
Real-Time Classification of Multimedia Traffic
using FPGA

Weirong Jiang
Ming Hsieh Department of Electrical Engineering

University of Southern California
Los Angeles, CA 90089, USA

Email: weirongj@usc.edu

Maya Gokhale
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore, CA 94551, USA
Email: gokhale2@llnl.gov

Abstract—Real-time classification of Internet traffic according
to application types is vital for network management and
surveillance. Identifying emerging applications based on well-
known port numbers is no longer reliable. While deep packet
inspection (DPI) solutions can be accurate, they require con-
stant updates of signatures and become infeasible for encrypted
payload especially in multimedia applications (e.g. Skype). Sta-
tistical approaches based on machine learning have thus been
considered more promising and robust to encryption, privacy,
protocol obfuscation, etc. However, the computation complexity
of traffic classification using those statistical solutions is high,
which prevents them being deployed in systems that need to
manage Internet traffic in real time. This paper proposes a
FPGA-based parallel architecture to accelerate the statistical
identification of multimedia applications while maintaining high
classification accuracy. Specifically, we base our design on the k-
Nearest Neighbors (k-NN) algorithm which has been shown to be
one of the most accurate machine learning algorithms for Internet
traffic classification. To enable high-rate data streaming for real-
time classification, we adopt the locality sensitive hashing (LSH)
for approximate k-NN. The LSH scheme is carefully designed to
achieve high accuracy while being efficient for implementation on
FPGA. Processing components in the architecture are optimized
to realize high throughput. Extensive experiments and FPGA
implementation results show that our design can achieve high
accuracy above 99% for classifying three main categories of
multimedia applications from Internet traffic while sustaining
80 Gbps throughput for minimum size (40 bytes) packets.

I. INTRODUCTION

The evolution of the Internet has induced various multime-
dia applications (such as Skype, IPTV, etc.) to emerge and
gain rapidly popularity [1]–[3]. It becomes a vital issue for
companies and Internet Service Providers (ISPs) to identify the
application types of traffic carried on their networks [3], [4].
Traditional traffic classification based on well-known transport
layer port numbers becomes less reliable, as emerging appli-
cations tend to hide their identify by using unpredictable port
numbers [2]–[5]. Current methods to classify traffic include
(1) deep packet inspection (DPI) which searches the packet
content for the known signatures, (2) host behavior based
schemes to exploit the connection pattern of hosts, or (3)
machine learning based statistical methods using packet-level
or flow-level features such as packet size, flow duration, etc
[6]. Although DPI-based solutions can provide high accuracy,
they require constant updates of signatures, fail against en-

crypted packets, and cause privacy and legal concerns. The
effectiveness of host behavior based approaches depend on
topological locations and traffic mixes. They are highly stateful
and are inaccurate in identifying the application type for single
packets [5]. Recent research on traffic classification tries to
identify network applications by learning statistical patterns in
externally observable features of packets or flows [1]. Such sta-
tistical approaches based on machine learning have thus been
considered more promising and robust to encryption, privacy,
protocol obfuscation, etc [5]–[10]. However, the practicality of
the machine learning -based approaches can be hampered due
to their high computation complexity and memory requirement
[5], [9]. As the volume of the Internet traffic grows explosively,
a large portion of which is due to multimedia applications [3],
efficient hardware implementation is demanded for real-time
traffic classification at high throughput beyond 10 Gbps [9].

Due to its ability to reconfigure and to offer massive
parallelism, FPGA technology has long been an attractive
option for implementing various real-time network processing
engines [11], [12]. State-of-the-art FPGA devices such as
Xilinx Virtex-6 [13] and Altera Stratix-IV [14] provide high
clock rate, low power consumption, rich resources and large
amounts of on-chip dual-port memory with configurable word
width. This paper aims to exploit current FPGAs to achieve
following goals for multimedia traffic classification:

1) High classification accuracy: Machine learning based
approaches have been shown to be accurate and robust for
classifying many applications [5]–[10]. However, little work
has been done in applying these approaches to identify mul-
timedia applications. It remains unclear how effective these
approaches are for multimedia traffic classification.

2) Stateless classification: A number of existing statistical
approaches exploit not only packet-level features (e.g. packet
size) but also flow-level features (e.g. flow duration). While it
may help improve the classification accuracy, using flow-level
features requires maintaining the states of all flows and makes
it hard to perform real-time classification on each packet. This
paper focuses only on packet-level features which have been
shown to be sufficient to achieve high accuracy [5].

