
Gary Kumfert & Thomas Epperly

Introductory Babel
for Massive Supercomputing

Software Integration.

This work was performed under the auspices of the U.S. Department of Energy by the University

of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

UCRL-PRES-234812

Tutorial S08:

Center for Applied Scientific Computing

2

Today’s Tutorial

a.m. Lecture

Babel – Our Software Integration Tool

SIDL – Our Universal Type System

RMI – Remote Method Invocation

Real World Applications

Open Babel Community

p.m. Hands-On

On your laptop (Linux, MacOSX)

Guest Accounts hosted by Indiana Univ.

3

Each Instructor Has >7 Years
Experience Designing & Using Babel

 Ph.D. in Computer

Science & B.S. Applied

Math

 Used/Uses Babel in

Material Science

 Graph Partitioning

 CCA Frameworks

 Ph.D. & B.S. in

Chemical Engineering

 Used/Uses Babel in

 Fusion Research

 Source Code Analysis

 CCA Frameworks

Gary Kumfert

<kumfert@llnl.gov>

Thomas Epperly

<tepperly@llnl.gov>

4

General Announcements

Restrooms

Break schedule

You should have:

SC Tutorial Questionnaire

Babel Slides (including this one)

Personal Laptop w/ access to UNIX-like

environment (for Part II: Hands-on)

Please Ask Questions

Lot of arcana goes into interoperability

5

Handout Material

Details about Slides

Many Slides are labeled

These are “hidden slides” in the
presentation (intended for readers)

Speakers will skip these slides by default.

But, we are happy to visit them if there are
any questions.

Glossary of Terms in back of Handouts.

We will post Errata at
http://www.llnl.gov/CASC/components/docs/sc07.html

 This symbol is used to warn about
corrections made after publication of notes.

http://www.llnl.gov/CASC/components/docs/sc07.html

6

a.m. Lecture ~ 3 hours

I. Lecture - 3 hours

Introduction – Gary Kumfert

SIDL Language – Thomas Epperly

Babel Tool – Thomas Epperly

Using Babel Objects – Thomas Epperly

Building Babel Libraries – Gary Kumfert

Distributed Computing & RMI – Gary Kumfert

Closing – Gary Kumfert

II. Hands On – 3 hours

I. Introduction

15 minute “Manager Overview”

8

Babel is Software Integration
Technology for HPC

CORBA COM .NET Babel

BlueGene, Cray,

Linux, AIX, & OS X

No No No Yes

Fortran No Limited Limited Yes

Multi-Dim Arrays No No No Yes

Complex Numbers No No No Yes

Licensing Vendor

Specific

Closed

Source

Closed

Source

Open

Source

2006

“The world‟s most rapid

communication among many

programming languages in a

single application.”

0

10

20

30

40

50

M
ill

io
n
 c

a
lls

/s
e
c

C
O

R
B

A

B
a

b
e

l

.N
E

T

C
O

M

Performance (in process)

11

Application Project POC

Chemistry NWChem Theresa Windus, Iowa State

Quantum Chemistry MPQC Curtis Janssen, Sandia

Chemistry GAMESS-CCA Masha Sosonkina, Ames Lab

Fusion FMCFM Johann Carlsson, Tech-X Corp.

Fusion DFC Nanbor Wang, Tech-X Corp.

Fusion FACETS Tom Epperly, LLNL

Electron Effects CMEE Peter Stoltz, Tech-X Corp.

Component Frameworks CCA David Bernholdt, ORNL

Programming Models Co-Op John May, LLNL

Performance Monitoring TAU Sameer Shende, U Oregon

Meshing TSTT/ITAPS Lori Diachin, LLNL

Sparse Linear Algebra Sparsekit-CCA Masha Sosonkina, Ames Lab

Solvers TOPS Barry Smith, Argonne

Grid Programming Legion-CCA Michael J. Lewis, Binghamton University

MOCCA Harness Vaiday Sunderam, Emory University

Programming Models Global Arrays Jarek Nieplocha, PNNL

Cell Biology VMCS (using TSTT) Harold Trease, PNNL

Computational Mechanics DLSMM Nathan Barton, LLNL

Nuclear Power Plant Trainer M. Diaz, U. Malaga, Spain

Subsurface Transport PSE Compiler Jan Prins, UNC Chapel Hill

Radio Astronomy eMiriad Athol Kemball, UIUC

Solvers Hypre Jeff Painter, LLNL

Source Code Transformation CASC Dan Quinlan, LLNL

Distributed Component Env. SCIJump (fka SCIRun2) Steve Parker, Utah

Babel Is
Used in
Many

Domains

>200 downloads
Babel source

per month (avg.)

Some Known
Babel Users

12

Customers Use Babel To
Serve a Variety of Needs

Manage community codes
[Chemistry, Fusion, Radio Astronomy]

 Create software interface specifications.
[CCA, ITAPS, TOPS]

 Integrate multiple 3rd party libraries into a
single scientific application.
[Chemistry, Fusion, CMEE]

 Develop libraries that connect to multiple
languages.
[hypre, TAU, Sparsekit-CCA]

 Scientific Distributed Computing
[Co-Op, SCIJump, Legion-CCA, Harness, GA]

13

Manage community codes
[Chemistry, Fusion, Radio Astronomy]

 Create software interface specifications.
[CCA, ITAPS, TOPS]

 Integrate multiple 3rd party libraries into a
single scientific application.
[Chemistry, Fusion, CMEE]

 Develop libraries that connect to multiple
languages.
[hypre, TAU, Sparsekit-CCA]

 Scientific Distributed Computing
[Co-Op, SCIJump, Legion-CCA, Harness, GA]

Customers Use Babel To
Serve a Variety of Needs

“…the nominal collective commercial replacement cost for this sampling of

community codes [AIPS, MIRIAD, AIPS++] is of order ~480 person-years.”

“In this case study, Babel has proven to be a good component middleware

choice. It is well suited to scientific problem domains, such as radio

astronomy imaging, due to the support for multi-dimensional arrays,

FORTRAN bindings, good interoperability with HPC, and peer-to-peer

language bindings. The latter property is particularly useful in providing

developer choice in component implementation and in providing a general

scripting interface using Python.”

A. J. Kemball, R. M. Crutcher, R. Hasan. “Component-Based Framework for

Radio-Astronomical Imaging,” Software Practice & Experience, Wiley, 2007

14

Creating software is a human
activity, not a scalable process.

 History of Computer

Science Research

Programming model

depends on

the scale of

software

Date

P
ro

g
ra

m
 C

o
m

p
le

x
it

y
 (

C

S

L
O

C
)

102

103

104

105

106

107

1
9

4
5

1
9

5
5

1
9

6
5

1
9

7
5

1
9

8
5

1
9

9
5

2
0

0
5

101

100

10-1

10-2

Assemblers

Compilers

Structured Programming

Object-Oriented

Middleware

&

Components

108

15

In Industry, All Enterprise
Software uses Middleware

Date

1
9

5
5

1
9

6
5

1
9

7
5

1
9

8
5

1
9

9
5

2
0

0
5

Middleware

&

Components

Invented for codes
where complexity
exceeds the
comprehension of a
single human mind

Object-Oriented
OOP falls down because
1. Assumes a single language
2. Implementation details

pollute the interfaces

Middleware adds
1. Code generation (language wrappers

& stronger interfaces)
2. Additional runtime services to

support dynamicism & loose coupling

P
ro

g
ra

m
 C

o
m

p
le

x
it

y
 (

C

S

L
O

C
)

102

103

104

105

106

107

101

100

10-1

10-2

108

Loose coupling and
robust interfaces
are effective in
greater range,
including single
teams

16

Customers Use Babel To
Serve a Variety of Needs

Manage community codes
[Chemistry, Fusion, Radio Astronomy]

 Create software interface specifications.
[CCA, ITAPS, TOPS]

 Integrate multiple 3rd party libraries into a
single scientific application.
[Chemistry, Fusion, CMEE]

 Develop libraries that connect to multiple
languages.
[hypre, TAU, Sparsekit-CCA]

 Scientific Distributed Computing
[Co-Op, SCIJump, Legion-CCA, Harness, GA]

17

Babel Has Two Parts:
Code Generator & Runtime Library

SIDL

interface

description

Babel

Compiler

C++

F77

F90

Python

C

XML

RMI

Java

Babel

Runtime

Application

Specifications are

written in SIDL

18

Tutorial Sections
Follow this Flow

SIDL

interface

description

Babel

Compiler

C++

F77

F90

Python

C

XML

RMI

Java

Babel

Runtime

Application

Part 2:

SIDL

Language

Part 3:

Babel

Tool

Parts 4 & 5:

Using Objects

& Building Libs

Part 6: Distrib.

Computing

19

Customers Use Babel To
Serve a Variety of Needs

Manage community codes
[Chemistry, Fusion, Radio Astronomy]

 Create software interface specifications.
[CCA, ITAPS, TOPS]

 Integrate multiple 3rd party libraries into a
single scientific application.
[Chemistry, Fusion, CMEE]

 Develop libraries that connect to multiple
languages.
[hypre, TAU, Sparsekit-CCA]

 Scientific Distributed Computing
[Co-Op, SCIJump, Legion-CCA, Harness, GA]

20

Example: Babel Used To
Design Plasma Thrusters

Manage community codes
[Chemistry, Fusion, Radio Astronomy]

 Create software interface specifications.
[CCA, ITAPS, TOPS]

 Integrate multiple 3rd party libraries into a
single scientific application.
[Chemistry, Fusion, CMEE]

 Develop libraries that connect to multiple
languages.
[hypre, TAU, Sparsekit-CCA]

 Scientific Distributed Computing
[Co-Op, SCIJump, Legion-CCA, Harness, GA]

CMEE takes widely-used physics routines for modeling electron effects like

gas ionization and secondary electron emission from metals and uses Babel to

make them widely available. The resulting code is used in applications such as

accelerator physics and plasma drives for satellites.

In addition to having legacy codes in Fortran 77, they also integrate new codes

in Fortran 90, C, and Python.

Before incorporating Babel, this project had used combinations of Pyfort and

SWIG or f2py and SWIG, which reportedly gave them 90% of what they

wanted. However, a new customer (U.S. Air Force) added the requirement of

Java interfaces. Rather than discard their substantial investment in Python…

they replaced all other point-to-point language tools with SIDL/Babel.

Kumfert et. al. How the Common Component Architecture Advances

Computational Science. Proc SciDAC 2006 JoP 46(2006) pp 479-493

21

When Mixing n Languages,
Tool usage can grow O(n2)

C

C++

Fortran 90

Python

Fortran 77

Java

cfortran.h

Chasm

COM

CORBA

JNI

Native

Platform-Dependent

Siloon

SWIG

22

Babel is an n-way Language
Interoperability Tool

C

C++

Fortran 77

Fortran 90/95

Python

Java

Once a library has been
“Babelized” it is equally

accessible from all
supported languages

Additional languages
continue to be addedRemote

Computer

Fortran 2003
(joint w/ Tech-X)

23

Babel Supports a Uniform
Model Across All Languages

C

C++ Python

Java

Full OOP, Polymorphism,
Exception Handling in

every language.

Can throw an exception
from C++, catch it in

F77 and have the
exception itself be in C

FORTRAN77

Fortran 90/95

Remote

Computer

Fortran 2003
(joint w/ Tech-X)

24

Customers Use Babel To
Serve a Variety of Needs

Manage community codes
[Chemistry, Fusion, Radio Astronomy]

 Create software interface specifications.
[CCA, ITAPS, TOPS]

 Integrate multiple 3rd party libraries into a
single scientific application.
[Chemistry, Fusion, CMEE]

 Develop libraries that connect to multiple
languages.
[hypre, TAU, Sparsekit-CCA]

 Scientific Distributed Computing
[Co-Op, SCIJump, Legion-CCA, Harness, GA]

25

Most Science & Engineering Apps
Already Mix Languages

Simulation Framework

(C)

Solver Library

(C++)

Numerical Routines

(FORTRAN 77)

Scripting Driver

(Python)

Visualization System

(Java)

Physics Models

(FORTRAN 90)

26

When we say “Language Interoperability”
we mean something very different than

from what most applications do.

