
version 0.99.0 (aka 1.0rc1)

This changes everything…
… and change is GOOD

Gary Kumfert, James Leek
& Thomas Epperly

This work was performed under the auspices of the U.S. Department of Energy by the University
of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

UCRL-200005-PRES

CCA
Common Component Architecture

UCRL-PRES-222291

We’re celebrating!

With 0.99.0, We’ve
satisfied every item on
our 1.0 release criteria
The 1.0 Release
Criteria document has
been our roadmap
since
Dec 2003

0.99 is a major change

1. Complete rewrite of Parser
2. Changed Type Resolution
3. Modifications to SIDL
4. Improved babel-{cc,cxx,f77,f90} scripts
5. Significant RMI & multithreading

improvements
6. A new feature we haven’t

found a name for yet

1. Complete Rewrite of the
Parser

1. Complete Rewrite of the
Parser

Better error messages!
Change type resolution (more on this later)
Easier to adapt in the future
(structs are coming!)
Easier for 3rd parties to participate.

Before: Parsing, Checks, &
Resolution were tightly

interwoven

CodeCodeCodeCode

SIDL

Monolithic
Parser

Symbol
Table

Backends

IOR

C C++

PythonFortran

Java

IOR

C C++

PythonFortran

Java

CodeCodeCodeCode

Now: Decoupled the stages &
visitor pattern*

* Visitor pattern was first
suggested by Matt
Knepley back in 2001

SIDL

Monolithic
Parser

Symbol
Table

Backends

IOR

C C++

PythonFortran

Java

IOR

C C++

PythonFortran

Java

New
Parser

AST Visitors
Collision

Check
Semantic

Check

AST2
SymbolTBL

FUTURE: Backends will migrate off of
Symbol Table to AST

Backends

IOR

C C++

PythonFortran

Java

IOR

C C++

PythonFortran

Java

CodeCodeCodeCode

Backends will get smaller
in the process!
Symbol Table will
eventually go away

SIDL

Monolithic
Parser

Symbol
Table

New
Parser

AST Visitors
Collision

Check
Semantic

Check

AST2
SymbolTBL Backends

2. Changed Type Resolution
(it was too aggressive)

2. Changed Type Resolution
(it was too aggressive)

Now: These two files are now equivalent
No longer need special attention which
order SIDL files appear on the command
line.

package foo {

class A {
foo.B bar();

}
class B { }

}

package foo {
class B { }
class A {
foo.B bar();

}

}

3. Modifications to SIDL

a. Added a global scope indicator
b. Added a “from clause” to resolve multiple-

inheritance induced collisions
c. Broadened rarray extents from single variables

to expressions
d. Allow leading underscore or digit in method

suffix
e. Added %attrib{ } blocks to add arbitrary user

data for custom bindings

3.a. Added a Global Scope
Indicator

Q: What does bar()
return?

Before: foo.foo.A
Before: foo.A was not
addressable from that
scope
Now: use “.foo.A” to
specify top level scope

package foo
version 0.0 {
class A {
package foo {
class A {
foo.A bar();

}
}

}
}

3.b. The new (and novel) FROM
Clause

Before:
would throw a signature Conflict...
and print 37 lines of text stderr/stdout

Now:

interface I1 { init(in int i);}
interface I2 { init(in float f);}
class C implements-all I1, I2 { }

Signature conflict between method
"abstract void init(in double d) throws sidl.Runtime
from "pkg.I2" and method

" void init(in int i) throws sidl.RuntimeException"
from "pkg.C".