3) High throughput: Multimedia applications are sensitive
to delay and packet loss [1]. This requires the traffic classifier
process packets at high throughput. For example, the current

link rate has been pushed beyond 40 Gbps, which requires
classifying a packet every 8 ns in the worst case (where the
packets are of minimum size i.e. 40 bytes) [12].

4) Dynamic update: To adapt the traffic classifier to emerg-
ing applications, new training sets may be added during the
run time. The traffic classifier must support on-the-fly updates
without severe performance degradation. Hence memory-
based architectures are preferred to purely logic-based engines
which need fully reconfiguration after each update. Moreover,
the time spent on training should be minimized.

The computation kernel of a statistical traffic classifier is the
machine learning algorithm. Although various accelerators in-
cluding FPGA-based engines have been proposed for machine
learning algorithms [15]–[20], few of them are targeted for
network applications. To the best of our knowledge, none of
these accelerators can meet all the performance goals stated
above. In this paper, we base our design on the k-Nearest
Neighbors (k-NN) algorithm which assigns to a test instance
the majority class type of its k nearest neighbors. As a
widely used nonparametric classification technique, k-NN has
several attractive features for real-time traffic classification on
FPGA. First, k-NN has been shown to be one of the most
accurate statistical methods for Internet traffic classification
[5]. Second, k-NN needs no or little training, which indicates
low update cost. Third, unlike many other machine learning
algorithms, k-NN coupled with Hamming distance requires
neither multiplication nor floating point operations. Thus k-
NN is well suited to be implemented on FPGA.

Given N training samples, brute-force k-NN requires Ω(N)
time to classify each test instance. Even with existing k-NN
accelerators [17]–[20] which achieve up to P× speedup by
using P parallel processing elements, the performance of these
accelerators for brute-force k-NN is still far from sufficient for
real-time traffic classification where the number of training
samples (i.e. N) can easily exceed 100K.

We propose using locality sensitive hashing (LSH) [21] for
high-performance multimedia traffic classification. LSH is an
efficient data structure for approximate nearest neighbor prob-
lems. Compared with brute-force k-NN, the time complexity
of LSH to classify a test instance is dramatically reduced to
O(H) where H is the number of hash tables. Though LSH
cannot guarantee finding the nearest neighbors for each test
instance, we show in this paper that the classification accuracy
achieved by LSH is almost as high as by brute-force k-NN.
This paper makes following contributions.

• We conduct an in-depth study of using k-NN for mul-
timedia traffic classification. After examining different
distance metrics, we find that Hamming distance leads
to higher accuracy than other distance metrics. This also
encourages us to explore LSH which is naturally suitable
being coupled with Hamming distance.

• We present the LSH-based scheme as an alternative to
brute-force k-NN for traffic classification. As far as we
know, our work is the first attempt to utilize LSH for
high performance traffic classification. We discuss several
design issues and evaluate various performance trade-offs.

With appropriate settings, our LSH scheme achieves high
accuracy while being fit for implementation on FPGA.

• We detail the hardware architecture for the LSH-based
traffic classifier. The main processing components in the
architecture are optimized to realize high throughput. For
example, we build the sorting module as a pipelined
bitonic sorting network which can sort up an arbitrary
sequence of inputs every clock cycle.

• Extensive simulation and implementation results on a
state-of-the-art FPGA show that our design can achieve
over 99% classification accuracy while sustaining 80
Gbps throughput for minimum size (40 bytes) packets.
To the best of our knowledge, our work is the first FPGA
design for 40+ Gbps statistical traffic classification.

The rest of the paper is organized as follows. Section II
describes our methodology. Section III discusses the LSH-
based traffic classification algorithms. Section IV presents the
hardware architecture. Section V evaluates the performance
of our schemes. Section VI reviews briefly the related work.
Section VII concludes the paper.

II. METHODOLOGY

A. Performance Metrics

Distinct from most of previous work, this paper considers
not only the accuracy but also the speed of traffic classification.

• Accuracy is the fraction of packets correctly classified
for an application. The overall accuracy is the fraction
of correctly classified packets over all applications.

• Throughput is measured as the number of packets clas-
sified per second (PPS). By multiplying it with 40 bytes
i.e. the minimum size of an IP packet, worst-case raw
throughput (Gbps) can be obtained.