Simulation Framework

(C)

Solver Library

(C++)

Numerical Routines

(FORTRAN 77)

Scripting Driver

(Python)

Visualization System

(Java)

Physics Models

(FORTRAN 90)

Logging and Plotting

(Python)

Suppose your iterative solver isn’t
converging, but oscillating in a curious
way. Can you pause the simulation,
write a Python script to extend the
(C++) convergence check and log the
pertinent physics in those regions?

27

When we say “Language Interoperability”
we mean complete language transparency

Simulation Framework

(C)

Solver Library

(C++)

Numerical Routines

(FORTRAN 77)

Scripting Driver

(Python)

Visualization System

(Java)

Physics Models

(FORTRAN 90)

Adaptive Sampling

(Python)

Now suppose you have a regime in your
physics models that is of interest. Can
you extend Fortran90 modules in some
scripts to explore new ideas as the
simulation progresses?

28

Customers Use Babel To
Serve a Variety of Needs

Manage community codes
[Chemistry, Fusion, Radio Astronomy]

 Create software interface specifications.
[CCA, ITAPS, TOPS]

 Integrate multiple 3rd party libraries into a
single scientific application.
[Chemistry, Fusion, CMEE]

 Develop libraries that connect to multiple
languages.
[hypre, TAU, Sparsekit-CCA]

 Scientific Distributed Computing
[Co-Op, SCIJump, Legion-CCA, Harness, GA]

29

…it’s distributed
computing

infrastructure

Now, Babel is More Than a
Language Tool…

C++

Fortran90Fortran77

Java

C

Python

IOR

Key: SkelStub

Before

Key: SkelStub

C++

Fortran90Fortran77

Java

C

Python

RIOR

C++

Fortran90Fortran77

Java

C

Python

IOR

R
e
m

o
te

 S
tu

b
Im

p
le

m
e
n

ta
ti

o
n

Network Other

InstanceHandle

Invocation &
Response

BaseServer

Call & Return

After

Network
Layer

defined in
SIDL for
3rd party
plug-ins

30

Babel Thrives on Research
Collaborations & Community

Lab Directed

R&Ds

@ LLNL

CCA

SciDAC 1&2

FACETS

SciDAC App

J. Cary, PI

F90 Arrays
Chasm

LANL

Improved C++ Bindings
University Utah

Nightly Testing
ANL, ORNL & SNL

Fortran 2003 Bindings
Tech-X

Nonblocking RMI
Cooperative Programming

RMI Consulting & Feedback
Univ. Utah, Suny Binghamton,

Indiana Univ. & Tech-X

Startup
Components Initiative

Cray Port
ORNL

Feature Requests & Defect Reports
General User Base

Alpha Testers
hypre @LLNL

36

Introduction Summary

 Babel is a Software Integration Tool for big
HPC codes

 Customers Use Babel to Serve Many Needs
Manage community codes

Create software interface specifications

Integrate multiple 3rd party libraries

Develop libraries that connect to multiple
languages

Scientific Distributed Computing

 Babel itself is supported by research
collaborations and community participation

II. SIDL

38

Scientific Interface
Definition Language

The Smallest, non-degenerate SIDL file

SIDL Type System

SIDL Object Model

Runtime Library of “built-in” objects

Finer details

NOTE: In this section

• blue text is used to highlight words/concepts being defined

• blue typewriter font for SIDL keywords being defined

39

A Simple, Complete SIDL File

Method – only inside objects

Object – only inside packages

 Package – can be arbitrarily nested

package simple version 1.0 {

class HelloWorld {

string getMessage();

}

}

40

// … sidl fragment
void run();

void xEqAxpy(in array<double,2> A,
inout array<double> x,
in array<double> y) ;

NetObject connect(in SocketID id)
throws NetworkException ;

Examples of Methods in SIDL

 Method must have
 return type

 name
(unique to the object)

 argument list
(may be empty)

 Each Argument must
have
 intent (in, out, inout)

 type

 name (unique to arg. list)

41

Methods Only Appear Within
Objects

 Every piece of functioning code “wrapped”

in Babel appears as either

a SIDL class, or

a SIDL class hierarchy

(which may include SIDL interfaces)

// … sidl fragment
interface Shape {
void draw(in Brush b);

}

class Brush {
void setWidth(in int pixels);

}

42

Objects only appear within a
versioned package

 Cannot have objects in package gov
(not versioned)

Objects in package gov.cca are version 0.6

Objects in package gov.cca.ports also get
version 0.6 (could be versioned separately)

package gov {
package cca version 0.6 {
// … objects
package ports {
// … more objects

}
}

}

43

SIDL is a Declarative Language
Not a Programming Language

 Common Programming Constructs not in

SIDL include:

Assignment statement

String Literal

Print Statement

package simple version 1.0 {

class HelloWorld {

string getMessage();

}

}

44

Scientific Interface
Definition Language

The Smallest, non-degenerate SIDL file

Basic SIDL types

SIDL Object Model

Runtime Library of “built-in” objects

Finer details

45

Key to Integrating Software is
a Unified Type System

 Fundamental Types
bool

char (8 bit)

int (32 bit)

long (64 bit)

float (IEEE)

double (IEEE)

fcomplex

dcomplex

opaque (void *)

string

 Aggregate Types
arrays

enums

structs (in progress)

Objects
classes

interfaces

abstract classes

46

Use SIDL to Define/Extend
these Types

 Fundamental Types
bool

char (8 bit)

int (32 bit)

long (64 bit)

float (IEEE)

double (IEEE)

fcomplex

dcomplex

opaque (void *)

string

 Aggregate Types
arrays

enums

structs (in progress)

Objects
classes

interfaces

abstract classes

47

array – Fortran 95-style
multidimensional array (& more)

 Have a stride, lower bound & upper bound in each dimension

 Can be reference counted, borrowed, and sliced

 Looks like C++ templates, but is specific to SIDL arrays

 1st argument: type of array (required)

 2nd argument: dimension (default=1, max=7)

 3rd argument: row-major, column-major, or arbitrary (default)

 No arrays of arrays

array< int >

array< T >

array< double, 7 >

array< fcomplex, 2, row-major>

48

rarray – C/F77-style
“raw” array

 Many restrictions from full-featured Babel arrays

 always column major and packed

 index range is always 0 to n-1

 only numeric types… etc.

 Benefits: More intuitive in some cases

(esp. C or F77 based math libraries like BLAS)

void solve(in rarray<double,2> A(m,n),

inout rarray<double> x(n),

in rarray<double> b(m),

in int m,

in int n);

49

rarray Lengths Are Flexible

 Can be:

 Constants

 Variables

 Any invertible function with one independent variable

 Variables must appear somewhere in argument list

Shape rotate3d(in Shape s

in rarray<double,2> M(3,3));

double CSRMatNorm(in int n, in int nnz,

in rarray<int> Aptr(n+1),

in rarray<int> Aind(nnz),

in rarray<double> Aval(nnz));

50

enum – Mutually exclusive
symbolic values

 Unique numbers are assigned if not specified
(Just like ANSI C enum)

 Not technically exciting
(or innovative like rarrays & objects are)

 Important for software engineering

enum checking{ aggressive, lazy, never }

enum errorLevel {

warning, error, fatal, none=0

}

51

struct – Work In Progress

 Will support structs of any other type
 including structs of structs

 No data copy between C, C++, and Fortran 2003
(using BIND(C))

 Fortran 77/90/95, Java, & Python will access structs
via get/set methods.

struct Field {

array<double,3> data;

Units unit;

array<double, 3> coords;

bool dirty;

}

52

Scientific Interface
Definition Language

The Smallest, non-degenerate SIDL file

Basic SIDL types

SIDL Object Model

Runtime Library of “built-in” objects

Finer details

53

Objects Contain User-Defined
Methods (so we start here)

 Fundamental Types
bool

char (8 bit)

int (32 bit)

long (64 bit)

float (IEEE)

double (IEEE)

fcomplex

dcomplex

opaque (void *)

string

 Aggregate Types
arrays

enums

structs (in progress)

Objects
classes

interfaces

abstract classes

54

Standard Object-Oriented
Design Principles Apply to SIDL

 Inheritance

Polymorphism

Method Overriding

Method Overloading

abstract vs. concrete methods

virtual vs. final methods

Exceptions

55

Inheritance - Group related
objects into hierarchies

 Promotes code reuse

 Objects can inherit a capability from a common ancestor

 Objects can support the same method interface,
but replace or augment with their own capabilities

Shape

double getArea();

void render(in Screen s);

Rectangle

void render(in Screen s);

void rotate(in double radians);

Circle

void render(in Screen s);

double getRadius();

56

Method Overriding

 Promotes code reuse

 Objects can inherit a capability from a common ancestor

 Objects can support the same method interface,
but replace or augment with their own capabilities

Shape

double getArea();

void render(in Screen s);

Rectangle

void render(in Screen s);

void rotate(in double radians);

Circle

void render(in Screen s);

double getRadius();

57

Polymorphism – Lets Hierarchy
Work Out Details For You

Deal with collections of objects through their common ancestor

 method overloading chooses proper implementation at runtime

 e.g. To draw a bunch of rectangles and circles to a screen,

 keep them in a single list of shapes and call render().

Shape

double getArea();

void render(in Screen s);

Rectangle

void render(in Screen s);

void rotate(in double radians);

Circle

void render(in Screen s);

double getRadius();

58

virtual vs. final
Can a method be overridden?

 SIDL default is always “yes” (virtual)

Use final keyword to prohibit overriding

Same as Java

Opposite of C++

59

abstract vs. concrete
Is the method implemented?

 abstract methods
 specify an Method signature

 require a derived class to implement

 e.g. Diagram does not specify implementations, but we can guess
 Shape.getArea() – intuitively abstract, should be concrete in children

 Shape.render() – clearly overridden, but ambiguous in figure

Shape

double getArea();

void render(in Screen s);

Rectangle

void render(in Screen s);

void rotate(in double radians);

Circle

void render(in Screen s);

double getRadius();

60

Two Method Characteristics
Fine Tune Polymorphism

overridable?

implemented?

virtual final

abstract Mandatory for

SIDL

interfaces

Impossible

concrete default for

SIDL classes

61

SIDL Object Types

interface

All methods are virtual & abstract

concrete class

All methods are concrete

Is only object that can be instantiated

abstract class – (less common)

A class with at least one abstract method

Can have concrete methods too

62

SIDL Inheritance Model

 interfaces

extend multiple interfaces

classes

extend at most one class, but

implement multiple interfaces

Same as Java and Objective C

63

SIDL also has Implicit Base
Types to Root All Objects

sidl.BaseInterface
is the root of all SIDL interfaces

sidl.BaseClass
is the root of all SIDL classes

sidl.BaseClass implements

sidl.BaseInterface

64

Scientific Interface
Definition Language

The Smallest, non-degenerate SIDL file

Basic SIDL types

SIDL Object Model

Runtime Library of “built-in” objects

Finer details

65

SIDL’s Type System Presumes
Existence of Certain Types

package sidl

Base Classes, Interfaces, Runtime Class

Loaders, Limited Introspection and

Exception support

package sidl.io

Object serialization (includes exceptions)

package sidl.rmi

Remote Method Invocation

66

Hierarchy of Objects in
sidl and sidl.io packages

 Added constrains on “special” objects

 Exceptions must implement sidl.BaseException

 All methods implicitly throw sidl.RuntimeException

 An object copied via RMI must implement
sidl.io.Serialzable

 etc.