3.b. The new (and novel) FROM
Clause

New syntax to resolve the conflict

Restriction: can only introduce new suffix! (langs
that support overloading can't handle more)
Python: methods can be removed! May want to
upcast to expected type.

interface I1 { init(in int i); }
interface I2 { init(in float f); }
class C implements-all I1, I2 {
init[f](in float f) from I2.init;

}

3.c. Broader extents of Raw
Arrays

Before:

Now: Allow simple arithmetic expressions &
constants

Limitation: max one variable per expression
in a dimension
(Why? #eqns == #unknowns)

void foo(in rarray<int,2> A(m,n),
in int m, in int n);

void foo(in rarray<int,3>
A(2*m,2*n+3*(n+1), 3),

in int m, in int n);

3.d. Allow leading underscore or
digit in method suffix

Now: following inits are all legal

Warnings issued if/when you stumble on an
internal suffix.
(e.g. [_f])

interface Iface {
init(in int i);
init[2](in int i, in int j);
init[2a](in int i, in char a);
init[_](in bool not_recommended);
init[_2yikes](inout Iface scary);

}

3.e. The extensible %attrib{ }
blocks

WARNING: This feature matters iff you are
writing a new backend, or parsing Babel's
XML

Intention is
to make SIDL more extensible
Support development of innovative features

%attrib{ key1 }
%attrib{ key2=”some value” }
%attrib{ key1, key2=”some value”, keyN }

What's an attribute?

Metadata associated with Types, Methods, or
Arguments in SIDL
Before: Only supported “built-in” attributes

Types could be final or abstract
Methods could be local, static, abstract, and/or
final
Args can be copy

Now: can add arbitrary attributes with the
%attrib{ }comand.

Possible Uses

Specify a default value for an argument

Specify a parallel operation that returns the
max of all processes' values

void foo(%attrib{ default=”1.0” }
in double d);

%attrib{ collective } void
foo(%attrib{ reduce=”max” }

out double d);

Interesting properties

For all built-in attributes, X: “%attrib{ X }”
is equivalent to “X”
For all SIDL, C/C++,Fortran, Python, and
Java keywords, K:
%attrib{ K } is not precluded (separate
tokenizer avoids collisions)
Attributes are preserved in XML
Backends should quietly ignore attributes
they don't understand

0.99 is a major change

1. Complete rewrite of Parser
2. Changed Type Resolution
3. Modifications to SIDL
4. Improved babel-{cc,cxx,f77,f90} scripts
5. Significant RMI & multithreading

improvements
6. A new feature we haven’t

found a name for yet

4. Improved the
babel-{cc,cxx,f77,f90} scripts

These scripts orchestrate the compiler,
babel-config, and
babel-libtool for you.

There will be more work here for 1.0.
Will support “--with-mpi”

% babel-cc -c -n pkg_cls_Impl.c
$(bindir)/babel-libtool --quiet --tag=CC --mode=compile
gcc -c -I$(includedir) -I/usr/include/libxml2
pkg_cls_Impl.c

5. Significant RMI and Multithreading
Improvements

1 2 3 4 5 8760 9 n10ProcessorID

Fine Scale Response
Compute Farm (F90)

Ale3d
(ANSI C)

Input Deck
(Python)

PSI Overlord
(C++)

PSI
Daemons

w/ PSI, build support for PRMI and
Nonblocking RMI

= Process

= MPI_COMM_WORLD

= Babel RMI

Not shown: All processes can RMI
Overlord & Overlord has table of all
rank 0 processes.

Thanks to PSI…

6. A new feature we haven’t found
a name for yet

New constructor capabilities

Useful for temporarily wrapping a native
language structure as a Babel object
For C and Fortran, it can act like a C++
placement new. You can initialize the private
data struct before creating the object
Requires tight coupling between client and
implementation

Temporarily wrapping native
objects (C++)

Assume a C++ Mesh called myMesh & SIDL
class MeshWrap

#include “foo_MeshWrap_Impl.hxx”
....numerous lines skipped....
{

// create a Babel Impl object to wrap MyMesh
MeshWrap_Impl m = new MeshWrap_Impl();
m.setMesh(myMesh); // call a non-Babel method on

// the Impl class
// pass m to a Babel object meshRefiner through
// a Babel method call
meshRefiner.refineMesh(m);