B. Data Set

In this paper, we focus on three main categories of mul-
timedia applications1: VoIP, Instant Messaging (denoted as
IM), IPTV. These multimedia applications have gained widely
popularity and attracted great attention from both academia
and industry [2], [3]. We aim to distinguish them not only
between each other but also out from those legacy applications
including WWW, Email, DNS, DHCP, etc.

We obtained the labeled traffic traces for the three multi-
media applications: VoIP (Skype), IM (MSN, Yahoo, Jabber,
Gtalk), and IPTV, from the same site [22]. As in other work
[9], [10], [23], we infer the legacy applications based on
well-known port numbers using Coral Reef [24]. While such
port-based classification has been inaccurate for recent traffic
traces, it is still applicable for some old traces such as WIDE-
2000 [5], [25]. The detailed information of the traffic traces
is summarized in Table I.

Since k-NN is a supervised machine learning algorithm,
we need to set up the ground truth including both training and

1Though this paper considers only multimedia applications, we believe our
solution can be used for identifying other categories of applications such as
P2P traffic.

TABLE I
TRAFFIC TRACES

Application Traces Start date & time Duration IP protocol # packets Data size (MB)
Skype1 2006-05-29 02:18:41 95 hour 26 min TCP 2357997 338.5

Skype Skype2 2006-05-29 02:01:25 95 hour 45 min UDP 39627543 8396.8
Skype3 2006-05-29 02:49:20 79 hour 3 min UDP 3049284 231.3

Instant MSN 2006-05-29 02:01:25 95 hour 45 min TCP 15434573 2234.3
Messaging YMSG 2006-05-29 02:01:26 95 hour 45 min TCP 841221 79.1

(IM) XMPP 2006-05-29 02:01:25 95 hour 45 min TCP 214636 34.8
IPTV IPTV 2008-05-06 06:19:42 5 min 32 sec UDP 13513514 18633.8

Legacy WIDE-2000 2000-01-01 13:59:00 1 hour 35 min TCP & UDP 2095192 1052.5

testing sets. The classical technique is 10-fold cross validation
which divides the data set into 10 slices and runs 10 iterations:
each iteration uses one of the 10 slices as the testing set and
the remaining data for training set. The final result is the
average of the 10 iterations. But since the number of samples
per application is highly varying in traffic classification, this
might lead the most prevalent application to bias the training
phase of the classifier [4]. An alternative approach advocated
in [5], [26] is to use a training set with the same number of
samples per application. Like [5], [26], we split each labeled
trace file into pieces. Half of each trace is randomly chosen
into training set and the remaining half into testing set. We
vary the size of the sampled training set while using the same,
fixed size testing set. We randomly sample 100, 1K, 10K and
100K training packets per application from the training set,
while we randomly sample 20K packets per application from
the testing set. We call a packet from training sets as a training
sample; A packet from testing set is called a testing instance.

C. Feature Selection

As discussed in Section I, we consider only the packet-level
features. Each packet has tens of observable features most of
which are contained in the packet header. Feature selection
will affect the accuracy of traffic classification. Kim et al. [5]
show that it is sufficient to achieve high accuracy by using
IP protocol, packet size, TCP/UDP ports, TCP flags as the
features. We adopt all these suggested features but TCP flags,
since some applications to be identified in our work are based
on UDP whose packets do not contain TCP flags.

III. LSH-BASED TRAFFIC CLASSIFICATION

As discussed in Section I, k-NN is among the most accurate
algorithms for Internet traffic classification [5]. But its brute-
force implementation, which can find the exact k nearest
neighbors for a test instance, cannot meet the performance
requirements for real-time traffic classification. On the other
hand, LSH was proposed for solving the approximate k-NN
problems [21]. This section discusses using these two k-NN
algorithms for accurate classification of multimedia traffic.
Some design issues such as the selection of distance metrics
are also addressed.

A. Baseline: Brute-Force k-NN

We first study the performance of using brute-force k-NN
for multimedia traffic classification. This will be the baseline
to which we compare our LSH-based algorithm.

Let R be the training set, r any training sample and q the
test instance. The brute-force k-NN algorithm is:

1: Initialize a k-entry list L = ∅ to maintain the k training
samples which have the smallest distances to q.