BaseInterface BaseClass

BaseException
SIDLException

ClassInfo

Finder

RuntimeException

PreViolation

PostViolation

InvViolation

MemAlloc

Exception

LangSpecific

Exception

DFinder

DLL

Loader

Serializable

Deserializer

Serializer

IOException

sidl

sidl.io

Key:

Interface

Class

Interface

Inheritance

Implementation

Inheritance

NotImplemented

Exception

ClassInfoI

67

Heirarchy of Objects in
sidl.rmi package

BaseInterface

BaseClass

ServerInfo

Network

Exception

InstanceHandle

TimeOut

Exception

Unexpected

CloseException

ObjectDoesNot

ExistException

MalformedURL

Exception

Protocol

Exception

ConnectRegistry

ServerRegistry

ProtocolFactory

Instance

Registry

Deserializer

Serializer

IOException

sidl

sidl.io

Key: Interface Class Interface

Inheritance
Implementation

Inheritance

Ticket

sidl.rmi

TicketBook

NoServer

Exception

Invocation

Response

Call

Return

BindException

Connect

Exception

NoRouteToHost

Exception

UnknownHost

Exception

Most of these are
specific to
implementing a
wire-protocol in
Babel RMI
TCP/IP – built-in

PSP – LLNL

IIOP – Tech-X

SOAP – SUNY
Binghamton

RMIX – GA Tech

others…

68

Scientific Interface
Definition Language

The Smallest, non-degenerate SIDL file

Basic SIDL types

SIDL Object Model

Runtime Library of “built-in” objects

Finer details

69

SIDL Supports Comments and
Doc-Comments

/*
* 1. This is a multi-line comment
*/

// 2. A single line comment

/* 3. Comment is less than a line */

/** 4. A documentation comment */

/**
* 5. Documentation comments can span
* multiple lines without the beginning
* space-asterisk-space combinations
* getting in the way.
*/

Doc-Comments

will appear in

generated code.

70

SIDL has a unique approach to
Method Overloading

 Let the author define the hash for the method name.

 The text in the brackets is a “uniquifying suffix”

 Programming languages with support for overloading (F90,
Java and C++) use the “overloaded name”: insert

 Programming languages without overloading support (F77, C,
and Python) use the “unique full-name”: insertFloat or
insertInt

// …

class Set {

void insert[Float](in float f);

void insert[Int](in int i);

}

71

SIDL supports Eiffel-like
Design-by-Contract

 Tamara Dahlgren‟s Ph.D. Dissertation
Performance-Driven Interface Contract

Enforcement for Scientific Components
[CBSE ‟07]

// … sidl fragment

double norm(in array<double> u, in double tol)

require /* preconditions */

not_null : u != null ;

non_negative_tol : tol >= 0.0 ;

ensure /* postconditions */

non_negative_result : result >= 0.0 ;

nearEqual(result, 0.0, tol) iff isZero(u, tol);

72

SIDL Module Review

 SIDL is a declarative language, not a

programming language

 SIDL is used to define/extend arrays, enums,

structs and especially… objects

 SIDL is an Object-Oriented type system

 SIDL has a runtime library of built-in types in

sidl, sidl.io, and sidl.rmi packages

 This module is far from exhaustive:

SIDL has 55 reserved words

V. Babel Tool

75

Outline

 Introduction to the Babel Developers

Kit

How to download, build & install it

How to run Babel

What Babel produces

76

The Babel developers kit has
three main parts

The Babel tool (implemented in Java) to

translate interface definition language

into useable glue code

The Babel runtime library that provides

basic services (implemented in C)

Babel examples and an extensive suite

of multi-language tests

77

Babel supports common HPC
languages

C

C++

FORTRAN 77

Fortran 90/95

Python 2.x

Java

Fortran 2003 (future)

78

Actual release

number is

babel-1.2.0

Getting/installing Babel

 http://www.llnl.gov/CASC/components/software.html

 In an ideal world…
% tar --file babel-1.1.2.tar.gz --ungzip --extract
% cd babel-1.1.2
% ./configure ; make
where make is GNU make

 Babel configure script may disable some
languages if it can‟t find required features.
F90 needs CHASM (CHASMPREFIX env. variable)

Python needs NumPy or Numeric Python

Java needs approved Java Developer Kit (JDK)

 Configure has lots of settings. See
configure --help

79

Checking a Babel build

 It‟s good idea to check your Babel
% make check
If everything goes right, you should see
something like:

621. wrapper/runSIDL/runSIDL.sh[wrapper.User.XML->XML] PASS

622. wrapper/runSIDL/runSIDL.sh[wrapper.XML->XML] PASS

Tue, 04 Sep 2007 at 23:29:09

by unknown@tux163.llnl.gov

Total Passed Xfailed Failed Broken

Tests 622 616 6 0 0

Parts 19074 19062 12 0

Broken|Failed|Warning Exit Tot %Fail List of Failed

80

How to run Babel

 In a shell, try typing

% babel --version

Babel version 1.1.2

%

 If that works, babel is already in your

path; otherwise, ask your system

administrator or person who installed

Babel where it is

81

Babel’s command line
interface

Babel is invoked from a shell command

line

The general pattern is
% babel <options> <SIDL files|type names>

For example,

% babel --client=c matrix.sidl

This generates a C api for the types

found in matrix.sidl

82

Babel has three primary
capabilities

% babel --client=<lang>

Generate client-side glue code for <lang>

% babel --server=<lang>

Generate server-side glue code and

implementation file

% babel --text=(sidl|xml)

Generate a textual description of type

information

83

Babel has three ancillary
functions

% babel --parse-check

Check the syntax of a SIDL file

% babel --version

Show the version of Babel

% babel --help

Show brief descriptions of command line

options

84

% babel --client=<lang>
generates code for using types

<lang> can be c, c++, f77, f90,

python or java

This generates source code to

allow you to use one or more

types from C, C++, F77, F90,

Python or Java.

This code must be compiled

before you can use the API.

85

% babel --server=<lang>
generates code for implementing

<lang> can be c, c++, f77, f90, python or

java

Generates code for you to implement

one or more types in <lang>

 Insert your implementation code in

something_Impl.<lang specific

extension>

89

Server=Client+Server

--server generates everything that

--client generates plus the glue code to

link the IOR to your implementation

code

90

Options controlling how Babel
generates directories

--output-directory

Change the root directory where Babel

will generate its files

--generate-subdirs

Build directory tree instead of putting

everything in current directory

--hide-glue

Put everything except implementation

code in a glue subdirectory (CCA)

95

Building/Using an XML
repository

% mkdir repo

% babel --text=xml --output-directory=repo \

yourtypes.sidl mytypes.sidl theirs.sidl

Now you can refer to it

% babel --repository-path=repo \

--client=python MyClassDef

Babel fetches MyClassDef and types it

references from XML repository

IV. Using Babel Objects

97

How to use Babel objects that
are already implemented

 Intrinsic capabilities and methods

Basic reference counting

Conway's game of life example (C++, C,
F90 & Python)

Dynamic loading example (Python &
F77)

Borrowed array example (C & C++)

rarray examples (C, F77, and F90)

Overview of basic rules

98

Babel’s type system provides
intrinsic capabilities

Classes have constructors/destructors

Concrete classes have a _create
method

Up and down casting object/interface
references

Null object reference

Null reference tests

No explicit destroy method (destruction
managed by reference counting)

99

Sources of methods

Explicitly declared in SIDL file

 Inherited from parent class or

interfaces

 Intrinsic builtins

_cast change the type of an object

_create make a new instance

RMI: _createRemote, _getURL, _isRemote,

& _exec

Binding specific: _getior() (C++)

100

How to use Babel objects that
are already implemented

 Intrinsic capabilities and methods

Basic reference counting

Conway's game of life example (C++, C,
F90 & Python)

Dynamic loading example (Python &
F77)

Borrowed array example (C & C++)

rarray examples (C, F77, and F90)

Overview of basic rules

101

Creating a Babel object

 Creation is

tailored to each

language

package a version 1.0 {

class B {}

}

a.sidl

Language Example

C a_B a =

a_B__create(&ex);

C++ ::a::B a =

::a::B::_create();

F77 Integer*8 a

call a_B__create_f(a,ex)

F90 using a_B

type(a_B_t) :: a

call new(a, ex)

Java a.B a = new a.B();

Python import a.B

a = a.B.B()

102

Babel Object Lifecycle

deleteRef deleteRef

addRef

Object
count=1

Object
count=2

addRef

Object
count=3

…


103

Reference counting
responsibilities vary by language

For C, FORTRAN 77, and Fortran 90

Reference counting is your responsibility

Requires explicit addRef/deleteRef calls

Everyone makes mistakes when starting

out

For C++, Java & Python

Reference counting is transparent

Avoid explicit calls to addRef/deleteRef

104

Owning a reference

Your reference is part of the current

count

Responsibilities that come with

ownership

delete the reference when your done with

it or

transfer the reference to another piece of

code that will take ownership

105

Parameter passing modes and
reference counting

 in parameters are borrowed by the

implementation

Returned references (i.e., return value

and out parameters) are owned by the

caller

For an inout parameter, implementation

may delete your reference and give you

a different one or Null.

107

How to use Babel objects that
are already implemented

 Intrinsic capabilities and methods

Basic reference counting

Conway‟s game of life example (C++, C,
F90 & Python)

Dynamic loading example (Python &
F77)

Borrowed array example (C & C++)

rarray examples (C, F77, and F90)

Overview of basic rules

109

The conway.BoundsException &
conway.Environment interfaces

package conway version 2.0 {
interface BoundsException extends sidl.BaseException {}

interface Environment {
/** Initialize a grid to a certain height & width */
void init(in int height, in int width);

/** Return true iff a cell is alive */
bool isAlive(in int x, in int y) throws
BoundsException ;

/** Return the number of living adjacent cells */
int nNeighbors(in int x, in int y) throws
BoundsException ;

/** Return the current height & width */
void getBounds(out int height, out int width);

/** Set an entire grid of data */
void setGrid(in array<int,2,column-major> grid);

}

110

Example using
conway.Environment from C++

// include C++ stub header

#include "conway_Environment.hh"

using sidl;

using ::conway::Environment;

SIDL packages translate into C++

namespaces. Use "using" to avoid

using fully qualified names.

111

Example: calculating a time step
in C++

int32_t height, width, x, y;

try {

env.getBounds(height, width); 

array<int32_t> grid = array<int32_t>::create2dCol(height,
width); 

for(x = 0, x < width; ++x) {

for(y = 0; y < height; ++y) {

int32_t n = env.nNeighbors(x, y); 

if ((n == 2 && env.isAlive(x, y)) || n == 3) 

grid.set(y, x, 1); 

else

grid.set(y, x, 0); 

}

}

env.setGrid(grid); 

}

catch (BoundsException &be) { /* do something */ }

catch (RuntimeException &re) { /* Babel internal exception */ } 

113

Example: calculating a time step
in C - part 1

#include "conway_Environment.h“

#include "sidl_Exception.h"

/* lines skipped */

int32_t height, width, x, y, n;

sidl_bool isAlive;

struct sidl_int__array *grid = NULL; 

sidl_BaseInterface ex = NULL; 

conway_Environment_getBounds(env, &height, &width, &ex); 

SIDL_CHECK(ex); /* Check for a runtime exception */ 

grid = sidl_int__array_create2dCol(height, width); 

115

Example: calculating a time step
in C - part 2

for(x = 0, x < width; ++x) {

for(y = 0; y < height; ++y) {

n = conway_Environment_nNeighbors(env, x, y, &ex); 

SIDL_CHECK(ex); /* check for exception */ 

switch(n) {

case 2:

isAlive = conway_Environment_isAlive(env, x, y,

&ex); 

SIDL_CHECK(ex); /* check for exception */

sidl_int__array_set2(grid, y, x, isAlive ? 1 : 0); 

break;

case 3:

sidl_int__array_set2(grid, y, x, 1); break;

default:

sidl_int__array_set2(grid, y, x, 0); break;

}

}

}

117

Example: calculating a time step
in C - part 3

conway_Environment_setGrid(env, grid, &ex); 

SIDL_CHECK(ex); /* check for a runtime exception */

EXIT:; 

/* cleanup extra array reference */

if (grid) sidl_int__array_deleteRef(grid); 

