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History

• It was the third age of mankind....

• The original Cxx was by Gary Kumfert 

• As Babel evolved demand for new features grew

• Steve Parker prototyped what he wanted in a 
C++ binding for use with SCIRun. 

• It was called U(tah)Cxx.



Goals

O Implicit Upcasting

O New babel_cast<>() operator for downcasts

O Ability to call stub methods from the Impl without 
the self pointer.

~ Access from a derived Impl class to it’s base 
Impl class’s data.

X C++ style throwing of derived class exceptions.



O Implicit Upcasting

• Implicit upcasting is simply a matter of 
reflecting the SIDL class hierarchy in the 
C++ class hierarchy.
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O babel_cast<target>(source)

• The original Cxx binding overloaded the 
assignment operator to cast stubs. Now we use 
babel_cast. If the cast is bad, the result is nil.

• Old:
A a = return_c()
C c = a;
if(c._is_nil()) die();

• New:
A a = return_c();
C c = babel_cast<C>(a);
if(c._is_nil()) die();



O Calling Stub from the Impl

• The Cxx binding included a “self” pointer for 
calling stub methods from the Impls

• UCxx we have the Impls inherit from the stubs  
so we can call directly.
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X Catching derived exceptions

• In C++ this is legal:
void foo() throw (A) { throw  C;}

int main() { try{ foo() } catch (C c) {/*…*/}}

• Something similar is possible with the 
Babel C binding.

• We received many requests to make this 
work with the UCxx binding. It doesn’t.



X  It doesn’t work. Why not?
• It does not work in C++ because, with Babel, 

exceptions must pass through the IOR.
• It works in C because in C you catch the IOR 

pointer.
• It cannot work for C++ because the C++ binding 

must throw a type it expects to catch.
• The binding does, however, always attempt to 

match the most derived type first.



~ Access to a base Impl’s data

• Many users requested that a derived Impl 
class be able to access it’s base class’s 
data directly.

•  This immediately         
suggests some kind of 
inheritance. We decided 
on public.
• Giving us this hierarchy:
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Which led to problems….

• First, not every Impl can reasonably be 
expected to access it’s parent’s data.  
What if the parent is written in Fortran?

• So such inheritance is optional.  (The user 
must write it in the splicer blocks)

• Due to the possibility of diamond 
inheritance, all inheritance is now virtual.

• This will compile, the user may have his 
Impls inherit from each other. But…



It’s not the same data

• Unfortunately, this probably doesn’t do what you 
wanted.  To see why, consider class B.

IOR B:

A
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C++ A:
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C++ B:
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b

The IOR creates it’s own A for Babel inheritance! 
So you cannot access the A pointed to in the IOR 
from B. 



Possible solutions?

• What might work to fix this problem?
– Use placement new to initialize the C++ object 

with space allocated by the IOR.
– Find some way to get the address of A_Impl 

and B_Impl as created by C++, and use them 
to initialize the IOR pointers.

– Give the developer some way to get pointers 
to the IOR defined supers.

– The developer could only export the top of the 
class hierarchy through Babel.



UCxx Downsides?

• I have not done a performance study yet, but I 
suspect (compared to Cxx):
– Object creation/destruction may be a little slower

– Function calls take the same amount of time

• All UCxx namespaces exist in the top level 
namespace ucxx. So:
– ::ucxx::package1::package2::class

– ::ucxx::sidl::array<bool> barray

– (This is so Cxx and UCxx can be used together 
without collisions.)



Review
(What’s new again?)

• The self pointer is gone from the Impls
– Old: self.foo();
– New: foo();

• Upcasting is implicit (bar takes an A)
– Old: A a = c; bar(a);
– New: bar(c);

• Downcasting uses babel_cast<>()
– Old: C c = a;
– New: C c = babel_cast<C>(a);



Tutorial Part 1

• This tutorial shows implicit upcasting and 
the babel_cast<>() operator.

• In this we have a Babelized priority queue 
that takes interface “Comparable.”

• We have a class “Integer” that 
implements Comparable.

• Put Integers into PriorityQueue and take 
them out again in order.



Tutorial Part 2

• In this tutorial we have a Babelized “Time Client.”
• A time client returns the time as a string.  It has 

an interface for getting time from another 
machine over a network.

• “TimeClient” has a function “getTime” that makes 
a connection and gets the time.

• “TCPTimeClient” makes a tcp connection and 
gets the time from another machine.

•  If getTime is called on a normal TimeClient, the 
time on the local machine is returned.



Conclusion

• UCxx makes the C++ Babel binding seem 
more like C++

• UCxx is still experimental, but we expect 
it to become the prefered C++ binding.  
However, for now details may change

• Ucxx also fulfills some of the Babel 1.0 
release criteria.

• Please make suggestions about what you 
would like to see!