2: for all r ∈ R do
3: Compute the distance from q to r.
4: Insert r into L while keeping the k entries in L to be

sorted in ascending order of their distances to q.
5: end for
6: Assign to q the application type that is the majority among

the k training samples in L.
When the training set R contains N training samples, the
brute-force k-NN algorithm takes Θ(Nk) time to classify a
test instance. An important issue for k-NN based classifica-
tion is the selection of distance metrics. While k-NN can
be coupled with various distance metrics, most of previous
work considers only Euclidean distance. Recall that computing
Euclidean distance requires multiplication, which may not be
efficient to be implemented on FPGA compared with other
distance metrics such as Hamming distance. We need to ex-
amine the impact of different distance metrics on the accuracy
of k-NN -based classification. Table II shows the experimental
results including the classification accuracy and the average
classification time per test instance. In these experiments, we
set k = 1 and vary the number of training samples per
application. Three distance metrics are considered: Euclidean,
Manhattan and Hamming distances. The experiments are per-
formed on a Intel P4/Xeon 2.26 GHz dual processor with 8K
L1, 512K L2, and 1024K L3 cache, 3GB memory.

TABLE II
CLASSIFICATION PERFORMANCE OF BRUTE-FORCE k-NN USING

DIFFERENT DISTANCE METRICS

of Training Overall accuracy Classification time
samples Euclidean Manhattan Hamming per test instance

100 84.40% 85.37% 85.76% 2.29 msec
1K 86.22% 86.51% 87.30% 16.16 msec

10K 99.73% 99.83% 99.91% 147.75 msec
100K 100% 100% 100% 1431.75 msec

As we expected, a larger number of training samples result
in higher classification accuracy and higher computation time.
The classification time for each test instance is proportional to
the number of training samples. Another notable observation is
that Hamming distance outperforms other two distance metrics
with respect to the classification accuracy. This encourages us
to exploit LSH, which is discussed in the following section.

B. Locality Sensitive Hashing

Table II shows that it takes more than 1 second for brute-
force k-NN to classify a test instance against 100K training
samples. Such performance cannot achieve 10+ Gbps through-
put for real-time traffic classification. To reduce the computa-
tion complexity of brute-force k-NN, LSH was proposed for
searching approximate nearest neighbors [21]. Its main idea
is to hash the data points using several hash functions so as
to ensure that, for each function, the probability of collision
is much higher for points which are close to each other than
for those which are far apart. Then, one can determine near
neighbors by retrieving the points that are hashed into the same
bucket as the query point. LSH-based k-NN algorithm cannot
guarantee finding the k nearest neighbors for a test instance.

The LSH algorithm relies on the existence of locality-
sensitive hash functions. One of the easiest ways to construct
a LSH function is by bit selection. A random function simply
selects random bits from an input point. This approach works
efficiently for Hamming distance [21]. Also as shown in Table
II, k-NN coupled with Hamming distance achieves the highest
classification accuracy. Hence we adopt Hamming distance
and build the LSH functions by bit selection.

Let R denote the training set, r any training sample and q
the test instance. We design LSH-based classification as the
following two phases.

• Training (Preprocessing)
1: Choose H LSH functions: gi, i = 1, 2, · · · , H .
2: Construct H hash tables.
3: for all r ∈ R do
4: for i = 1 to H do
5: Map r hashed using gi onto the ith hash table.
6: end for
7: end for

• Testing (Querying)
1: Initialize a k-entry list L = ∅ to maintain the k

training samples having the smallest distances to q.
2: for i = 1 to H do
3: Retrieve the training sample from the bucket gi(q)

in the ith hash table.
4: Compute the distance from the retrieved training

sample to q.
5: Insert r into L while sorting the k entries in L in

ascending order of their distances to q.
6: end for
7: Assign to q the application type that is the majority

among the k training samples in L.
The LSH-based classification using H hash functions takes

Θ(NH) time for training N samples and Θ(Hk) time for
classifying each test instance. We conduct experiments with
varying the number of training samples. Table III shows the its
performance including classification accuracy and computation
time for both training and testing. In these experiments, we ini-
tiate one LSH-based classifier for TCP and UDP applications,
respectively. We use a total of 16 hash tables with different
LSH functions. Each hash table has 1K buckets. We set k = 2.

TABLE III
CLASSIFICATION PERFORMANCE OF LSH-BASED ALGORITHM

of Training Overall Training Classification time
samples accuracy time per test instance

100 81.24% 0 sec 0.023625 msec
1K 87.24% 0.05 sec 0.024625 msec

10K 99.79% 0.53 sec 0.025500 msec
100K 99.97% 5.33 sec 0.025750 msec

Comparing Table III with Table II, our LSH-based algo-
rithm achieves the similar classification accuracy as brute-
force k-NN while the classification time per test instance
is dramatically reduced. In case of 100K training samples,
the classification time is almost 5 orders of magnitude lower
than that of brute-force k-NN. However, the corresponding
throughput of LSH-based software implementation is nearly
40 thousand packets per clock cycle (KPPS), which is still far
from meeting real-time requirement.