/* exception handling here */

119

Example: calculating a time step
in F90 - part 1

#include "sidl_BaseInterface_fAbbrev.h" 

#include "conway_Environment_fAbbrev.h"

#include "conway_BoundsException_fAbbrev.h"

! skipping to later in the file

use sidl_BaseInterface 

use conway_Environment

use conway_BoundsException

implicit none

type(sidl_int_2d) :: grid 

type(sidl_BaseInterface_t)::ex, ex2 

logical :: alive

integer(selected_int_kind(9)) :: x, y, height, width, n 

call set_null(ex) 

call getBounds(env, height, width, ex) 

if (not_null(ex)) goto 100 

call create2dCol(height, width, grid) 

121

Example: calculating a time step
in F90 - part 2

do x = 0, width - 1

do y = 0, height - 1

grid%d_data(y,x) = 0 ! assume that it's dead 

call nNeighbors(env, x, y, n, ex) 

if (not_null(ex)) go to 100 

if (n .eq. 2) then

call isAlive(env, x, y, alive, ex) 

if (not_null(ex)) go to 100

if (alive) then

grid%d_data(y,x) = 1 ! alive 

endif

else

if (n .eq. 3) then

grid%d_data(y,x) = 1 ! alive

endif

endif

enddo

enddo

123

Example: calculating a time step
in F90 - part 3

call deleteRef(grid, ex) ! return unneeded reference 

if (not_null(ex)) go to 100

return

100 call deleteRef(grid, ex2) 

print *, 'BoundException or RuntimeException'

125

Example: calculating a time step
in Python

import Numeric 

import conway.Environment 

import conway.BoundsException

try:

(height, width) = env.getBounds() 

grid = Numeric.zeros((height, width), Numeric.Int32)

for x in xrange(width):

for y in xrange(height):

n = env.nNeighbors(x, y) 

if (n == 2 and env.isAlive(x, y)) or n == 3:

grid[y][x] = 1

env.setGrid(grid)

except conway.BoundsException, be: 

pass # exception handling code

except sidl.RuntimeException, re: 

pass # runtime exception handling

127

How to use Babel objects that
are already implemented

 Intrinsic capabilities and methods

Basic reference counting

Conway's game of life example (C++, C,
F90 & Python)

Dynamic loading example (Python &
F77)

Borrowed array example (C & C++)

rarray examples (C, F77, and F90)

Overview of basic rules

128

Dynamic class loading example:
SIDL

// selected excerpts from sidl.sidl

package sidl version 0.9.0 {

enum Scope { LOCAL, GLOBAL, SCLSCOPE };

enum Resolve { LAZY, NOW, SCLRESOLVE };

class DLL {

BaseClass createClass(in string sidl_name);

}

class Loader {

static DLL findLibrary(in string sidl_name,
in string target,
in Scope lScope,
in Resolve lResolve);

}

}

129

SIDL Class Loader (.scl) Files
“sidl.Class”  libsomething.so

 Important Environment Variables
$SIDL_DLL_PATH – Directories to search for .scl

files

$SIDL_DEBUG_DLOPEN – (optional) if defined,
sidl.Loader displays debugging information to
stdout

<scl>

<library uri=”/usr/local/lib/libsidl.la” scope=”global”
resolution=”now” >

<class name=”sidl.BaseClass” desc=”ior/impl”/>

<class name=”sidl.DLL” desc=”ior/impl”/>

</library>

</scl>

130

Dynamic class loading example
in Python

from sidl.Scope import * 

from sidl.Resolve import *

from sidl.Loader import findLibrary

import mouse.Trap # interface 

dll = findLibrary("better.Trap", "ior/impl",

SCLSCOPE, SCLRESOLVE) 

if (dll):

obj = dll.createClass("better.Trap") 

if (obj):

trap = mouse.Trap.Trap(obj) # cast 

if (trap): # now we have a trap

trap.catchMouse()

132

Dynamic loading example in
Fortran 77

integer*8 dll, obj, trap, ex 

include 'sidl_Resolve.inc' 

include 'sidl_Scope.inc'

call sidl_Loader_findLibrary_f('better.Trap', 'impl/ior', SCLSCOPE,
SCLRESOLVE, dll, ex) 

if (ex .ne. 0) go to 100

if (dll .ne 0) then 

call sidl_DLL_createClass_f('better.Trap', obj, ex)

if (ex .ne. 0) go to 100

if (obj .ne. 0) then

call mouse_Trap__cast_f(obj, trap, ex) 

if (ex .ne. 0) go to 100

if (trap .ne. 0) then

call mouse_Trap_catchMouse_f(trap, ex)

if (ex .ne. 0) go to 100

endif

call sidl_BaseClass_deleteRef_f(obj, ex) 

endif

call sidl_DLL_deleteRef_f(dll, ex)

endif

C exception handling block not shown

134

How to use Babel objects that
are already implemented

 Intrinsic capabilities and methods

Basic reference counting

Conway's game of life example (C++, C,
F90 & Python)

Dynamic loading example (Python &
F77)

Borrowed array example (C & C++)

rarray examples (C, F77, and F90)

Overview of basic rules

135

Normal & borrowed arrays

Array

metadata
Array data

In a borrowed array, the data is allocated by your program,

and Babel will never free it.

Array

metadata
Array data

In a normal SIDL array, both parts are allocated on the heap,

and Babel frees both parts when the reference count goes

to zero.

136

Creating a borrowed array in C

double A[100][100], x[100], b[100]; 

const int32_t low[2] = { 0, 0 }; 

const int32_t up[2] = { 99, 99 };

const int32_t stride[2] = { 100, 1 }, vstride[1] = { 1 };

struct sidl_double__array 

*sA = sidl_double__array_borrow(A, 2, low, up, stride),

*sx = sidl_double__array_borrow(x, 1, low, up, vstride),

*sb = sidl_double__array_borrow(b, 1, low, up, vstride),

*extrax = sx;

sidl_double__array_addRef(extrax); 

loadProblem(A, b); /* initialize A & b */

matrix.Solver.solve(/*in*/ sA, /*inout*/ &sx, /*in*/ sb, &ex);

if (sx != extrax) sidl_double__array_copy(sx, extrax); 

sidl_double__array_deleteRef(sx);

sidl_double__array_deleteRef(extrax);

sidl_double__array_deleteRef(sA);

sidl_double__array_deleteRef(sb);

138

Creating a borrowed array in
C++

// assuming using sidl

double A[100][100], x[100], b[100]; 

const int32_t low[2] = { 0, 0 }; 

const int32_t up[2] = { 99, 99 };

const int32_t stride[2] = { 100, 1 },
vstride[1] = { 1 };

array<double> sA, sx, sb, extrax; 

loadProblem(A, b); // initialize A & b

sA.borrow(A, 2, low, up, stride); 

sx.borrow(x, 1, low, up, vstride); 

sb.borrow(b, 1, low, up, vstride); 

extrax = sx; 

matrix.Solver.solve(/*in*/ sA, /*inout*/ sx, /*in*/
sb);

if (sx != extrax) extrax.copy(sx); 

140

Creating a persistent reference
to an array

 Use smartCopy when creating a persistent reference
to an unknown array to avoid a reference to a
borrowed array because the array data may
unexpectedly disappear

struct sidl_double__array *g_array;

void cache(struct sidl_double__array *src)

{

if (g_array)

sidl_double__array_deleteRef(g_array);

g_array =

sidl_double__array_smartCopy(src);

}

141

How to use Babel objects that
are already implemented

 Intrinsic capabilities and methods

Basic reference counting

Conway's game of life example (C++, C,
F90 & Python)

Dynamic loading example (Python &
F77)

Borrowed array example (C & C++)

rarray examples (C, F77, and F90)

Overview of basic rules

142

rarray’s provide more natural
method signatures

rarray‟s were design to provide more

natural looking array bindings for C,

FORTRAN 77, and Fortran 90/95

Only for in and inout passing modes

No resizing or replacing the array

Multi-dimensional arrays must be in

column-major (FORTRAN 77) order

143

Example rarray declarations

static

void solve(in rarray<double, 2> A(m,n),

inout rarray<double> x(n),

in rarray<double> b(n),

in int m,

in int n);

void ex(in rarray<double> x(n+1),

inout rarray<double> y(n-1),

in int n); rarray extents

can be simple

expressions

144

C API for rarrays – part 1

Client- and server-side bindings
void

a_B_solve(

/* in rarray[m,n] */ double* A,

/* inout rarray[n] */ double* x,

/* in rarray[m] */ double* b,

/* in */ int32_t m, /* in */ int32_t n,

/* out */ sidl_BaseInterface *_ex);

void

impl_a_B_solve(

/* in rarray[m,n] */ double* A,

/* inout rarray[n] */ double* x,

/* in rarray[m] */ double* b,

/* in */ int32_t m, /* in */ int32_t n,

/* out */ sidl_BaseInterface *_ex)

145

C API for rarrays – part 2

Client- and server-side bindings
void

impl_a_B_ex(

/* in */ a_B self,

/* in rarray[n+1] */ double* x,

/* inout rarray[n-1] */ double* y,

/* in */ int32_t n,

/* out */ sidl_BaseInterface *_ex)

void

impl_a_B_ex(

/* in */ a_B self,

/* in rarray[n+1] */ double* x,

/* inout rarray[n-1] */ double* y,

/* in */ int32_t n,

/* out */ sidl_BaseInterface *_ex)

146

FORTRAN 77 API for rarray’s
part 1

Client-side binding
subroutine a_B_solve_f(A, x, b, m, n, ex)

integer*4 m, n

double precision A(0:m-1, 0:n-1), x(0:n-1), b(0:m-1)

integer*8 ex

Sever-side binding
subroutine a_B_solve_fi(A, x, b, m, n, ex)

integer*4 m, n

double precision A(0:m-1, 0:n-1), x(0:n-1), b(0:m-1)

integer*8 ex

147

FORTRAN 77 API for rarray’s
part 2

Client-side binding
subroutine a_B_ex_f(self, x, y, n, ex)

integer*8 self, ex

integer*4 n

double precision x(0:n+1-1), y(0:n-1-1)

Sever-side binding
subroutine a_B_ex_fi(self, x, y, n, ex)

integer*8 self, ex

integer*4 n

double precision x(0:n+1-1), y(0:n-1-1)

148

Fortran 90 rarray client-side
bindings – Part 1

 F90 overloading allows you to pass either all SIDL arrays or all
native F90 arrays

recursive subroutine solve_1s(A, x, b, exception)

implicit none

type(sidl_double_2d) , intent(in) :: A

type(sidl_double_1d) , intent(inout) :: x

type(sidl_double_1d) , intent(in) :: b

type(sidl_BaseInterface_t) , intent(out) :: exception

recursive subroutine solve_2s(A, x, b, exception)

implicit none

real (kind=sidl_double) , intent(in), dimension(:, :) :: A

real (kind=sidl_double) , intent(inout), dimension(:) :: x

real (kind=sidl_double) , intent(in), dimension(:) :: b

type(sidl_BaseInterface_t) , intent(out) :: exception

149

Fortran 90 rarray client-side
bindings – Part 2

 F90 overloading allows you to pass either all SIDL arrays or all
native F90 arrays

recursive subroutine ex_1s(self, x, y, exception)

implicit none

type(a_B_t) , intent(in) :: self

type(sidl_double_1d) , intent(in) :: x

type(sidl_double_1d) , intent(inout) :: y

type(sidl_BaseInterface_t) , intent(out) :: exception

recursive subroutine ex_2s(self, x, y, exception)

implicit none

type(a_B_t) , intent(in) :: self

real (kind=sidl_double) , intent(in), dimension(:) :: x

real (kind=sidl_double) , intent(inout), dimension(:) :: y

type(sidl_BaseInterface_t) , intent(out) :: exception

150

Fortran 90 rarray server-side
bindings

recursive subroutine a_B_solve_mi(A, x, b, m, n,
exception)

integer (kind=sidl_int) :: m, n

type(sidl_BaseInterface_t) :: exception

real (kind=sidl_double), dimension(0:m-1, 0:n-1) :: A

real (kind=sidl_double), dimension(0:n-1) :: x

real (kind=sidl_double), dimension(0:m-1) :: b

recursive subroutine a_B_ex_mi(self, x, y, n, exception)

type(a_B_t) :: self

integer (kind=sidl_int) :: n

type(sidl_BaseInterface_t) :: exception

real (kind=sidl_double), dimension(0:n+1-1) :: x

real (kind=sidl_double), dimension(0:n-1-1) :: y

153

How to use Babel objects that
are already implemented

 Intrinsic capabilities and methods

 Basic reference counting

 Conway's game of life example (C++, C, F90

& Python)

