’i’fif)n , (87)
i
where
n+3 1 —n+3 _n+1
Uvij = E(uv,i-k—%,j +uv,i—%,j
o+t L/ gl —n+1
Uvij = E(vv,i.jJr% Uv,i,j—%)
(88)
Wp _ jn+3 n+3
=P _y"rz _y'rte
o Pi+3.] Pi—3.]
Wp _ jn+3 n+3
—=U 2 —-U 2 .
on p.l]+3 p.l)=3

The second-order Godunov method is an explicit scheme. The time step of the er

algorithm is restricted by the Courant—Friedrichs—Lewy (CFL) condition for stability:
At = 0.9/ max(w, M) (89)
1] Oij Oij

Solvers. Each time step of the method requires solution of five elliptic equations: tw
potential flow solutions, one at timé&*+/2 and the other at tim&'**; an edge-centered
projection at timet"+1/2; solution of the heat equation for the viscous terms; and an a
proximate projection at timg"+1. We use the multigrid method to solve the linear system
arising from the discretization of the elliptic and parabolic equations given here. Thisis |
an essential feature of the algorithm; any of a variety of modern iterative methods, sucl
those described in [5], would have been appropriate.

5. RESULTS

We present results for incompressible, viscous flow in an axisymmetric deforming tul
The flow is characterized by Reynolds number,:R(%g, wherev is the mean velocityd
is the diameter of the tubel (= 2 in all cases), and is the kinematic viscosity. The grid
motion used (see Fig. 1 for geometry) is

R() = Ro{l — %[1 —sint(5+ t)]} expl—4(z — z)3, (90)
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TABLE |
Error for Flow in Deforming Tube (Re = 8)

Case gl/16 Rate el/3? Rate el
u 4.01e-3 1.69 1.24e-3 1.75 3.68e-4
v 8.25e-3 2.04 2.01le-3 2.01 4.99¢e-4

whereRy is a radius of unity for an initially rectangular grid angis the axial location of
the extremum for a Gaussian movement. The tube wall is initially fixed and flat. It mov
inward to a fully pinched positiort (= 1) and back out through the flat positian=£ 2) to

a fully bulged positiont( = 3) and flat againt(= 4). Maximum wall speeds occur at the
halfway points between the flat position and the hump maxima. All color figures have be
generated by the visualization graphics package described in [16].

We present the convergence results of two flow regimes. The first case is a low Reyn
number calculation, Re: 8, wherev = 1 andv = 0.25. The convergence results for this
case are shown in Table | at atime when the inward boundary velocity is at a maximum.
second case is a higher Reynolds number calculatior; R80, wheres = 1 andv = 0.01
The convergence results for this case are shown in Table Il at a time when the boun
has stopped moving. The error in the solution is estimated using the standard Richar
procedure. We compute the solution on a series of grids, each of which is refined by a fa
of 2 in each coordinate direction over the next coarser one (see Fig. 8). The estimat
the error is computed by averaging the result on a given grid onto the next coarser one
subtracting the two results. Since we expect the solution to be no more than second o
ordinary arithmetic averaging of the cell-centered data is used:

_ (Qai2j + %2i+1.2) + O2i2j+1 + Goi1.2)+1)

Averageq); | 2

First, we present results for potential flow. Figure 9 shows the radial component of
potential velocity. We note that, in general follows the boundary movement. Figure 1C
shows the axial component. Conservation of mass is demonstrgtegials the plug flow
velocity when the boundary is flat and not movimgincreases at the outflow as the result
of the pinching of the boundary; ang decreases at the outlet during outward expansio
of the hump. We note that the velocities are not symmetric when the boundary is movi
unlike the symmetry seen when the boundary velocity is zero. This is due to the differe
between the flow rate at inflow and outflow caused by mass conservation.

Figure 11 depicts snapshots of the axial velocity for=R800. We observe movement of
the point of separation, which is indicated in the axial component of velocity by a change

TABLE Il
Error for Flow in Deforming Tube (Re = 200)

Case gl/16 Rate el/3? Rate el

u 2.71e-2 2.34 5.36e-3 1.94 1.40e-3
7.50e-2 2.39 1.43e-2 2.22 3.06e-3
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il
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I

FIG.11. Axial velocity, v, attimes =0, 0.5, 1, 1.5, 2, 2.5; 3, 3.5, 4 (inlet Re 800). Tube wall moves from
initial flat position att = 0 to a fully pinched position a@t= 1. It then moves outward past flat positiort at 2 to
fully bulged position at = 3 and returns to flat position &= 4 after complete cycle. (Scale:1.748 to 3.771.)



PROJECTION METHOD ON MOVING GRIDS 215

=1.73324305915e +00

FIG. 12. Deforming axisymmetric tube at= 1.5 (inlet Re= 800). (a) Radial velocityy. (Scale:—0.001
to 0.794). (b) Axial velocityy, with slice through recirculation zone, and breakdown of vortical and potentia
components of axial velocity, anduv,. (Scale:—1.748 to 2.000.) (c) Vorticityw. (Scale:—54.894 to 38.013.)
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sign from positive to negative. As the hump expands outward, the separation point marc
from a location before the midpoint of the hump toward the inlet. Another notable featt
in this flow is a very sharp gradient which is captured in the axial component of the veloc
at timet = 3.5, when the hump is moving back inward from its fully expanded outwar
position. The strong gradient, which indicates the presence of a shear layer, exists in
axial direction as well as the radial direction.

In Fig. 12 we show other fields for the Re800 flow at timet = 1.5. At this time the
boundary is pulling back out from the fully pinched position. The wall is at its maximur
velocity. Flow separation without reattachment is seen in the axial velocity and vortici
We note the breakdown of axial velocity into its vortical and potential components. T
flow is dominated near the boundary by the vortical component as it clearly captures
recirculation zone.

6. CONCLUSIONS

The article has presented an algorithm for incompressible, viscous flow in deformi
domains based on an extension of the BCG predictor—corrector method. We have e
inated the complication of an inhomogeneous constraint by a split-velocity formulatic
The splitting yields a potential flow problem with inhomogeneous boundary conditions f
the divergence constraint and an evolution equation for the vortical component with tin
dependent, but homogeneous, constraints. We have also presented a new time discreti:
for time-dependent, constrained systems. The algorithm produces results which are sec
order accurate in space and time and can resolve time-dependent, separating flows.

The future of this work lies in geometry and boundary mechanics. The formulation appl
equally well to other geometric descriptions. For example, the Cartesian grid embed
boundary method [3] can be extended as such, using the approach in [20] to treat vist
terms. Another desirable feature is a boundary which responds to the fluid pressure. Fu
coupling of the method to a structural solver would be a robust treatment of a fluid—sc
interaction.
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