IV. ARCHITECTURE

The proposed LSH-based classification algorithm is highly
desirable for hardware implementation. We design the hard-
ware architecture shown in Figure 1. There are two LSH-based
classifiers: one for TCP and the other for UDP applications.
Each LSH-based classifier consists of H hash tables, H
distance calculators, a sorting module and a majority voter.
The size (i.e. the number of buckets) of each hash table is
M . These architectural parameters, i.e. k, H and M , can be
configured based on performance requirements (see Section
V-A for details).

A. Processing Flow

For either training or testing, we extract from an input
packet the selected features including IP protocol, packet
size and port numbers. According to its IP protocol (TCP or
UDP), the packet is directed to the corresponding LSH-based
classifier. In other words, TCP (UDP) packets will go through
the LSH-based classifier for TCP (UDP).

During the training phase, each training sample is mapped
to the H hash tables in parallel. Each entry in a hash table
contains the content of a training sample, i.e. all the selected
features and the application type.

During the testing phase, each test instance is hashed into
the hash keys to retrieve one training sample from each hash
table. Then the distance is computed between the test instance
and each retrieved training sample. The obtained H distance
values are sorted by the sorting module into ascending order.
The final output is the majority application type among the k
training samples that have the smallest distance values.

B. Optimizing Components

To achieve high throughput for real-time traffic classifica-
tion, we pipeline the architecture by inserting registers between
each processing component. We also optimize main processing
components in the architecture by exploiting the features
provided by current FPGAs.

Hash Table

Packet

Sorting

<features,
application>

Features
extraction

Application

<application>

<distance,
application>

k

LSH-based k-NN Classifier

Distance
Calculation

LSH-based k-NN Classifier

IP.protocol
Result

TCP

UDP

Majority
Voter

(TCP)

(UDP)

Fig. 1. Block diagram of the LSH-based k-NN classification architecture.

1) Hash Tables: The H hash tables employ different LSH
functions. Each hash table consists of the logic to generate the
hash key and a memory block to store the training samples.
We utilize the dual-port RAMs available in current FPGAs to
allow processing two packets in the same clock cycle.

2) Sorting: We implement the sorting module as a parallel
bitonic sorting network [27] which can sort up n elements
of arbitrary order in logn(1+logn)

2 clock cycles. We pipeline
the bitonic sorting network into logn(1+logn)

2 stages to achieve
throughput of one sorted output per clock cycle.

With these optimizations, our achitecture can process two
packets every clock cycle. The total number of clock cycles
for a packet to go through the LSH-based classification ar-
chitecture with H hash tables is logH(1+logH)

2 + 3, where
logH(1+logH)

2 clock cycles are spent on sorting the H outputs
from hash tables, one clock cyle on hash table access, one
clock cyle on Hamming distance calculation, and one clock
cycle on majority voter.

C. Dynamic Update

Our architecture can easily support dynamic updates for
adding new training samples. As both training and testing
packets go through the same datapath, we append one sin-
gle bit for each input packet to distinguish whether it is a
training or testing packet. This single bit can also be used
as a write enable signal for writing the training sample into
the hash table. Since our architecture is linear, any testing
packet preceding or following a training packet can perform
its operations while the training packet performs an update.

Though dual-port RAMs are used, we allow only one write per
clock cycle for each RAM to avoid write conflicts. Thus the
sustained throughput for updates (i.e. training) is one packet
per clock cycle, i.e. half the classification throughput.

V. IMPLEMENTATION AND EVALUATION

We implement the LSH-based classification architecture as
a parameterized design on FPGA. The target device is Xilinx
Virtex 5 xc5vlx50t with -3 speed grade. All the following
implementation results are from Xilinx ISE 11.1 post place
and route reports. The main architectural parameters include
k, the number of hash tables (H) and the hash table size
(M). We examine the performance trade-offs between the
classification accuracy and the resource utilization, by varing
those paramters. In the following experiments, the default
settings are k = 2, H = 16, M = 1K. The classification
accuracy results are obtained based on 100K training samples.