 Dynamic loading example (Python & F77)

 Borrowed array example (C & C++)

 rarray examples (C, F77, and F90)

 Access without function calls

Overview of basic rules

154

Long and short names

Long name includes packages

sidl.BaseClass.addRef

Short name is just the last part

addRef

Often Babel replaces „.‟ with „_‟ to

create a globally unique name

sidl_BaseClass_addRef

155

Overloading

Methods can have overloading

extensions, for example

double get[Part](in int partNo);

All languages except C++ and Java

would use “getPart” as the method

name

156

Fortran 90 name length

Fortran 90 names are limited to 31

characters

#include “sidl_BaseClass_fAbbrev.h”

name mangling for sidl.BaseClass

Preprocess your F90 with a C

preprocessor (we use GCC everywhere)

158

Special argument handling –
C

 in and inout argument should be

initialized

object/interface reference should be

initialized to NULL or a valid object

 inout and out parameters need pass by

reference

pass address of a argument using &

159

Special argument handling -
Python

 inout and out parameters are contained

in the returned tuple

Example:

int lookup(in int col, out int row)

(result, row) = lookup(current)

You can use positional or keyword args

in Python

(result, row) = lookup(col = current)

160

Extra arguments

self object parameter added to object

methods for C, F77 & F90

C adds “, out sidl.BaseInterface excpt)”

to all object methods because all object

methods can throw exceptions

F77 & F90 add return value and

exception as extra arguments (in that

order)

161

Method naming for supported
languages

C++ Short method name

Java Short method name

C Long method name with _

Fortran 77 Long method name with _ and _f

appended

Fortran 90 Short method name

Python Short or long depending on import

162

Casting objects

 Failed casts

produce a

Null object

 Remember

cast doesn‟t

increment

the

reference

count!

C++ newt=oldt; // upcast

newt=::sidl::babel_cast<newt>(oldt)

// safe downcast

C new=x_y_z__cast(oldt);

Java newt=(x.y.z)

x.y.z._cast(oldt);

F77 call x_y_z__cast_f(oldt,

newt)

F90 call cast(oldt, newt)

Python newt = x.y.z.z(oldt)

163

Checking/initializing Null
objects

C++: if (obj._not_nil())
// born Nil

C: if (obj)
obj = NULL; /* init to Null object */

Fortran 77: if (obj .ne. 0)
obj = 0

Fortran 90: if (is_null(obj))
call set_null(obj)

Python: if (obj):
obj = None

V. Building Babel Libraries

166

Scope of this Module

 Example Implementations
C++

C

Fortran 90

Python

 Example of Wrapping Legacy Codes in Babel
MPI_send

 Babel Build Tools & Techniques

 Packaging and Distribution

167

This Module for Implementers
of a Babelized Library

1. Write SIDL File

2. `babel --server=C++ greetings.sidl`

3. Add implementation details

4. Compile & Link into Library/DLL

SIDL

interface

definition

Babel

Compiler C++ Skels

C++ Impls

IORs

C++ Stubs

libgreetings.so

Section 2: SIDL Language
Section 3:
Babel Tool

This Section

168

greetings.sidl: A Sample
SIDL File

package greetings version 1.0 {

interface Hello {

void setName(in string name);

string sayIt ();

}

class English implements-all Hello { }

}

• Picked a very small example to show the implementations.
• Next several slides will show implementations of this
interface in C, C++, Fortran 90 and Python







170

F90/Babel “Hello World”
Driver

program helloclient

use greetings_English

implicit none

type(greetings_English_t) :: obj

type(sidl_BaseInterface_t) :: ex

character (len=80) :: msg

character (len=20) :: name

name=’World’

call new(obj, ex)

call setName(obj, name, ex)

call sayIt(obj, msg, ex)

call deleteRef(obj, ex)

print *, msg

end program helloclient

These subroutines

come directly

from the SIDL

Some other subroutines

are “built in” to every

SIDL class/interface

171

A C++ Implementation

::std::string

greetings::English_impl::sayIt_impl()

{

// DO-NOT-DELETE splicer.begin(greetings.English.sayIt)

::std::string msg(”Hello ”);

return msg + d_name + ”!”;

// DO-NOT-DELETE splicer.end(greetings.English.sayIt)

}

namespace greetings {
class English_impl {

protected:
// DO-NOT-DELETE splicer.begin(greetings.English._implementation)
::std::string d_name;
// DO-NOT-DELETE splicer.end(greetings.English._implementation)

greetings_English_Impl.hxx

greetings_English_Impl.cxx















174

A C Implementation (1/4):
The private data

struct greetings_English__data {
/* DO-NOT-DELETE splicer.begin(greetings.English._data) */
char * d_name;
/* DO-NOT-DELETE splicer.end(greetings.English._data) */

}

greetings_English_Impl.h







176

A C Implementation (2/4):
Allocate data in ctor

void
impl_greetings_English__ctor(greetings_English self,

sidl_BaseInterface *_ex)
{

*_ex = 0;
/* DO-NOT-DELETE splicer.begin(greetings.English._ctor) */
struct greetings_English__data *dptr =

malloc(sizeof(struct greetings_English__data));
if (dptr) {

dptr->d_name = NULL;
}
greetings_English__set_data(self, dptr);
/* DO-NOT-DELETE splicer.end(greetings.English._ctor) */

}

greetings_English_Impl.c













177

A C Implementation (3/4):
Deallocate Data in dtor

void
impl_greetings_English__dtor(greetings_English self,

sidl_BaseInterface *_ex)
{

*_ex = 0;
/* DO-NOT-DELETE splicer.begin(greetings.English._dtor) */
struct greetings_English__data *dptr =

greetings_English__get_data(self);
if (dptr) {
if (dptr->d_name != NULL) {

free((void *) dptr->d_name);
}
memset(dptr, 0, sizeof(struct greetings_English__data));
free((void *) dptr);

}
/* DO-NOT-DELETE splicer.end(greetings.English._dtor) */

}

greetings_English_Impl.c



179

A C Implementation (4/4):
Implement the Method

char *

impl_greetings_English_sayIt(greetings_English self,

sidl_BaseInterface *_ex)

{ *_ex = 0;

/* DO-NOT-DELETE splicer.begin(greetings.English.sayIt) */

struct greetings_English__data dptr =

greetings_English__get_data(self);

char[1024] buffer = ”Hello ”;

if (dptr->d_name) {

strncat(buffer, dptr->dname, 1017);

strncat(buffer, ”!”, 1017 – strlen(dptr->d_name));

}

return sidl_String_strdup(buffer);

/* DO-NOT-DELETE splicer.end(greetings.English.sayIt) */

}

greetings_English_Impl.c







181

Fortran 90 Impl (1/4):
Add state to *Mod.F90

#include “greetings_English_fAbbrev.h”
module greetings_English_impl

type greetings_English_private
sequence
! DO-NOT-DELETE splicer.begin(greetings.English.private_data)

character (len=1024) :: d_name
! DO-NOT-DELETE splicer.end(greetings.English.private_data)

end type greetings_English_private

type greetings_English_wrap
sequence
type(greetings_English_Private), pointer :: d_private_data

end type greetings_English_wrap

end module greetings_English_impl

greetings_English_Mod.F90













183

Fortran 90 Impl (2/4):
Implement subroutines

recursive subroutine greetings_English_sayIt_mi(self, retval &
exception)
use sidl_BaseInterface
use greetings_English
use greetings_English_impl
! DO-NOT-DELETE splicer.begin(greetings.English.sayIt.use)
! DO-NOT-DELETE splicer.end(greetings.English.sayIt.use)
implicit none
type(greetings_English_t) :: self ! in
character (len=*) :: retval ! out
type(sidl_BaseInterface_t) :: exception ! out

! DO-NOT-DELETE splicer.begin(greetings.English.sayIt)
type(greetings_English_wrap) :: dp
call greetings_English__get_data_m(self, dp)
retval = ’Hello ’ // dp%d_private_data%d_name // ’!’
! DO-NOT-DELETE splicer.end(greetings.English.sayIt)

end subroutine greetings_World_sayIt_mi

greetings_English_Impl.F90











184

Fortran 90 Impl (3/4):
Allocate private_data in ctor

recursive subroutine greetings_English__ctor_mi(self, exception)
use sidl_BaseInterface
use greetings_English
use greetings_English_impl
! DO-NOT-DELETE splicer.begin(greetings.English._ctor.use)
! DO-NOT-DELETE splicer.end(greetings.English._ctor.use)
implicit none
type(greetings_English_t) :: self ! in
type(sidl_BaseInterface_t) :: exception ! out

! DO-NOT-DELETE splicer.begin(greetings.English._ctor)
type(greetings_English_wrap) :: dp
allocate(dp%d_private_data)
dp%d_private_data%d_name = ’’
call greetings_English__set_data_m(self, dp)
! DO-NOT-DELETE splicer.end(greetings.English._ctor)

end subroutine greetings_English__ctor_mi

greetings_English_Impl.F90



185

Fortran 90 Impl (4/4):
Release private_data in dtor

recursive subroutine greetings_English__dtor_mi(self, exception)
use sidl_BaseInterface
use greetings_English
use greetings_English_impl
! DO-NOT-DELETE splicer.begin(greetings.English._dtor.use)
! DO-NOT-DELETE splicer.end(greetings.English._dtor.use)
implicit none
type(greetings_English_t) :: self ! in
type(sidl_BaseInterface_t) :: exception ! out

! DO-NOT-DELETE splicer.begin(greetings.English._dtor)
type(greetings_English_wrap) :: dp
call greetings_English__get_data_m(self, dp)
deallocate(dp%d_private_data)
! DO-NOT-DELETE splicer.end(greetings.English._dtor)

end subroutine greetings_English__ctor_mi

greetings_English_Impl.F90



188

A Python Implementation
class English:

def __init__(self, IORself=None):
if (IORself == None):

#handle a rare case
else:

self.__IORself = IORself
DO-NOT-DELETE splicer.begin(__init__)
self.d_name = ’’
DO-NOT-DELETE splicer.end(__init__)

def sayIt(self):
DO-NOT-DELETE splicer.begin(sayIt)
return ’Hello ’ + self.d_name + ’!’
DO-NOT-DELETE splicer.end(sayIt)

def setName(self, name):
DO-NOT-DELETE splicer.begin(sayIt)
self.d_name = name
DO-NOT-DELETE splicer.end(sayIt)

greetings/English_Impl.py











190

Additional Splicer Blocks

Generic splicer blocks usually appear
at the beginning and end of an IMPL file
e.g. _include and _misc

_ctor2 (aka “Back door constructor”)

Builds temporary Babel wrappers around
existing instances

_load
Guaranteed to run exactly once and before

any other splicer block for that type

Useful for initializing singletons

191

Applying Babel to
Legacy Code

1. Write your SIDL interface

2. Generate server side in your native language

3. Edit Implementation (Impls) to dispatch to your code

(Do NOT modify the legacy library itself!)

4. Compile & Link into Library/DLL

mycode.sidl
Babel

Compiler Skels

Impls

IORs

Stubs

libmycode.so

legacy_library.so

192

Example of Babelized Legacy
Code: MPI

API choices made in this example:

 Operations are methods on MPI Comm‟s

 Overloaded methods based on scalar type

 Use Babel arrays instead of buffer and count
 “row-major” (or “column-major”) also guarantees

non-strided, even for 1-D arrays.