} // m goes out of scope and is garbage collected
// myMesh was temporarily wrapped up for a Babel
// call and can now be used by the rest of the C++ app

Temporarily wrapping native
objects (Java)

Assume a Java Mesh called myMesh & SIDL
class MeshWrap
{

// create a Babel Impl object to wrap MyMesh
MeshWrap_Impl m = new MeshWrap_Impl();
m.setMesh(myMesh); // call a non-Babel method

on
// the Impl class

// pass m to a Babel object meshRefiner through
// a Babel method call
meshRefiner.refineMesh(m);

} // m goes out of scope and is garbage collected
// myMesh was temporarily wrapped up for a Babel
// call and can now be used by the rest of the
// Java app

Temporarily wrapping native
objects (Python)

You can new the Impl in Python or...
You can wrap any Python object that implements the
required methods! (DANGEROUS but very Pythonic)

from foo.MeshWrap import MeshWrap
babelMesh = MeshWrap(impl = myMesh)
babelMesh is a Python object wrapping
myMesh. RuntimeException's will occur
if myMesh doesn't implement all the
expected methods

Example of Dangerous Python

SIDL file

Any Python instance that implements sayHello can
be wrapped as follows:

package f version 1.0 { class S {
void sayHello(in string hello);

}}

>>> from f.S import S
>>> s = S()
>>> s.sayHello("Tom")
>>> class Override:
... def sayHello(self, name):
... print "Python says hello to " + name
...
>>> o = Override()
>>> s = S(impl = o)
>>> s.sayHello("Tom")
Python says hello to Tom

Temporarily wrapping native
objects (C, F77)

For C, pass a pointer to the private struct
defined in the _Impl.h file to the
_wrapObj(void *data, sidl_BaseInterface
*_ex) method.
For F77, pass an opaque to the _wrapObj
method.
These values are stored in the IOR and ctor2
is called instead of ctor.

Temporarily wrapping native
objects (F90)

use x_y_z_impl
type(x_y_z_wrap) :: myData
type(x_y_z_t) :: myObj
allocate(myData%d_private_data)
! ...
! initialize myData%d_private_data
! ...
call wrapObj(myData, myObj, exception)

In case you hadn't heard...

Original (D)C++ binding is gone.
UC++ binding is now the default C++
binding.
See Tom's Jan 2006 talk on what's involved
in upgrading.

Conclusion

Babel 0.99.0 is our first release candidate for Babel 1.0
No new features planned between now and 1.0.
Bugfixes and Documentation fixes still in the works
Babel 1.0 will be out before SciDAC meeting

Babel 0.99.0 is a big change from Babel 0.11.x series.
Change is good!

	version 0.99.0 (aka 1.0rc1) This changes everything…… and change is GOOD
	We’re celebrating!
	0.99 is a major change
	1. Complete Rewrite of the Parser
	1. Complete Rewrite of the Parser
	Before: Parsing, Checks, & Resolution were tightly interwoven
	Now: Decoupled the stages & visitor pattern*
	FUTURE: Backends will migrate off of Symbol Table to AST
	2. Changed Type Resolution(it was too aggressive)
	2. Changed Type Resolution(it was too aggressive)
	3. Modifications to SIDL
	3.a. Added a Global Scope Indicator
	3.b. The new (and novel) FROM Clause
	3.b. The new (and novel) FROM Clause
	3.c. Broader extents of Raw Arrays
	3.d. Allow leading underscore or digit in method suffix
	3.e. The extensible %attrib{ } blocks
	What's an attribute?
	Possible Uses
	Interesting properties
	0.99 is a major change
	4. Improved the babel-{cc,cxx,f77,f90} scripts
	6. A new feature we haven’t found a name for yet
	New constructor capabilities
	Temporarily wrapping native objects (C++)
	Temporarily wrapping native objects (Java)
	Temporarily wrapping native objects (Python)
	Example of Dangerous Python
	Temporarily wrapping native objects (C, F77)
	In case you hadn't heard...
	Conclusion