A. Performance Tradeoffs

1) k: We conducted experiments by varying k. Table IV
shows that k did not have big impact on the performance.

TABLE IV
IMPACT OF k

k Overall Slice BRAM
accuracy usage usage

1 99.93% 28% 40%
2 99.97% 27% 40%
3 99.86% 30% 40%
4 99.90% 27% 40%

2) Number of Hash Tables: We varied the number of hash
tables: H = 2, 4, 8, 12, 16. Table V shows the results including
overall accuracy and resource utilization. As we expected, us-
ing more hash tables resulted in higher classification accuracy
and higher resource utilization.

TABLE V
IMPACT OF THE NUMBER OF HASH TABLES

of Hash Overall Slice BRAM
tables accuracy usage usage

2 73.58% 1% 3%
4 97.56% 5% 9%
8 99.56% 13% 20%

12 99.83% 22% 30%
16 99.97% 27% 40%

3) Hash Table Size: We varied the hash table size: M =
256, 512, 1K, 2K. Table VI shows the results including overall
accuracy and resource utilization. Using larger hash tables
resulted in higher classification accuracy. But we did not
observe the expected increase in BRAM usage when the hash
table size was increased before reaching 2K. This was due to
that the FPGA implementation did not utilize Block RAMs
efficiently when the hash table size was smaller than 1K.

TABLE VI
IMPACT OF HASH TABLE SIZE

Hash table Overall Slice BRAM
size accuracy usage usage
256 99.34% 28% 40%
512 99.83% 29% 40%
1K 99.97% 27% 40%
2K 99.98% 29% 80%

B. Performance Summary

With the default settings (k = 2, H = 16, M = 1K), our
design met the timing contraints to achieve 125 MHz clock
rate. Since dual-port RAMs are used, the sustained throughput
is 250 million packets per second, i.e. 80 Gbps for minimum
size (40 bytes) packets. The overall resouce utilization is
shown in Table VII.

TABLE VII
RESOURCE UTILIZATION

Used Available Utilization
Number of Slices 1,998 7,200 27%

Number of bonded IOBs 120 480 25%
Number of Block RAMs 26 60 43%
Total Memory used (Kb) 864 2,160 40%

Using 100K training samples, we obtain the detailed classifi-
cation accuracy for each application, as shown in the confusion
matrix in Table VIII. The rows represent the application types
of the testing set while the columns represent the classification
results. We can see that our design achieves high classification
accuracy for these multimedia applications.

Table IX compares the performance of the schemes dis-
cussed in this paper. The results are based on 100K training
samples. SW stands for software implementation while HW

TABLE VIII
CONFUSION MATRIX FOR LSH-BASED CLASSIFICATION

Skype IM IPTV Legacy Unknown
Skype 99.865% 0% 00.005% 00.13% 0%

IM 0% 100% 0% 0% 0%
IPTV 0% 0% 100% 0% 0%

Legacy 0% 0% 0% 100% 0%

the hardware design. The FPGA implementation of LSH-
based classifier achieves 3 and 8 orders of magnitude higher
throughput than the software implementations of LSH and
brute-force k-NN -based classification schemes, respectively.

TABLE IX
COMPARISON OF THE SCHEMES DISCUSSED IN THIS PAPER

Brute-force k-NN LSH LSH
(SW) (SW) (HW)

Overall accuracy 100% 99.97% 99.97%
Throughput 0.7 PPS 40 KPPS 250 MPPS

Latency 1.5 sec 26 µs 104 ns

VI. RELATED WORK

Substantial attention has been attracted in exploiting ma-
chine learning algorithms for traffic classification. A compre-
hensive survey is provided in [7]. However, most of previous
work in this area focuses on the accuracy and robustness
of classification. The only work we found on accelerating
machine learning -based traffic classification is [28] by Luo
et al., which aims at C4.5 decision tree. Their objective is to
reduce the number of memory accesses for classifying each
packet by building a shorter and fatter tree. The tree height
is reduced at the cost of using more memory banks. At some
internal node, a varying number of memory accesses may be
needed for branching decision. Since the authors have not
implemented their design on FPGA, the actual performance
results are unclear. Note that the number of memory accesses
for each packet to traverse the decision tree is varying and
highly depends on the data set. This makes it difficult to
pipeline the tree traversal to achieve high throughput. Canini et
al. [1] use flow-level features from the first several packets per
flow and employ C4.5 algorithm for machine learning. They
implement the machine learning module in software and the
flow lookup table in hardware. The maximum throughput of
their NetFPGA implementation is 8 MPPS.