 Added rarray for comparison

package mpi version 2.0 {
class Comm {

int send[Int](in array<int,1,row-major> data,
in int dest, in int tag);

int send[IntR](in rarray<int,1> data(n),
in int n,
in int dest, in int tag);

...
}

}
mpi.sidl

193

Example of Babelized Legacy
Code (MPI): The *Impl.h

 MPI is a C standard, so implement the Babel
wrappers in C.

 New Communication Objects have state
 For C state is kept in a *_data struct.

 Remember to observe splicer blocks

/* DO-NOT-DELETE splicer.begin(mpi.Comm._includes) */
#include “mpi.h”
/* DO-NOT-DELETE splicer.end(mpi.Comm._includes) */
...
struct mpi_Comm__data {

/* DO-NOT-DELETE splicer.begin(mpi.Comm._data) */
MPI_Comm com;
/* DO-NOT-DELETE splicer.end(mpi.Comm._data) */

};

mpi_comm_Impl.h

194

A Babelized MPI Using
Packed Arrays

 CAUTION: Assumes MPI_INT
corresponds to 32-bit integers!

 Since array is 1-D and unstrided, use address of first
element as buffer

int32_t
impl_mpi_Comm_sendInt(mpi_Comm self,

struct sidl_int__array* data,
int32_t dest, int32_t tag,
sidl_BaseInterface *_ex)

{ *_ex = 0;
/* DO-NOT-DELETE splicer.begin(mpi.Comm.sendInt) */
struct mpi_Comm__data *dptr = mpi_Comm__get_data(self);
void * buff = (void*) sidl_int__array_first(data);
int count = sidl_int__array_length(data, 0);
return mpi_send(buff, count, MPI_INT, dest, tag, dptr->comm);
/* DO-NOT-DELETE splicer.end(mpi.Comm.sendInt) */

}

mpi_comm_Impl.c

195

A Babelized MPI using Raw
Arrays

 CAUTION: Assumes MPI_INT

corresponds to 32-bit integers!

 Raw arrays fit very well with

legacy C libraries.

int32_t
impl_mpi_Comm_sendIntR(mpi_Comm self, int32_t * data,

int32_t n, int32_t dest, int32_t tag
sidl_BaseInterface *_ex)

{ *_ex = 0;
/* DO-NOT-DELETE splicer.begin(mpi.Comm.sendInt) */
struct mpi_Comm__data *dptr = mpi_Comm__get_data(self);
return mpi_send((void*) data, count, MPI_INT, dest,

tag, dptr->comm);
/* DO-NOT-DELETE splicer.end(mpi.Comm.sendInt) */

}

mpi_comm_Impl.c

196

What’s the Hardest Part
of this Process?

 “The Build”

Properly compiling and linking the libraries

especially dynamically loadable .so files.

SIDL

interface

definition

Babel

Compiler C Skels

C Impls

IORs

C Stubs

libfunction.so

197

Compile and Link Is Tricky
for Several Reasons

 Mixed language context is less forgiving
 extra diligence needed to resolve linker symbols

 After compilation, no guarantee that linker will be launched
with same language in mind.

 Poor tools to support and debug dynamic loaded
libraries

 Little agreement among UNIX vendors on how to
deal with three kinds of linkage

 Babel‟s own build gets things right, but users need
to reproduce this effect in every “Babelized” library

198

Configuration For 6+ Languages
On Any Unix Is A Challenge

Babel‟s Own Build Has…

>48K lines of configure script (x2)

>58 custom autoconf macros

>120 configuration settings exported
to users via babel-config

>193 #defines in babel_config.h

199

GNU Autotools Is Too Complex
to Impose on Babel Users

acinclude.m4

acconfig.h

aclocal

autoconf

library

aclocal.m4

autoheader

config.h.in

autoconf

configure

automake libtoolize

Makefile.am
automake

library

libtool

library

missing

ltconfig

ltmain.sh

install-sh

mkinstalldirs

config.guess

config.sub

Makefile.in

configure.ac

Developer

custom M4

macros

config.site

configure

Makefile.in

config.cache

config.status ltconfig
config.guess

config.sub

ltmain.sh

libtoolconfig.hstamp-h

Makefile

config.h.in

make libtool
misc.

compilers

source

code

libraries &

programs

mkinstalldirs

missing

install-sh

installed

software

Customer

cat
cmp

cpdiff
echo

egrep
expr

false

install-infogrep
ln

lsmkdir
mv

pwdrm
rmdir

sedsleep
sort

tar
test

touch
true

File

File Group

Program

Running Shell Script

Inputs and Outputs

Envokes

Key

Special Note

any shell

script

make

200

We Provide Multiple Tools To
Assist in Your Builds

 Specific Tools & Assists
babel.make files (generated by Babel itself)

babel-config script (query Babel‟s configuration)

babel-libtool script (helps build dynamic libraries)

babel-cc compiler front-end
(supercedes mpicc)

LLNL_PROG_BABEL M4 macro for customers
using autoconf

No “one size fits all” solution
Customer builds are highly specialized

Custom combinations of these tools are
broadly effective

201

Use babel-stamp to
workaround a make deficit

 Problem: Make assumes one action produces one file.

 Babel generates multiple source files from a single SIDL file

 Don‟t want make running the same Babel command multiple times

 Solution: The following trick using a proxy file and recursion

babel-stamp : $(SIDLFILES)
$(RM) –f babel-temp
touch babel-temp
$(BABEL) $(BABEL_ARGS) $(SIDLFILES)
$(MV) –f babel-temp babel-stamp

$(ALL_SRCS) $(ALL_HDRS) : babel-stamp
@if test –f $@; then \

touch $@; \
else \

$(RM) –f babel-stamp; \
$(MAKE) $(MAKEFLAGS) babel-stamp; \

fi

202

babel.make: A makefile
fragment Babel creates

 Problem: Names of Babel-generated source files to
compile determined by SIDL file and change often
Make is static and wants the filenames listed

 Solution:
 Each compiled language binding in Babel will generate a

babel.make file along with source code.

 Add “include babel.make” in your Makefile

 Variable names depend on language and whether you‟re
doing client or server

IMPLHDRS = Hello_World_Impl.h
IMPLSRCS = Hello_World_Impl.c
IORHDRS = Hello_IOR.h Hello_World_IOR.h
IORSRCS = Hello_World_IOR.c
SKELSRCS = Hello_World_Skel.c
STUBHDRS = Hello.h Hello_World.h
STUBSRCS = Hello_World_Stub.c

203

Use Macro Renaming and
Suffix Rules in Makefiles

We use these

techniques a lot in

our Makefiles

Remember to preprocess F90

IMPLOBJS = $(IMPLSRCS:.c=.o)

IOROBJS = $(IORSRCS:.c=.o)

SKELOBJS = $(SKELSRCS:.c=.o)

STUBOBJS = $(STUBSRCS:.c=.o)

.SUFFIXES:

.SUFFIXES: .c .o

.c.o:

$(CC) –c $< -o $@

.SUFFIXES: .F90 .o

.F90.o:

$(CPP) $(INCLUDES) -P -o $(@:.o=.f90) -x c $<

$(F90COMPILE) -c -o $@ $(@:.o=.f90)

rm -f $(@:.o=.f90)

204

Use “babel-config” to query
Babel’s configuration

% babel-config --jardir

/you/installed/it/here/jar

% babel-config --with-f90 && echo $?

0

% babel-config --libs-f77-L

-L /some/wierd/dir/lib -L/other/f77/lib

% babel-config --dump-vars=X_

X_PACKAGE=babel
X_VERSION=1.2.0

X_CONFIGPATH=/some/path

...

205

babel-libtool homogenizes
library linking flags

 Too arcane to go into detail here.

 It is a slightly modified version of GNU libtool
Needed more flexibility on AIX

We “install” the libtool script in Babel‟s
$bindir
Also not the GNU intended use, but useful

 Used by the babel-cc scripts following

206

babel-cc, babel-cxx, babel-f90,
and babel-f77 scripts

Modifies your compiler arguments and

adds Babel flags

Inspired by “mpicc” compiler front end

But very different in practice
% babel-cc --no-quiet –c test.c
babel-libtool --tag=CC --mode=compile gcc \

–I/path/to/babel/include test.c

% babel-cc --no-quiet-libtool –c test.c
gcc –c –I/path/to/babel/include test.c –fPIC \

–DPIC –o .libs/test.o
gcc –c –I/path/to/babel/include test.c \

–o test.o >/dev/null 2>&1

207

The babel-cc approach is newer
and not for everyone

Pros:

Keeps Makefiles small & simple

Protects against common mistakes

Effective on toy codes

Cons:

Uses Libtool (unusual idioms)

User surrenders some control

Not “battle hardened” like rest of Babel
(yet)

208

LLNL_PROG_BABEL: For users
who want to use autoconf

This is a M4 macro for autoconf

Copy the file into your source tree

List the file to acinclude.m4

Edit your configure.ac file and put the

macro before AC_PROG_CC.

Convenient way to pre-initialize all

autoconf variables with Babel defaults

Built on top of babel-config

209

Multiple approaches to see
how Babel built DLL’s

1. Watch our regression tests build

 make check, delete one library, make check

2. Try using “babel-libtool”

 Libtool is an obscure tool and may be more

confusing to learn than its worth

3. Read the “Advanced Topics” section of

Babel User‟s Guide

 Page on “linkers, loaders, and PIC” is most

downloaded page of the manual

4. email babel-users@llnl.gov

mailto:babel-users@llnl.gov
mailto:babel-users@llnl.gov
mailto:babel-users@llnl.gov

215

There’s more than one way
to distribute Babelized Code

 hypre wants their customers to be relatively

unaware they‟re using Babel.

They pre-generate compiled language bindings

They ship Babel‟s runtime bundled with hypre

BABELBABELBABEL
4

Library User Does This...

1. `babel --client=F90 greetings.sidl`

2. Compile & Link generated Code &
Runtime

3. Place DLL in suitable location

SIDL
interface
definition

Babel
Compiler IOR

Headers

F90 Stubs

libgreetings.so

Babel
Runtime

Application

BABELBABELBABEL
38

hypre Users Do This

1. -I directory of your calling language

2. -L directory of your calling language

3. -lhypre –lsidl

Application
F77

C

F90

C++

libhypre.a

Babel
Runtime

216

Babel Distributions:
Developer Kit vs. Runtime

Runtime subdirectory in the developer
kit has its own configure script.

It gets called by top level configure script
and becomes part of babel-x.y.z distro.

Calling it directly from the command line
configures it for separate distribution

Essentially, Babel uses its own runtime
subdirectory the same way customers
can bundle the Babel Runtime with
their distros.

217

Lots More Information In
Babel Users’ Guide (aka BUG)

Fine tuning your file layout

Primer Static and Dynamic Linkage

Platform specific details

Different strategies for mixing

generated and hand-written code in

CVS

218

Module Review

 Example Implementations
C++

C

Fortran 90

Python

 Example of Wrapping Legacy Codes in Babel
MPI_send

 Babel Build Tools & Techniques

 Packaging and Distribution

VI. Remote Method
Invocation

220

Scope of This Module

Motivation

Why RMI is superior to RPC

Goals for Babel RMI

Specifics to support RMI in Babel

SIDL keywords,

sidl.rmi package

builtin methods

Example: Multiscale Material Science

Protocols

221

Motivation for
Remote Method Invocation

 Research
CCA‟s “MxN” problem. (SciDAC 1)

 Bertrand et. al. Data redistribution and remote method
invocation for coupled components. JPDC. 66(7). July 2006, pp
931-946.

Petascale Simulation Initiative (LLNL R&D)
 Make whole 1000 processor jobs a single component in

a federated simulation.