In addition to LSH, many algorithms have been proposed
to improve the performance of k-NN. The techniques called
k-NN condensation or k-NN thinning, have been studied over
years to reduce the size of the training set without lowering
the accuracy of k-NN [29]. k-NN thinning algorithms are
also computation-intensive and have attracted recent efforts for
FPGA acceleration [30]. The k-d tree algorithm [31] organizes
the training data into a binary tree where each training sample
is stored as a node. While k-d tree improves performance
by decomposing the search space, it relies on complex data
structure and recursive tree traversal algorithms, neither of
which maps well onto FPGA.

VII. CONCLUSION

This paper proposes a FPGA-based parallel architecture for
real-time multimedia traffic classification. We base our design
on k-NN -based classification algorithm and propose using
locality sensitive hashing (LSH) to improve classification
speed. Our FPGA implementation of the LSH-based traffic
classifier can achieve above 99% classification accuracy for
distinguishing three main categories of multimedia applica-
tions from the legacy Internet applications. By exploiting
the features provided by state-of-the-art FPGAs, our design
sustains 80 Gbps throughput for minimum size (40 bytes)
packets, while consuming small amount of on-chip resources.
Various design trade-offs are also discussed. To the best of
our knowledge, this work is the first FPGA design for 40+
Gbps Internet traffic classification. Our future work includes
applying the proposed solution to classifying more application
types, and porting the FPGA design onto development boards
and testing its performance under real-life network traffic.

VIII. ACKNOWLEDGEMENT

This work was funded by the Lawrence Livermore National
Laboratory LDRD programs Storage-Intensive Supercomput-
ing project under DOE contract W-7405-ENG-48.

REFERENCES

[1] M. Canini, W. Li, M. Zadnik, and A. W. Moore, “Experience with high-
speed automated application-identification for network-management,” in
ANCS’09: Proceedings of the 5th ACM/IEEE Symposium on Architec-
tures for Networking and Communications Systems. ACM, Oct 2009.

[2] J. Fan, D. Wu, A. Nucci, R. Keralapura, and L. Gao, “Protocol obliv-
ious classification of multimedia traffic,” Security and Communication
Networks, 2009, published online in Wiley InterScience.

[3] F. Hao, M. Kodialam, and T. Lakshman, “On-line detection of real
time multimedia traffic,” in ICNP ’09: Proceedings of the 17th IEEE
International Conference on Network Protocols, Oct. 2009, pp. 223–
232.

[4] M. Pietrzyk, J.-L. Costeux, G. Urvoy-Keller, and T. En-Najjary, “Chal-
lenging statistical classification for operational usage: the adsl case,”
in IMC ’09: Proceedings of the 9th ACM SIGCOMM conference on
Internet measurement conference. ACM, 2009, pp. 122–135.

[5] H. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, and K. Lee,
“Internet traffic classification demystified: myths, caveats, and the best
practices,” in CoNEXT ’08: Proceedings of the 2008 ACM CoNEXT
Conference. ACM, 2008, pp. 1–12.

[6] M. Zhang, W. John, K. Claffy, and N. Brownlee, “State of the art in
traffic classification: A research review,” in PAM ’09: 10th International
Conference on Passive and Active Measurement, Student Workshop.
ACM, 2009, pp. 1–2.

[7] T. Nguyen and G. Armitage, “A Survey of Techniques for Internet Traffic
Classification using Machine Learning,” IEEE Communications Surveys
& Tutorials, vol. 10, no. 4, pp. 56–76, 2008.

[8] A. Dainotti, W. de Donato, A. Pescape, and P. Salvo Rossi, “Clas-
sification of network traffic via packet-level hidden markov models,”
in GLOBECOM ’08: Proceedings of IEEE Global Telecommunications
Conference 2008, 2008, pp. 1–5.

[9] L. Salgarelli. Statistical traffic classification in IP networks: challenges,
research directions and applications. [Online]. Available: http://netgroup.
polito.it/teaching/trc/0708/Salgarelli-statisticaltrafficclassification.pdf

[10] N. Williams, S. Zander, and G. Armitage, “A preliminary performance
comparison of five machine learning algorithms for practical ip traffic
flow classification,” SIGCOMM Comput. Commun. Rev., vol. 36, no. 5,
pp. 5–16, 2006.