 Practical Benefits
Workaround for nearly impossible situations

 Legacy codes will not port

 Two codes interfere with each other‟s linker symbols

Provides communication modes not covered by
MPI… truly asynchronous and interrupting

222

Key Technical Argument:
RMI is more than RPC

Data Exchange Data Exchange

Interrupting

Communication

Data Exchange

Interrupting

Communication

Dynamic Code

Injection

Message Passing

Remote Procedure

Call (RPC)

Remote Method

Invocation (RMI)

 Consistent OOP Model cannot be built on RPC

 Dynamic Code Injection is required to properly
support polymorphism

 Consequently CORBA & DCOM are object-like

 Java RMI and Babel RMI are different
 see also: Jim Waldo. Remote Procedure Calls and Java

Remote Method Invocation. IEEE Concurrency. 6(3). 1998. pp
5-7.

224

package mine version 1.0 {

class Addition implements-all example.BinaryOp {}

}

Processor A Processor B

Do More With RMI Than RPC:
A Single, Concrete Example

package example version 1.0 {

interface BinaryOp extends sidl.io.Serializable {

int eval(in int i, in int j);

}

class RemoteOp {

int eval(copy in BinaryOp op,

in int i, in int j);

}

}

RemoteOp

Addition

remote

sum

remote.eval(sum, 3, 4);

226

package mine version 1.0 {

class Addition implements-all example.BinaryOp {}

}

package example version 1.0 {

interface BinaryOp extends sidl.io.Serializable {

int eval(in int i, in int j);

}

class RemoteOp {

int eval(copy in BinaryOp op,

in int i, in int j);

}

Processor A Processor B

Do More With RMI Than RPC:
A Single, Concrete Example

RemoteOp

Addition

remote

sum

Though the method is implemented

in terms of an abstract interface, it

requires copy of the concrete type.

remote.eval(sum, 3, 4);

227

package example version 1.0 {

interface BinaryOp extends sidl.io.Serializable {

int eval(in int i, in int j);

}

class RemoteOp {

int eval(copy in BinaryOp op,

in int i, in int j);

}

package mine version 1.0 {

class Addition implements-all example.BinaryOp {}

}

Processor A Processor B

RMI Requires Runtime Code Injection
Cannot Mimic This With RPC

RemoteOpremote

Additionadd

remote.eval(sum, 3, 4);

Additionsum Additionsum

228

With RMI, OO Design Patterns
Extend to Distributed Regime

 Not particularly news to the
Java world

 Corba & DCOM really are RPC
C/C++/Fortran programmers have

had to do without

 Babel brings RMI to these
languages
Relies on DLLs in file system

instead of encoding bytecodes
on the wire

229

Goals for Babel RMI

Transparency

Same “look and feel” for local and remote

objects

Easy transition for existing customers

Generality

Actively encourage 3rd party protocols

Defined a Babel RMI API in SIDL

Distribute a TCP/IP reference implementation

230

Important Design Choices

Multithreaded
RMI Servers are analogous to Web Servers

Implementors are required to make their objects
thread-safe
 workaround: limit the threadpool of the server to one

 side effect: prone to deadlock with circular RMI

ergo: RMI is not an atomic operation

 No Network Security!
Babel RMI niche is within a single cluster

 rely on security of batch systems and firewalls

 allows protocols to be leaner & faster

For untrusted networks, Babel RMI needs more
 Cybersecurity experts welcome

231

Parts of Babel System
Specific to RMI

 Remote IOR

 Builtin Functions (Stubs)
 _create[Remote](in string url)

 _connect(in string url)

 _isLocal() / _isRemote()

 _getURL()

 _exec(in string name, in Deserializer inArgs,
in Serializer outArgs)

 sidl.rmi package

 SIDL Keywords
 nonblocking – modifies a method

 oneway – modifies a method

 copy – modifies an argument

232

Remote IOR issues
calls to InstanceHandle
instead of Skels

C++

Fortran90Fortran77

Java

C

Python

IOR

Key: SkelStub

In Process

Key: SkelStub

C++

Fortran90Fortran77

Java

C

Python

RIOR

C++

Fortran90Fortran77

Java

C

Python

IOR

R
e
m

o
te

 S
tu

b
Im

p
le

m
e
n

ta
ti

o
n

Network Other

InstanceHandle

Invocation &
Response

BaseServer

Call & Return

RMI

Network
Layer

defined in
SIDL for
3rd party
plug-ins

233

Wire Protocols Are Registered
Using Abstract Factory Pattern

This associates URLs beginning with

“simhandle” to class that implements the

sidl.rmi.InstanceHandle interface

sidlx is a package name we use for project

experiments

sidlx.rmi.SimHandle is the TCP/IP-based

reference implementation

sidl::rmi::ProtocolFactory::addProtocol(
"simhandle","sidlx.rmi.SimHandle");

234

Need to Also Launch
& Register a Server

 This Server is multithreaded and uses a

thread pool.

 Strongly advise thread-safe implementations

 Can limit thread pool to 1 thread, but runs

the risk of cyclic deadlock

string url = "simhandle://localhost:” +port;
sidlx::rmi::SimpleOrb orb =

sidlx::rmi::SimpleOrb::_create();
orb.init(url, 1);
int64_t tid = orb.run();
sidl::rmi::ServerRegistry::registerServer(orb);

235

_create[Remote](in string url)
& _connect(in string url)

Creates a remote instance or connects

to a known instance.

“url” here is a misnomer

Reference Implementation uses URL

format, but Babel is more general

ProtocolFactory lookup key is everything

before the first non alphanumeric

Matching protocol interprets rest of string

as it sees fit.

236

Once Connected, Local &
Remote Objects Behave Same

Added _isLocal() and _isRemote()
to distinguish

_getURL()

generates a string for remote handles to

_connect() to

has a useful side-effect of registering

objects in an instance registry

237

The copy Keyword &
sidl.io.Serializable

 In RMI, Most Types are Pass-By-Copy
Fundamental Types (int, float, etc.)

Aggregate Types (array, enum, & struct)

Note: opaque not so useful

 In RMI, Objects are Pass-by-Reference
Exception: iff both are met

 Object implements sidl.io.Serializable and

 copy keyword in argument list

 Exceptions are semantically equivalent to
“copy out” parameters.

238

Asynchrony with nonblocking
and oneway modifiers

 nonblocking:
Babel generates 3 stubs for each nonblocking

method, Z = foo(in A, inout B, out C).
 Z = foo(A, B, C) <- normal blocking form

 Ticket t = foo_send(A, B) <- nonblocking send

 Z = foo_recv(t, B, C) <- nonblocking recv

Caution: Protocol may support syntax but
implement in blocking calls (or vice versa).

 oneway:
Generates sidl.RuntimeExceptions iff reliable

delivery cannot be guaranteed.

Restrictions: No out or inout parameters, return
void only, no user exceptions.

Fire and forget.

239

Heirarchy of Objects in
sidl.rmi package

BaseInterface

BaseClass

ServerInfo

Network

Exception

InstanceHandle

TimeOut

Exception

Unexpected

CloseException

ObjectDoesNot

ExistException

MalformedURL

Exception

Protocol

Exception

ConnectRegistry

ServerRegistry

ProtocolFactory

Instance

Registry

Deserializer

Serializer

IOException

sidl

sidl.io

Key: Interface Class Interface

Inheritance
Implementation

Inheritance

Ticket

sidl.rmi

TicketBook

NoServer

Exception

Invocation

Response

Call

Return

BindException

Connect

Exception

NoRouteToHost

Exception

UnknownHost

Exception

 The Interfaces in
sidl.rmi are specific
to implementing a
wire-protocol in
Babel RMI
TCP/IP – built-in

PSP – LLNL

IIOP – Tech-X

SOAP – SUNY
Binghamton

RMIX – GA Tech

others…

240

Babel RMI is Protocol Neutral:
Reference Implementation is TCP

Supporting Middleware μsecs

Babel: in process (C) 0.030

MPI: ping-pong on elan3 (C) 9.43

CORBA: omniORB (C++) 251

Babel RMI: Simple TCP/IP (C++) 609

Globus 4.0 WS Core:

no security (Java)

28,000

Round trip latency of a no-op on 3.06 GHz Intel P4

Xeons with Elan3 switch using Intel 9.1 compilers

and Babel 1.0.1

375 in Babel 1.1

Source: Kumfert, Leek, & Epperly. Babel Remote Method Invocation. IPDPS ’07

241

Simple Scaling Study using
Babel RMI’s Reference Impl.

inout array<double>

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

2*
*1

2*
*1

2*
*3

2*
*4

2*
*5

2*
*6

2*
*7

2*
*8

2*
*9

2*
*1

0

2*
*1

1

2*
*1

2

2*
*1

3

2*
*1

4

2*
*1

5

2*
*1

6

2*
*1

7

2*
*1

8

2*
*1

9

2*
*2

0

array length

e
la

p
s

e
d

 m
s

e
c

s

Babel

MPI

CORBA

Babel RMI

Globus

Source: Kumfert, Leek, & Epperly. Babel Remote Method Invocation. IPDPS ’07

242

2-D Material Failure of Shock-
Driven Cylinder, /w Babel RMI

 Simulation & Animation by Nathan Barton, LLNL (Engr.)

 140 Processors, 33 wallclock hours

 1/3 cluster doing macroscale (continuum C code)

 Other 2/3 machine is a fine-scale material compute farm
(experimental crystal-plasticity models in Fortran 90)

 Cooperative Parallelism Project (Co-Op), John May, PI

Plastic strain rate fine-scale evaluationspressure

243
1 2 3 4 5 8760 9 n10ProcessorID

Compute Farm of

Fine Scale Servers

Continuum

Sim

Server

Proxy

PSI

Daemons

Expanding Cylinder Uses Proxy Pattern to

Load Balance Dynamically

= Process

= MPI_COMM_WORLD

= Babel RMI

Not shown: Scheduler communicates

with all Processes via RMI

c

High-Dim

Data Cache

+ Sampling Logic

+ Coupler

Co-Op

Daemons

Co-Op

Scheduler

Visualization

of when and were

these RMIs occur

244

RMI References

 Kumfert, Leek, & Epperly. Babel Remote
Method Invocation. IPDPS ’07

 Kumfert & Leek. How to Implement a Protocol
for Babel RMI. LLNL Tech Report UCRL-TR-
220292. March 2006.

 Damevski, Zhang, & Parker. Practical Parallel
Remote Method Invocation for the Babel
Compiler. CompFrame ’07

245

Conclusions

 Babel RMI is new and powerful tool
 Distributed programming model is consistent with serial

OOP

 Enables C, C++, F77/90/95, Python & Java to cooperate and
even migrate objects between them.

 Babel RMI is currently a niche tool
We use it inside a single cluster

 No facilities for security or authentication (unlike Grid)

 Babel RMI is designed for collaborative research
 Parallel, SOAP, and IIOP implementations underway

 SCI Institute @ Utah --------------------------

 Seeking high-performance / switch-specific
implementations… esp. Cray and BlueGene

VII. Closing

247

Babel Thrives on Research
Collaborations & Community

Lab Directed

R&Ds

@ LLNL

CCA

SciDAC 1&2

FACETS

SciDAC App

J. Cary, PI

F90 Arrays
Chasm

LANL

Improved C++ Bindings
University Utah

Nightly Testing
ANL, ORNL & SNL

Fortran 2003 Bindings
Tech-X

Nonblocking RMI
Coöperative Programming

RMI Consulting & Feedback
Univ. Utah, Suny Binghamton,

Indiana Univ. & Tech-X

Startup
Components Initiative

Cray Port
ORNL

Feature Requests & Defect Reports
General User Base

Alpha Testers
hypre @LLNL

248

Current R&D Activities in
Babel

 Semantics (Design by Contract) in SIDL
 Tamara Dahlgren‟s Ph.D. thesis

 Parallel RMI
 Joint work with CCA, Cooperative Programming and

Others.

 CScADS (@ Rice)
 Applying compiler optimizations to Babel‟s inter-language

context (exploratory)

 Cray Inc.
Math Libraries Group – Babel Generated Fortran Interfaces

and CCA

 Chapel Group – Chapel Binding to Babel (exploratory)

 Tech-X
 Creating Fortran 2003 binding (SBIR)

249

Open Source in Licensing,
and in Practice

Open Mailing Lists

babel-announce, babel-users, babel-dev

Open Feature Request & Bug Tracking

Online SVN repository

Distributed Testing

250-40

-30

-20

-10

0

10

20

30

40

50

60

70

N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A

New

Closed

Carry

All Feature Requests and Defect
Reports are Public and Tracked

2004 2005 2006 20072003

S
w

it
ch

 t
o
 R

o
u

n
d

u
p

251

0

50

100

150

200

250

300

350

400

J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A

1.1.x

1.0.x

0.99.x

0.11.x

0.10.x

0.9.x

0.8.x

 0.7.x

6717 source downloads total

1497 of Babel 1.0.x

LLNL source downloads only. Does not include

SVN access, CCA-sumo, hypre or Debian

Downloads Indicate a Sustained
Growth Over Years

2004 2005 2006 20072003

lo
gs

 u
na

va
il
ab

le

252

J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A

0

200

400

600

800

1000

1200

1400

1600

BUG

Source

SC|04 Tutorial

Downloads of Our SC|04
Tutorial Were a Surprize

2004
2005

2006
2007

2003

total downloads

Users‟ Guide 5,449

Babel Source 6,717

SC|04 Slides 15,434

253

J J A SO N D J F MA M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

BUG

Source

SC|04 Tutorial

Distinct Hosts

Distinct Hosts Hitting Babel Website
Overall Continues to Grow

2004
2005

2006
2007

2003

254

What Next?

 Where does your project fit?

 Do you have different needs or special constraints?

 Talk to us! componets@llnl.gov

12

Customers Use Babel To
Serve a Variety of Needs

Manage community codes
[Chemistry, Fusion, Radio Astronomy]
Create software interface specifications.

[CCA, ITAPS, TOPS]
 Integrate multiple 3rd party libraries into a

single scientific application.
[Chemistry, Fusion, CMEE]
Develop libraries that connect to multiple

languages.
[hypre, TAU, Sparsekit-CCA]
Scientific Distributed Computing

[Co-Op, SCIJump, Legion-CCA, Harness, GA]

Part II: Hands On

NOTE: Check online for latest changes and corrections
to this document.

http://www.llnl.gov/CASC/components/docs/scO7.html

256

Outline: Babel Acoustic

 Background: Simple 2D Acoustic Wave

 Task 0: Setup and Run

Appreciating the Babel Implementation

 Task 1: Write a Program Using Babel Objects

 Task 2: Modify Existing Impl

 Task 3: Re-implement a piece in your

language of choice

 Task 4: Add new method/feature

 Task 5: Create new object

257

Simple Wave Equation

 Prototypical hyperbolic PDE

 Animation is a 1D pulse
through a string with fixed
endpoints.

We will compute 2D waves through isotropic
inhomogenous elastic media
cair ≈ 344 m/s (21 C, no humidity)

cwater ≈ 1497 m/s (25 C, no bubbles or sediment)

csteel ≈ 5100 m/s

ucutt
22

258

Before we start doing tasks,
this is not a race!

Goal here is learning, not get to the end

fastest

Someone may not get past first three

tasks, but still acquire more new

information than a seasoned CS pro

who races through

We will go through tasks leisurely

Happy to stop and discuss interesting

developments from the class

259

Task 0: Setup and Run

Choose your setup.

 Install Babel (option B only)

Configure/Build/Run Babel-wave

Tour of your working Babel-wave

installation

 Preparation for next tasks.

People are circulating
to help you

Group projects are
encouraged

260

LLNL ONLY

Babel is pre-installed on LC machines

chaos_3_x86_elan3 (alc & pengra)

chaos_3_ia64_elan4 (thunder)

chaos_3_x86_64_ib (atlas & zeus)

 Install dot-kits in your directory

% gtar zxvf /usr/gapps/babel/babel.kits.tar.gz $HOME

% use babel-1.2.0-ic91

Copy tutorial code

% cp /usr/gapps/babel/tutorial/babel-wave.tar.gz …

261

Choose your setup

Option A: ssh to our server

Babel is preinstalled

You can‟t take it home with you

Option B: install Babel on your machine

You can play with it after class

Installing Babel takes more time/expertise

262

Option A: Setup

 Install ssh client, if needed.

Get student account for our machine

Get IP address of our machine

ssh to our environment

copy babel-wave.tar.gz to your home

directory

skip next two slides

263

Option B: Prerequisites to
Installing Babel

Mandatory
Java http://java.sun.com

 Required for Python-support
Python

Numpy extension Module

 Required for Fortran90-support
Chasm

Fortran 90 compiler that Chasm supports

 Required for visualization:
Python

GNUplot

http://java.sun.com/

264

Option B: Installing Babel

Get tarball (& dependencies)

website: http://www.llnl.gov/CASC/components

CD ROM: (you can keep)

USB drive (please return to us!!!)

 Refer Back to Section IV: Babel tool

 Refer to the B.U.G.

(Babel Users‟ Guide)

 Copy babel-1.1.2/contrib/babel-wave.tar.gz

to your home directory

http://www.llnl.gov/CASC/components

265

Both Options A & B (&LLNL)

`babel --help` to confirm Babel works

gtar zxvf babel-wave.tar.gz

cd babel-wave

 ./mini-configure `where babel-config`

make

cd runPython;

python sanity_check.py

...stuff ...

[[0.25207194 0.25207194]

[0.25207194 0.25207194]]

[[1.19015414 1.19015414]

[1.19015414 1.19015414]]

266

The Babel-Wave
Implementation

Design

SIDL File

Directory Layout

 Implementations

mini-configure

Make

Run

267

Three Main Objects
and their Roles

 ScalarField – Manages a 2-D state
 Creates 2-D array based on rectangular coordinate space,

and a mesh-spacing.

 Can render shapes in coordinate space onto its 2-D array

 WavePropagator – Applies physics
 Takes a Scalar Field as material wave speed

 Takes a 2-D array for initial pressure distribution

 Steps forward in time and creates new pressure
distributions

 Shape
 Drawing primitive for creating interesting inhomogenous

material configurations.

 Useful for demonstrating advanced OOP capabilities.

268

Basic setup

 Specification is
written entirely in
SIDL interfaces

 Each language is
implemented in a
separate
(descriptively
named) package

 To demonstrate
language
interoperability,
we‟ll mix-and-
match from
various
implementations

package wave2d version 1.0 {

interface WavePropagator {...}

interface ScalarField {...}

interface Shape {...}

}

package cxx version 1.0 {

class WavePropagator implements-all

wave2d.WavePropagator { ... }

class ScalarField implements-all
wave2d.ScalarField {...}

package f90 version 1.0 {

class WavePropagator implements-all

wave2d.WavePropagator { ... }

class ScalarField implements-all
wave2d.ScalarField {...}

269

Directory Layout

babel-wave/

libC/ C implementations

libCxx/ C++ implementations

libF90/ F90 implementations

runC/ incomplete C driver

runCxx/ C++ drivers

runPython/ Python drivers

270

wave2d.sidl file details
package wave2d version 1.0 {

interface Shape {

Shape translate(in double delta_x, in double delta_y);

Shape scale(in double delta_x, in double delta_y);

Shape rotate(in double angle);

Shape unify(in Shape other);

Shape intersect(in Shape other);

// . . .

}

interface ScalarField {

void render(in Shape shape, in double value);

array<double, 2> getData();

void getBounds(out double minX, out double minY,
out double maxX, out double maxY,
out double spacing);

}

interface WavePropagator {

void step(in int n);

array<double, 2> getPressure();

}

271

mini-configure

This is a hand-made script that uses

babel-config to build

settings.make

wave2d.scl

runPython/babelenv.py

The makefiles also use babel-cc scripts

272

make

 If you are option#2 and some of your

languages were disabled at configure

time:

make at the babel-wave/ directory may not

be enough

cd into each of the relevant subdirectories

and run make there too

273

A bit more about drivers

 in runCxx/
runCxx2Cxx – statically linked, C++ only version

of the sanity_check

runCxx2F90 – statically linked, C++ to F90 version
of the sanity_check

runCxx2GNUplot – Generates *.gif frames for a
fixed problem
 Use ImageMagik to merge frames

% convert –adjoin loop 40 –delay 10 \
pressure*.gif pressure_anim.gif

 copy animation from LC machine to local workstation
and view in web browser

274

Task 1: Write a Program
That Uses Babel Objects

Look in runCxx/ or runPython/

directories for examples

There is a runC/ directory... but its

incomplete.

We‟ll complete the C driver

from babel-wave/

cd runC/

write the Makefile and driver code

275

Task 1: Self Check

 The output of your new application
babel-wave/runC/runC2Cxx

should be identical to
cd babel-wave/runCxx/runCxx2F90

 A word about environment variables:
It is critical to have paths set up for appropriate

libraries to be found at runtime.

Original version of this tutorial required users use
make to pass these settings to python (not
elegant)

Now path info is generated by mini-config and
imported directly into python via babelenv.py

276

Losing track what object is
implemented in what language?

 That‟s the whole point of Babel!!!
you shouldn‟t have to care

they‟re all just Babel objects.

 To change which implementation you use in
statically linked C driver, simply change
which one gets created and recompile.

Want to try
a driver in a different language?

dynamic loading so you can change Impls without
recompile?

Exception handling?

277

Task 1 Recap:
What did we learn?

To use Babel objects:

Need the SIDL file

Run Babel to generate language bindings
of choice
 babel --client=language [SIDL FILES...]

Requires no knowledge of what language the
objects were written in

 (we made the package name indicate the
implementation language for educational
purposes)

Code the application to the wrappers.

278

Task 2: Modify Existing Impl

cxx.internal.Unification

has an intentional bug

should be || instead of &&.

279

Task 2: How To’s

No need to modify SIDL files yet

Just edit the

libCxx/cxx_internal_Unification_Impl.cxx file

Then

rebuild that library

rebuild in runCxx/ and run “task2”

or cd runPython/ and “python task2.py”

280

Task 2: Self Check

Why don‟t you have to rebuild the

runPython/ directory?

281

Task 3: Reimplement An
Object in Language of Choice

Not everything in Babel-wave is

implemented in every language

Regardless of what language you write

it in, it should load into the python

driver by only modifying the

from <pkg>.<class> import <class>

282

Task 3: Details

Now, you‟ll have to edit (or write) a

SIDL file... depending on language of

interest

Ask instructors for Makefile templates

for each case

283

Task 3: More Details

For dynamic loading, you will also want
to edit the wave2d.scl file

This is an XML catalog of what types are
available in what libraries.

You added a new type, so either add it to
the existing SCL file, or create a new one
and add it to SIDL_DLL_PATH.

For static linked executables, (e.g. the
C driver we wrote) you may need to edit
libraries in the final link line.

284

Task 3: Self Check

You implemented in a different

language, but shouldn‟t have changed

the behavior.

285

Task 3 Recap:
What did we learn?

Adding a new type is a lot more

involved than modifying the behavior of

an existing one.

Adding one type didn‟t affect any of the

others.

Didn‟t affect the driver (when using

dynamic loading).

286

Task 4: Add a new feature

Add a Subtract method to
wave2d.Shape

Since this interface is high in our
hierarchy, follow the ramifications and
implement what is needed.

A B

287

Recap of Entire Hands-on
up to Now

Task 1: Wrote a driver that used

existing Babel Objects

Task 2: Changed behavior of an

existing Impl, but not its API.

Task 3: Implemented a new object

with behavior and API identical to an

existing one.

Task 4: Changed an interface that

multiple objects implement.

288

Task 5: Create a New Object

Add a multiline shape

Takes an array of x,y pairs

Define inLocus(x,y) as follows:

Define a point outside the shape

Consider how many line segments are crossed

between outside point and (x,y).

odd implies inLocus == true

even implies inLocus == false

289

Please Fill Out Survey Forms

Thank You

Happy Babeling

Thank You