[11] M. Zadnik, M. Canini, A. W. Moore, D. J. Miller, and W. Li, “Track-
ing elephant flows in internet backbone traffic with an FPGA-based
cache,” in Proceedings of the 19th International Conference on Field
Programmable Logic and Applications (FPL’09), Aug 2009.

[12] W. Jiang and V. K. Prasanna, “Large-scale wire-speed packet classi-
fication on FPGAs,” in FPGA ’09: Proceeding of the ACM/SIGDA
international symposium on Field programmable gate arrays. ACM,
2009, pp. 219–228.

[13] Xilinx Virtex-6 FPGA Family: The High-Performance Silicon
Foundation for Targeted Design Platforms. [Online]. Available:
www.xilinx.com/products/virtex6/

[14] Altera Stratix IV FPGA: High Density, High Performance AND Low
Power. [Online]. Available: http://www.altera.com/products/devices/
stratix-fpgas/stratix-iv/

[15] K. Irick, M. DeBole, V. Narayanan, and A. Gayasen, “A hardware
efficient support vector machine architecture for FPGA,” in FCCM
’08: Proceedings of the 2008 16th International Symposium on Field-
Programmable Custom Computing Machines. IEEE Computer Society,
2008, pp. 304–305.

[16] J. Zhu and P. Sutton, “FPGA implementations of neural networks - a
survey of a decade of progress,” in Proc. FPL, 2003, pp. 1062–1066.

[17] A. Ferrari, M. Borgatti, and R. Guerrieri, “A vlsi array processor
accelerator for k-nn classification,” in ICPR ’96: Proceedings of the
International Conference on Pattern Recognition (ICPR ’96), vol. 4.
IEEE Computer Society, 1996, p. 723.

[18] M. Tahir and A. Bouridane, “An FPGA based coprocessor for cancer
classification using nearest neighbour classifier,” in Proceedings of
2006 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP ’06), vol. 3, may 2006, pp. III –III.

[19] H.-Y. Li, Y.-J. Yeh, and W.-J. Hwang, “Using wavelet transform and
partial distance search to implement k NN classifier on FPGA with
multiple modules,” in ICIAR, 2007, pp. 1105–1116.

[20] V. Garcia, E. Debreuve, and M. Barlaud, “Fast k nearest neighbor search
using gpu,” in Proc. CVPR Workshop on Computer Vision on GPU, June
2008.

[21] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approx-
imate nearest neighbor in high dimensions,” Commun. ACM, vol. 51,
no. 1, pp. 117–122, 2008.

[22] Tstat traces. [Online]. Available: http://tstat.tlc.polito.it/traces.shtml
[23] A. Este, F. Gringoli, and L. Salgarelli, “On the stability of the infor-

mation carried by traffic flow features at the packet level,” SIGCOMM
Comput. Commun. Rev., vol. 39, no. 3, pp. 13–18, 2009.

[24] CoralReef software suite. [Online]. Available: http://www.caida.org/
tools/measurement/coralreef/

[25] WIDE daily trace of a trans-Pacific T1 line (2000). [Online]. Available:
http://mawi.wide.ad.jp/mawi/samplepoint-A/2000/

[26] L. Bernaille, R. Teixeira, and K. Salamatian, “Early application iden-
tification,” in CoNEXT ’06: Proceedings of the 2006 ACM CoNEXT
conference. ACM, 2006, pp. 1–12.

[27] K. E. Batcher, “Sorting networks and their applications,” in AFIPS
’68 (Spring): Proceedings of the April 30–May 2, 1968, spring joint
computer conference. ACM, 1968, pp. 307–314.

[28] Y. Luo, K. Xiang, and S. Li, “Acceleration of decision tree searching for
IP traffic classification,” in ANCS’08: Proceedings of the 4th ACM/IEEE
Symposium on Architectures for Networking and Communications Sys-
tems. ACM, 2008.

[29] F. Angiulli, “Fast nearest neighbor condensation for large data sets
classification,” IEEE Trans. on Knowl. and Data Eng., vol. 19, no. 11,
pp. 1450–1464, 2007.

[30] T. Schumacher, C. Plessl, and M. Platzner, “An accelerator for k-th
nearest neighbor thinning based on the IMORC infrastructure,” in Pro-
ceedings of the 19th International Conference on Field Programmable
Logic and Applications (FPL’09). IEEE, Sep. 2009, pp. 338–344.

[31] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, 1975.

